212 research outputs found

    A Novel WLAN Client Puzzle against DoS Attack Based on Pattern Matching

    Get PDF
    Despite the popularity of 802.11 based networks, they suffer several types of DoS attack, launched by an attacker whose aim is to make an access point (AP) unavailable to legitimate users. One of the most common DoS attacks on 802.11 based networks is to deplete the resources of the AP. A serious situation like this can occur when the AP receives a burst of connection requests. This paper addresses this common DoS attack and proposes a lightweight puzzle, based on pattern-matching. Using a pattern-matching technique, this model adequately resists resource-depletion attacks in terms of both puzzle generation and solution verification. Using a sensible series of contextual comparisons, the outcomes were modelled by a simulator, and the security definition and proofs are verified, among other results

    Guesswork is not a substitute for Entropy

    Get PDF
    Shannon entropy is often considered as a measure of uncertainty. It is commonly believed that entropy is a good measure of how many guesses it will take to correctly guess a single value generated by a source. This belief is not well founded. We summarise some work in this area, explore how this belief may have arisen via the asymptotic equipartition property and outline a hands-on calculation for guesswork asymptotics

    Exact Probability Distribution versus Entropy

    Full text link
    The problem addressed concerns the determination of the average number of successive attempts of guessing a word of a certain length consisting of letters with given probabilities of occurrence. Both first- and second-order approximations to a natural language are considered. The guessing strategy used is guessing words in decreasing order of probability. When word and alphabet sizes are large, approximations are necessary in order to estimate the number of guesses. Several kinds of approximations are discussed demonstrating moderate requirements concerning both memory and CPU time. When considering realistic sizes of alphabets and words (100) the number of guesses can be estimated within minutes with reasonable accuracy (a few percent). For many probability distributions the density of the logarithm of probability products is close to a normal distribution. For those cases it is possible to derive an analytical expression for the average number of guesses. The proportion of guesses needed on average compared to the total number decreases almost exponentially with the word length. The leading term in an asymptotic expansion can be used to estimate the number of guesses for large word lengths. Comparisons with analytical lower bounds and entropy expressions are also provided

    Investigating the Distribution of Password Choices

    Get PDF
    In this paper we will look at the distribution with which passwords are chosen. Zipf's Law is commonly observed in lists of chosen words. Using password lists from four different on-line sources, we will investigate if Zipf's law is a good candidate for describing the frequency with which passwords are chosen. We look at a number of standard statistics, used to measure the security of password distributions, and see if modelling the data using Zipf's Law produces good estimates of these statistics. We then look at the the similarity of the password distributions from each of our sources, using guessing as a metric. This shows that these distributions provide effective tools for cracking passwords. Finally, we will show how to shape the distribution of passwords in use, by occasionally asking users to choose a different password

    Quantum guesswork

    Full text link
    The guesswork quantifies the minimum cost incurred in guessing the state of a quantum ensemble, when only one state can be queried at a time. Here, we derive the guesswork for a broad class of ensembles and cost functions.Comment: 6 page
    • …
    corecore