
 

Guesswork is not a substitute for 
Entropy 

 
*Dr. David Malone1, Dr. Wayne Sullivan2, 

1Hamilton Institute, NUI Maynooth, Ireland,  
Tel:  (01) 708 6100 

E-mail: david.malone@nuim.ie 
2 Department of Mathematics, UCD, Dublin, 

Ireland. 

Abstract: Shannon entropy is often considered as a measure of uncertainty. It 
is commonly believed that entropy is a good measure of how many guesses it 
will take to correctly guess a single value generated by a source. This belief is 
not well founded. We summarise some work in this area, explore how this 
belief may have arisen via the asymptotic equipartition property and outline a 
hands-on calculation for guesswork asymptotics. 

1. Introduction 
Shannon entropy, h(p) := -∑ pi lg pi, is often considered as a measure of the number 
of bits of uncertainty associated with a source which produces symbol i with 
probability pi, where lg = log2. This use, which began with Shannon’s work on 
Information Theory, has become widespread in cryptology where it is often used 
outside its original context. For example, suppose the symbol i is a key for some 
cypher and is chosen with distribution pi. Key guessing attacks are discussed in [10]: 

We can measure how bad a key distribution is by calculating its entropy. This 
number E is the number of  real bits of information of the key: a cryptanalyst will 
typically happen across the key within 2E guesses. E is defined as the sum of -∑pK log2 
pK, where pK is the probability of key K. 

Similar inferences are made in Section 17.14 of [9] while discussing Biases 
and Correlations of random sequence generators. The quality of the random data 
harvested by the Yarrow pseudo-random number generator is also referred to as 
entropy [4]. The Entropy Gathering Daemon [11], a substitute for the Unix 
/dev/random device, speaks for itself in this respect. 

There are many possible criteria for measuring ‘guessability’. The one we 
consider here is the expected number of guesses required to get the correct answer. 
Various strategies can be used for guessing. Commonly know are brute force attacks, 
where all symbols are guessed in no particular order, and dictionary attacks, where 
the symbols deemed more probable are guessed first. Well known software packages, 
such as Crack [7], use a dictionary attack. 

The guessing strategy we consider is the optimal dictionary attack, where 
symbols are guessed in decreasing order of probability. If the symbols produced by 
the source are relabeled so that p1 is the most likely and the sequence pi is non-
increasing then the expected number of guesses is G(p) =  ∑ipi . 

In [8] this is referred to as the guesswork. On average it takes (n + 1)/2 
guesses to correctly guess from n equally likely possibilities. Thus, for comparison 
with entropy we define H(p) := (2h(p) + 1)/2. 
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Figure 1: Samples of G(p) and H(p) for alphabets of ≤ 20 symbols. 

 
The popular notion, entropy ≈ number of bits of uncertainty, suggests that we 

look for some sort of equivalence between G(p) and H(p). Casual numerical 
experiments suggest that 0.7H(p) ≤ G(p) ≤ H(p), see Figure 1. Here, a million random 
distributions were generated for sets of 2 to 20 symbols and the largest and smallest 
values of G seen for a particular H value were recorded. 

2. Bounds on G and H 
In [6] it is shown that a lower bound for G(p)/H(p) is 2/e. This can be derived by 
showing that a geometric sequence for pi produces an extrema of H(p) while keeping 
G(p) fixed. The value 2/e is obtained for an infinite geometric sequence as the ratio 
goes to 1. 

The upper bound, G(p) ≤ H(p), suggested by the numerical experiment in 
Figure 1 is shown to be incorrect in [6]. By taking a sequence where p1 = 1 - b/n and 
p2, . . . , pn = b/(n2-n) and letting n→∞, we get sequences with G(p) = 1 + b/2 but H(p) 
tending to 1. 

So H(p) is within a few bits of being a lower bound on the expected number of 
guesses, but may be an arbitrarily large underestimate. This is fortunate for those 
designing cryptosystems where entropy is used as a measure of guessability. In [3] 
Rényi entropy is used to give two-sided bounds on the expected number of guesses. 

Note that it is possible to construct guessing problems that are related to 
Shannon entropy. Instead of guessing one symbol at a time, consider the problem 
where we may guess a set of symbols and we are told if the correct symbol is in our 
set. This problem is clearly easier than the simple guesswork problem. However this 
problem is also the same as putting the symbols into a binary tree of minimum 



average depth, which is the coding problem and so requires about h(p) guesses (rather 
than H(p) guesses). 

3. Other Measures of Guessability 
The example in Section 2, which dispels the possibility of an upper bound, raises an 
interesting issue. It produces distributions where the average number of guesses is 
arbitrarily large, but it places almost all the weight on the first symbol, so the mode of 
the number of guesses will be 1. This suggests that the average number of guesses 
may not be a good measure of guessability for cryptography. One better possibility 
would be to consider the moments of the guesswork, rather than just the mean. 

Another alternative to G(p) as a measure of guessability is the number of 
guesses required so that probability of having guessed correctly is at least α. In [8] 
this is referred to as the α-work factor and denoted wfα(p). The authors examine wf1/2 
and decide that again entropy does not provide a good estimate. However, they offer 1 
||p-u|| as a more hopeful estimator, where u is the uniform distribution and ||p-q|| := 
supi |pi-qi|, is the variation distance. 

4. Guesswork and Asymptotic Equipartition 
How did this perceived link between entropy and guesswork arise? One suggestion in 
[8] is that it is a misapplication of the Asymptotic Equipartition Property (AEP). 

The AEP applies to a collection of n i.i.d sources of symbols and the words 
they produce. Roughly speaking, the AEP says that if you take n large enough then 
there is a typical set of 2nh(p) words which all have approximately the same probability 
2-nh(p), while the remaining words have only a small probability associated with them 
(see [2] for a precise statement). 

A good estimate of the guesswork of these 2nh(p) equiprobable typical words 
would be (2nh(p)+1)/2, and setting n = 1 we get the folklore that G(p) ≈ H(p). The first 
problem with this argument is that the AEP deals with large n, what arises for the case 
n = 1 may be very different. Another difficulty is that some terms of low probability 
may contribute significantly because of the i in the expectation ∑ipi grows 
exponentially as n does. 

5. Guesswork on Long Words 
Given that the AEP requires large n, it makes sense to ask if there is an equivalence 
between guesswork and entropy in some “large n” sense. 

Consider the situation where we guess an entire word of length n. Each 
character of the word has been chosen independently with distribution p1, p2, . . .. We 
denote the guesswork for this problem as G(pn). A straightforward application of the 
AEP for large n is still not valid: as the probability of the atypical words becomes 
small, the weight associated to them in the sum for G(pn) grows exponentially. 

We can also consider this in terms of the principal of the largest term and 
typical sets. When calculating expectations for n i.i.d. sources, we look at sums of the 
form: 

     
If the function f(p) is relatively small, then the most important term in this sum 

is the one which maximise the product of the multinomial coefficient and the 



probabilities. This term will have nk/n ≈ pk. These points correspond to the typical set 
of the AEP. 

When calculating guesswork, f(p) = rank(p) and the sum we consider is closer 
to: 

 
Here the largest terms will be those with nk/n ≈ c√pk, where c is a normalising 

constant. Thus the dominant terms for the guesswork problem are different from those 
for the coding problem. 

To give an explicit example, suppose our word is a binary string and that 0 is 
chosen with probability p and 1 is chosen with probability q = 1 - p. For simplicity, 
suppose 0 ≤ p ≤ 0.5 so that pkqn-k is in non-increasing order. Then 

 
where 

 
By balancing the binomial terms against the geometric terms, we can identify 

the largest term in the expression for G(pn) and show that it dominates as n becomes 
large. Formally, we can evaluate the average number of extra bits of guesswork we 
get per bit in the word: 

 
and show that we get lg((√p + √q)2) extra bits per character. This is clearly not 

the same as the estimate from Shannon entropy -p lg p -q lg q. 
This result can be generalised. In [1], Arikan employs clever inequalities to 

produce estimates of the guesswork, showing that this result generalises to lg((√p1 + 
√p2 + . . . )2). Interestingly this quantity has already been studied and is known as the 
Rényi entropy. This result has also been generalised in [5] to give the moments of the 
guesswork when the words are generated using a Markov chain. 

6. Conclusion 
The entropy provides a lower bound but no upper bound on the expected amount of 
work required to guess a single output from a source. This is fortunate for 
cryptographers that have designed systems assuming that entropy is the same as 
guesswork. However, we also note that the expected amount of work may not be a 
good measure of the guessability of source. This is a sober reminder that one must be 
careful to consider what is required of random number generators used in computing. 
 It is interesting to note that these estimates do not seem to have been 
considered until relatively recently [6, 1, 5] and that they use abstractions such as 
Rényi entropy. 
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