53 research outputs found

    Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    Get PDF
    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms

    Exploring the value of supporting multiple DSM protocols in Hardware DSM Controllers

    Get PDF
    Journal ArticleThe performance of a hardware distributed shared memory (DSM) system is largely dependent on its architect's ability to reduce the number of remote memory misses that occur. Previous attempts to solve this problem have included measures such as supporting both the CC-NUMA and S-COMA architectures is the same machine and providing a programmable DSM controller that can emulate any DSM mechanism. In this paper we first present the design of a DSM controller that supports multiple DSM protocols in custom hardware, and allows the programmer or compiler to specify on a per-variable basis what protocol to use to keep that variable coherent. This simulated performance of this DSM controller compares favorably with that of conventional single-protocol custom hardware designs, often outperforming the conventional systems by a factor of two. To achieve these promising results, that multi-protocol DSM controller needed to support only two DSM architectures (CC-NUMA and S-COMA) and three coherency protocols (both release and sequentially consistent write invalidate and release consistent write update). This work demonstrates the value of supporting a degree of flexibility in one's DSM controller design and suggests what operations such a flexible DSM controller should support

    Analysis of avalanche's shared memory architecture

    Get PDF
    technical reportIn this paper, we describe the design of the Avalanche multiprocessor's shared memory subsystem, evaluate its performance, and discuss problems associated with using commodity workstations and network interconnects as the building blocks of a scalable shared memory multiprocessor. Compared to other scalable shared memory architectures, Avalanchehas a number of novel features including its support for the Simple COMA memory architecture and its support for multiple coherency protocols (migratory, delayed write update, and (soon) write invalidate). We describe the performance implications of Avalanche's architecture, the impact of various novel low-level design options, and describe a number of interesting phenomena we encountered while developing a scalable multiprocessor built on the HP PA-RISC platform

    Evaluating the potential of programmable multiprocessor cache controllers

    Get PDF
    technical reportThe next generation of scalable parallel systems (e.g., machines by KSR, Convex, and others) will have shared memory supported in hardware, unlike most current generation machines (e.g., offerings by Intel, nCube, and Thinking Machines). However, current shared memory architectures are constrained by the fact that their cache controllers are hardwired and inflexible, which limits the range of programs that can achieve scalable performance. This observation has led a number of researchers to propose building programmable multiprocessor cache controllers that can implement a variety of caching protocols, support multiple communication paradigms, or accept guidance from software. To evaluate the potential performance benefits of these designs, we have simulated five SPLASH benchmark programs on a virtual multiprocessor that supports five directory-based caching protocols. When we compared the off-line optimal performance of this design, wherein each cache line was maintained using the protocol that required the least communication, with the performance achieved when using a single protocol for all lines, we found that use of the "optimal" protocol reduced consistency traffic by 10-80%, with a mean improvement of 25-35%. Cache miss rates also dropped by up to 25%. Thus, the combination of programmable (or tunable) hardware and software able to exploit this added flexibility, e.g., via user pragmas or compiler analysis, could dramatically improve the performance of future shared memory multiprocessors

    An Adaptive Cache Coherence Protocol Optimized for Producer-Consumer Sharing

    Full text link

    Load Balancing Analysis of a Parallel Hierarchical Algorithm on the Origin2000

    Get PDF
    Colloque avec actes sans comité de lecture.The ccNUMA architecture of the SGI Origin2000 has been shown to perform and scale for a wide range of scientific and engineering applications. This paper focuses on a well known computer graphics hierarchical algorithm - wavelet radiosity - whose parallelization is made challenging by its irregular, dynamic and unpredictable characteristics. Our previous experimentations, based on a naive parallelization, showed that the Origin2000 hierarchical memory structure was well suited to handle the natural data locality exhibited by this hierarchical algorithm. However, our crude load balancing strategy was clearly insufficient to benefit from the whole Origin2000 power. We present here a fine load balancing analysis and then propose several enhancements, namely "lazy copy" and "lure", that greatly reduce locks and synchronization barriers idle time. The new parallel algorithm is experimented on a 64 processors Origin2000. Even if in theory, a communication over-cost has been introduced, we show that data locality is still preserved. The final performance evaluation shows a quasi optimal behavior, at least until the 32-processor scale. Hereafter, a problematic trouble spot has to be identified to explain the performance degradation observed at the 64-processor scale

    Simulating the data diffusion machine

    Full text link

    Performance of Switch Blocking on Multithreaded Architectures

    Full text link
    • …
    corecore