
A n a l y s i s o f A v a l a n c h e ’s S h a r e d M e m o r y A r c h i t e c t u r e

R avindra Kuram kote, John C arter, Alan D avis,
Chen-Chi K uo, Leigh Stoller, M ark Swanson

U U CS-97-008 *

C om puter S ystem s Laboratory
U niversity o f Utah '

A bstract
In this paper, we describe the design of the Avalanchemultiprocessor’s shared memory subsys­

tem, evaluate its performance, and discuss problems associated with using commodity worksta­
tions and network interconnects as the building blocks of a scalable shared memory multiprocessor.
Compared to other scalable shared memory architectures, Avalanchehas a number of novel fea­
tures including its support for the Simple COMA memory architecture and its support for multiple
coherency protocols (migratory, delayed write update, and (soon) write invalidate). We describe
the performance implications of Avalanche’s architecture, the impact of various novel low-level
design options, and describe a number of interesting phenomena we encountered while developing
a scalable multiprocessor built on the HP PA-RISC platform.

1
9

Ravindra Kuram,kote, John Carter, Alan Davis,
Chen-Chi Kuo, Leigh Stoller, M ark Swanson

Com puter System s Laboratory
University o f Utah

A n a l y s i s o f A v a l a n c h e ’s S h a r e d M e m o r y A r c h i t e c t u r e

1 I n t r o d u c t i o n ,

The primary Avalanchedesign goal is to maximize the use of commercial components in the creation
of a scalable parallel cluster of workstation multiprocessor tha t supports both high performance
message passing and distributed shared memory. In the current prototype, Avalanchenodes are
composed from Hewlett-Packard HP7200 or PA-8000 based symmetric multiprocessing worksta­
tions, a custom device called the W id g e t, and Myricom’s Myrinet interconnect fabric [6]. Both
workstations use a main memory bus known as the Runway [7], a split transaction bus supporting
cache coherent transactions. In the Avalancheprototype a Widget board will plug into a processor
slot in each node and Myrinet cables will connect each card to a Myrinet active crossbar switch
providing connections to the rest of the cluster. The Avalancheprototype will contain 64 nodes,
each containing between one and three processors. Sections 2 and 4 describe Avalanche’s shared
memory architecture in detail, while its performance implications are described in Section 6.

A unique aspect of Avalanche’s architecture is tha t it is designed to support two scalable shared
memory architectures: CC-NUMA and Simple COMA (S-COMA). Each architecture has significant
advantages and disadvantages compared to the other depending on the memory access behavior of
the applications. Supporting both models does not add significant design complexity to the Widget,
but our current prototype design supports only the S-COMA model because the bus controller in
HP workstations generates a bus error when a “remote” physical address is placed on the bus,
even if the Widget signals its willingness to service the request. We are designing a solution to
this problem, but in the interim, we have found tha t S-COMA’s greater replication significantly
improves performance compared to CC-NUMA in many circumstances due to Avalanche’s relatively
slow interconnect and the direct mapped nature of the HP chips’ LI cache.

We are also designing Avalancheto support multiple coherency protocols, which can be selected
by software on a per-page basis. We currently support a migratory and release consistent delayed
write update protocol, and are designing a release consistent write invalidate protocol. Simulation
indicates th a t the relative performance of the three protocols varies dramatically depending on the
way data is accessed[10], and it turns out tha t the W idget’s design makes it relatively straightfor­
ward to support multiple protocols. The memory models and protocols are described in Section 3.

Finally, the decision to use primarily off the shelf hardware led to a more cost effective design
than a fully custom solution, but doing so required a number of design compromises. In particular,
using commodity hardware means living with mechanisms and protocols tha t were not designed
with scalable multiprocessing in mind. In particular, Hewlett-Packard’s Runway bus and memory
controller design introduced a number of unexpected challenges tha t we are being forced to work
around. The details of these quirks and their impact on performance are described in Section 7 as
a lesson for future designers of scalable shared memory architectures.

2

The AvalancheW idget provides direct hardware support for low-latency message passing and dis­
tributed shared memory (DSM) functions. The board contains a W idget ASIC and 256 KB of
SRAM called the Shared Buffer (S B). A block diagram of the W idget shown in Figure 1 contains
seven distinct subsystem s: the R u n w ay bus interface (RIM), the shared buffer m an ager (SBM),
the shared m e m o ry cache controller (SM -CC), the direc tory controller (DC), the m essage passing
cache contro ller (M P-C C), the protocol processing engine (P P E), and the netw ork interface (NI).

2 A v a l a n c h e D e s i g n

HPPA
7200

Myrlnet

F ig u r e 1 W idget Subsystem Block Diagram

The RIM ’s primary function is Runway bus mastering. In addition, it includes logic to determine
what words o f a shared cache line have changed by performing a d iff of the dirty version o f the
line and a clean version of the line stored in the SB. It also has the logic to splice diffs into existing
cache lines. This logic is used to improve the performance of our coherency protocols, as described
in Section 4. The RIM also forwards a version of the Runway called the Taxiway to other W idget
subsystem s that must snoop the bus.

The SB is used as a staging area for com m unications and acts as a cache for incoming message
data. The SB is organized as 2K 128-byte lines. SB line allocation and deallocation requests can
be made by the SM-CC, DC, M P-CC, or PP E . These requests are served by the SBM .

DSM is supported by the SM-CC, which manages access to shared memory lines that are
referenced locally, and the D C , which manages consistency for all shared memory lines for which
the local node is hom e. The SM-CC and DC are described in detail in Section 4.

The P P E handles most message passing duties, providing direct hardware support for a set
of low-latency message passing protocols known as Direct Deposit [26]. Incoming m essage data
is stored in the SB; these lines are then managed by the M P-CC as an L2 com munication cache.
When local Runway clients reference this information, the M P-CC snoops resulting transactions
on the Runway and supplies the data directly. This provides a significant reduction in the miss
penalty that would be incurred if the message data were simply placed via the DM A interface into
main memory.

3

The NI provides a direct interface to the Myrinet one-meter protocol, thereby eliminating the
normal Myrinet interface card and its contribution to latency. In addition, like the FLASH Magic
chip [17, 14], the NI splits and demultiplexes incoming messages, forwarding the data to the SB
and the headers to the appropriate Widget subsystem (MP-CC, PPE, SM-CC, or DC).

The keys to scalability in cluster systems are minimizing communication latency and not de­
grading local node performance. Placing the Widget on the Runway bus rather than between the
processor and its memory system avoids slowing down the local node. Operating the Widget sub­
systems in parallel avoids serialization of message passing and DSM operations. Finally, caching
incoming message data on the Widget board reduces miss latencies seen by the processor.

Our decision to use commodity workstations and network components has several advantages
but also carries some disadvantages. The upsides include commodity pricing, the ability to focus
design time and effort on the Widget itself, and the opportunity to incorporate improved compo­
nents as they become available. The downside is tha t certain pieces of the design space are closed
off by these choices, as the behavior of commodity components must be viewed as beyond the
Widget designers’ control. Section 7 discusses the more serious impacts of this design choice.

3 M e m o r y a n d C o n s i s t e n c y M o d e l s i n A v a l a n c h e

Placing the Widget on the Runway bus without interposing on the processor <4- cache interface
or modifying H P’s main memory controller (MMC) constrained our design options. We were
free, however, to explore the performance implications of a broad set of memory architectures and
coherency protocols. W ith the exception of the FLASH multiprocessor [17], existing scalable shared
memory architectures employ a single memory model and coherency protocol to manage all shared
data. For example, the DASH multiprocessor is a cache-coherence non-uniform access (CC-NUMA)
machine with a release consistent write-invalidate protocol [18, 19], while the KSR-1 is a cache-only
memory architecture (COMA) machine with a sequentially consistent write-invalidate protocol [8].
We are exploring the potential benefits and implementation complexity associated with supporting
a suite of memory models and coherency protocols, and allowing software to specify the specific
memory model and protocol to use to manage each page of shared data in the machine.

A unique aspect of Avalanche’s architecture is tha t it is designed to support two fundamentally
different scalable shared memory architectures: CC-NUMA and Simple COMA (S-COMA). Each
architecture has significant advantages and disadvantages over the other, depending on the memory
access behavior of the applications. Figure 2 illustrates both architectures.

Most large scale shared memory multiprocessor designs are CC-NUMA [18, 19, 17, 1, 11, 3]. In a
CC-NUMA, the machine’s global physical address space is statically distributed across the nodes in
the machine, but a node can map any page of physical memory (local or remote) to its local virtual
memory. To share data, nodes share a global virtual to global physical mapping table such tha t
the same physical memory backs a particular global virtual address on all nodes. When a memory
access misses in a node’s local cache, the associated global physical address is used to fetch the
da ta from either the local memory or a remote node’s memory. CC-NUMA’s primary advantage is
its relative simplicity - a fixed “home” node is responsible for tracking the state of each block of
data, which makes it easy to locate copies of data and keep them consistent. However, the amount
of shared data tha t can be replicated locally, and thus accessed efficiently, is limited to the size of a
node’s cache. This leads to poor performance for applications with per-thread working sets larger
than a processor cache, which exacerbates the need for large and expensive processor caches. Also,
the home node for a particular block of data is often unrelated to the set of nodes tha t access the
data, which turns potentially fast local accesses into slow remote accesses. Finally, changing the

4

Processor Processor

Figure 2 CC-NUMA and S-COMA Architectures

global physical to virtual address mapping, which is required before one can page memory to disk
or migrate it, is very expensive since it requires a global TLB shootdown.

S-COMA divides the global address space into large chunks, typically pages, and uses a node’s
main memory as a cache for the global virtual address space. Space in this DRAM cache is allocated
by the operating system in pages using the processor’s memory management unit (MMU). External
hardware maintains coherence at a cache line granularity within pages. When a process accesses a
shared virtual address, a normal MMU check determines if the global virtual page is mapped to a
local physical page. If it is not, the operating system maps a local page and resumes the access. If
the MMU check succeeds, the physical address is placed on the memory bus where the S-COMA
hardware determines if the access can be completed by the local main memory (e.g., the access is a
read and the line is valid) or must be stalled while the S-COMA hardware performs some operation.
Multiple nodes can have DRAM copies of shared pages. We refer to the primary DRAM copies of
pages as home pages and replicas as S-COMA pages. As in a CC-NUMA, the directory controller
manages the global state of locally homed pages. S-COMA addresses CC-NUMA’s problems by
using all of main memory to replicate shared data and by decoupling global virtual and local
physical addresses. Unfortunately, because memory is allocated in page-sized units, it is possible
to get very poor main memory utilization where only a few cache lines are active in any given page.
As the ratio of an application’s working set size to the size of main memory increases, this leads to
high rates of paging and poor performance [23].

Ideally, we would like to support both CC-NUMA and S-COMA so that we can benefit from
S-COMA’s greater replication when memory utilization is high or paging rates are low, but fall
back to CC-NUMA mode when page fault rates increase. Supporting both models does not add
significant design complexity to the Widget. Applications and operating systems could tailor the
behavior of the consistency management hardware based on how memory is typically accessed. Our
current simulation model supports only an S-COMA model because of constraints imposed on us
by the Runway bus. This performance benefits of S-COMA are discussed in detail in Section 6.

Three flavors of memory coherency protocols have been proposed and implemented over the
years: write-invalidate, write-update, and migratory [2], Most modern scalable shared memory
machines employ a write-invalidate protocol because it requires the least management overhead,

scales well, and handles read sharing efficiently. However, as with memory architectures, the
performance of applications running under each of the different possible coherency protocols differs
dramatically depending on the specific access behavior of the application [4].

Write-invalidate protocols perform well when threads frequently read shared data, but only
infrequently modify it or the modifications are restricted to pieces of shared data tha t only the
modifying node accesses frequently. They perform poorly when data is heavily shared and writes
are frequent, because after each write data must be reloaded when next accessed by remote nodes.
Migratory protocols slightly improve performance for applications where memory is concurrently
shared infrequently [13, 24]. Write-update protocols work well when writes are frequent and written
data is typically read by remote nodes prior to being overwritten, exactly those cases handled poorly
by write-invalidate. They generate excessive communication overhead when modifications to shared
data are not typically read by remote nodes. Depending on the application, the choice of coherency
protocol can affect running time by 35% or more [4, 9].

Because the relative performance of the three protocols varies dramatically depending on the
way data is accessed, the goal of Avalancheis to support all three protocols on a software-specifiable
per-page basis. However, due to problems with the Runway bus described in Section 7, we currently
support only a migratory protocol and a release consistent write-update protocol tha t exploits the
diff mg mechanism provided by the RIM. We present performance using the migratory protocol in
Section 6 because it better isolates the benefits and imperfections of our design.

4 A v a l a n c h e C o n t r o l l e r D e s i g n s

Avalanche divides shared memory into 4-kilobyte pages, 128-byte Avalanche cache lines, and 32-byte
PA-RISC cache lines. The operating system is responsible for allocating, deallocating, mapping, and
unmapping pages. The SM-CC is responsible for managing the 128-byte Avalanche cache blocks,
32 per 4-kilobyte page. We chose a coherency unit larger than a native cache line to reduce buffer
fragmentation, network fall-through latency, and the amount of DSM state information storage. A
portion of main memory on each node stores shared data - the size of this region is determined
by a boot parameter. The region is contiguous so that the SM-CC can respond to coherent bus
requests to non-shared memory immediately.

Management of shared data is divided between the SM-CC and DC as follows. The SM-
CC manages the state of the blocks accessed by local processors while the DC maintains global
coherency information for locally homed shared data. For all the shared memory pages mapped on
a node, the local SM-CC maintains two data structures: (i) page state information, including the
coherency protocol, the identity of its home node, and the page address on tha t home node, and
(ii) block state information for each block cached on the local node (invalid, shared, or exclusive).
For all the shared memory pages homed on a node, which are all shared pages in CC-NUMA
mode and primary copies of S-COMA pages, the DC maintains two data structures: (i) page state
information, including the coherency protocol, home node, and virtual address of the page on the
home node, (ii) block state information for each block containing its global state (free, shared, or
exclusive) and a list of nodes that have a copy of the block. Rather than store all of this m etadata on
the Widget, which would require a large amount of on-chip memory and thus increase the W idget’s
cost and complexity significantly, the DC and SM-CC store their m etadata in main memory. This
m etadata is initialized by the kernel when the shared memory page is allocated at or migrated
to the node. As a performance optimization, the DC and SM-CC use the SB to cache recently
accessed m etadata. The performance implications of this method of managing DSM m etadata are
discussed in Section 6.

6

The SM-CC and DC are implemented as a collection of concurrent finite state machines. This
design permits maximally concurrent operation and minimizes control induced latency and reduces
resource conflicts tha t would be present under very high DSM traffic loads. Both the SM-CC and
the DC can perform up to four concurrent operations to independent cache lines. For example, while
the m etadata for one shared memory operation is being loaded from the SB or the data requested
in a read operation is being loaded from main memory, the SM-CC or DC can operate on another
request. In both the SM-CC and DC, separate state machines (i) examine incoming requests to
acquire the necessary m etadata, (ii) snoop the internal Taxiway bus to detect the completion of
requested memory operations, (iii) perform the necessary coherency protocol operations, and (iv)
stage outgoing messages to the NI or other local DSM subsystems. The low level design of both
the SM-CC and DC are beyond the scope of this paper, but can be found elsewhere [16].

The SM-CC includes a number of unique features designed to exploit the flexibility of release
consistency. It maintains counts of pending invalidate and update acknowledgments similar to
DASH [19, 18] and an acquire state buffer to delay updates similar to the way tha t coherence
update buffers delay invalidates [20]. In addition, it maintains a release state buffer (RSB) to
support the release consistent write update protocol. When a local processor acquires ownership
of a shared block, the SM-CC stores a clean copy of the requested line in the RSB. When the RSB
becomes full or the processor performs a release operation, the RSB uses the RIM’s diffing function
to compute a mask of the words tha t have been modified. This mask and the dirty line are used
to send a compressed update message containing the modified words and their positions to remote
nodes caching the block, which use the RIM’s splicing functionality to incorporate the changes.
Thus, the RSB supports a delayed write update protocol similar to Munin, which significantly
improves performance and scalability [9].

5 E x p e r i m e n t S e t u p

The simulation environment developed by the Avalancheproject is based on a simulator for the
HP PA-RISC architecture, including an instruction set interpreter and detailed simulation modules
for the first level cache, the system bus, the memory controller, the network interconnect, and
the Widget. This simulator is called Paint (PA-interpreter)[25, 27] and is derived from the Mint
simulator[28]. Paint is designed to model multiple nodes and the interactions between nodes, with
emphasis on the effects of communication on the memory hierarchies. Paint provides a multipro­
grammed processor model with support for operating system code so tha t the effects of OS/user
code interactions can be modeled. The simulation environment includes a kernel based on 4.4BSD
tha t provides scheduling, interrupt handling, memory management, and limited system call capa­
bilities. The VM kernel mechanism was extended to provide the page translation support needed
by distributed shared memory.

Figure 3 shows the param eters used for various components in the simulation. The processor,
Widget, and Runway are all clocked at 120MHZ and all cycle counts shown are with respect to this.
The cache model is based on the PA-8000, which can do aggressive out-of-order execution with 28
load/store slots. To simplify discussion of performance data, the model is configured, with one
exception, as a blocking cache with one load/store slot. The SM-CC and DC caches are configured
as 2-way and 4-way set associative, respectively. The 4 cycle hit time to the SM-CC and DC caches
consists of two cycles of arbitration for the SB bus and two cycles for the off-chip read. The Main
Memory Controller (MMC) is modeled on current HP workstations [15]. It contains 4 banks and
returns the first doubleword of data to the Runway 26 cycles after a read appears on the bus. Due
to its interleaving, the MMC can satisfy a 128 byte (four cache line) request from the Widget in

7

44 cycles. The simplified model of the Myrinet network only accounts for input contention; the
latency for a message is computed simply from the distance in switches between the communicating
nodes clocked a t 160MHz.

We used five programs from the SPLASH-2 benchmark suite [29] in our study: rad ix , f f t ,
l u : con tiguous, lu :n o n -co n tig u o u s, and barnes. Figure 4 shows the inputs used for each test
program. All the programs were run with the base problem size as suggested in the distribution.
The total pages column in Figure 4 indicates the number of shared data pages each application
touched, so the shared data space touched by the applications ranged from 2MB to 3.1MB.

6 P e r f o r m a n c e A n a l y s i s

Avalanche’s shared memory architecture differs from other architectures in (i) its use of S-COMA
as the primary memory model, (ii) the W idget’s position as a peer to the CPU, with no control over
the main memory controller, and (iii) the use of distributed state machines in its controllers. In this
section we analyze issues resulting from these design decisions, including S-COMA’s effectiveness
with respect to reducing remote memory misses, the factors most responsible for the latency of
various kinds of misses, and the effectiveness of overlapping multiple requests in the SM-CC and
DC.

All of the benchmarks had high Ll-cache hit rates, between 98.6% and 99.6%. Figure 5 shows
the total number of misses on all nodes. The number in parentheses indicates the percentage of the
misses tha t were to shared memory. The ratio of shared memory misses to local memory misses
declines with increased node count because the problem sizes were kept constant.

To study the effect of Avalanche’s large coherency unit and the S-COMA model, shared memory
misses are classified as follows:

Cache Location C haracteristics
LI cache 1 MB, direct-m apped, 32-byte lines, blocking, two w rite back buffers,

1 cycle hits, 32 cycle misses (best case), v irtually indexed, physically tagged.
SM-CC Cache 16 KB, 2-way set associative, 32-byte lines, blocking, no writeback buffer,

4 cycle hits, 36 cycle misses (best case).
DC Cache 16 KB, 4-way set associative, 32-byte lines, blocking, no writeback buffer

4 cycles on h it, 36 cycles on m iss (best case)
Myrinet P ropagation delay: 1 cycle, Fall through delay: 27 cycles, Topology: 4 Switches (2x2).

F ig u re 3 Simulation Param eters

Program Inpu t param eters T otal Pages
radix 256K Keys, R adix = 1024 528
FFT 64K Points, line size 32 and cache size 1MB 784
LU Non-contiguous 512x512 m atrix , 16x16 blocks 519
LU Contiguous 512x512 m atrix , 16x16 blocks 521
barnes input file w ith 16K particles 779

F igu re 4 Programs and Problem Sizes Used in Experiments

8

Application Number of Nodes
4 8 16

radix 0.25M (64%) 0.34M (50%) 0.52M (38%)
f f t 0.5M (80%) 0.54M (66%) 0.60M (45%)
LU non-contiguous 1.51M (93%) 1.62M (89%) 1.83M (82%)
LU contiguous 0.48M (85%) 0.62M (77%) 0.76M (72%)
barnes 2.0M (57%) 1.86M (53%) 4.29M (51%)

F ig u re 5 Total Number of Misses and Percentage of Shared Miss

• Any processor cache miss tha t causes the SM-CC to read a block from a remote node is
classified as coherency miss (COM). Note th a t due to the use of a migratory protocol, remote
blocks are invalidated even on a read miss. These misses represent accesses tha t are inherently
remote given the particular coherency protocol.

• A spatial miss (SM) is defined as any access to a cache line th a t misses in the LI cache, but hits
in local memory as a side effect of the SM-CC having recently loaded another 32-byte cache line
within the same 128-byte Avalancheblock. These misses represent potentially remote accesses
tha t are made local by Avalanche’s large coherency unit.

• A capacity/conflict miss (CCM) is defined as an access to data with a remote home node
th a t misses in the LI cache due to a cache conflict or capacity problem, but hits in local
memory. These misses represent potentially remote accesses th a t are made local by S-COMA
page replication.

• All other misses to shared memory are classified as non-remote misses (NRM). This category
includes misses to shared data never accessed by a remote processor, cold misses, and capac­
ity/conflict misses to shared memory whose home node happens to be the local node. These
misses represent accesses tha t are inherently local.

Figure 6 shows the breakdown of misses across each of the above classes. Inherent coherency
misses vary from 7% to 34% of all misses. Their number increases as the number of nodes increases
due a combination of the low percentage of migratory data in the benchmarks and false sharing. The
next two categories, spatial misses and capacity/conflict misses, represent potentially remote misses
th a t become local misses in Avalanche. Spatial misses vary from 11% to 41% of all misses. The
large number of spatial misses indicates th a t the large block size results in a high degree of effective
prefetching tha t turns potentially remote SM misses into local memory accesses1. Capacity/conflict
misses vary from 3% to 57% of all misses. The large number of capacity/conflict misses, caused
primarily by the direct mapped nature of the PA-RISC’s LI cache, indicates th a t S-COMA’s use
of local memory as a backing store for cache lines forced out of the LI cache is beneficial. The sum
of SM and CCM misses varies from 40% to 70%, which indicates th a t 40% to 70% of remote misses
can be made local by employing an S-COMA architecture with large coherency units. To be fair,
one can do prefetching in CC-NUMA to handle the spatial misses efficiently, but most processors
do not support injection directly into their LI cache from an external unit.

JThe ratio of spatial misses to coherency misses varies from approximately 1:1 to 3:1, which indicates that on the
average one to three of the extra cache lines loaded by the local SM-CC are eventually accessed.

9

F igu re 6 Miss Classifications

Recall that the SM-CC and DC store a small amount of their m etadata in the SB and the rest in
main memory. The Runway bus protocol requires that the SM-CC provide a “coherency response”
signal for every coherent bus operation, whether or not the associated data is being managed by
the SM-CC or a remote node. Thus, the latency of shared data accesses that miss in the LI cache
is affected by the SM -C C’s m etadata hit rate, as follows:

• If the SM-CC finds the pertinent state information in the SB and the state information indicates
that the line is valid in local memory, we categorize this miss as a local shared m iss with s ta te
in form ation hit (L S M S H). In this case, the SM-CC can immediately respond and let main
memory supply the data.

• If the pertinent m etadata is not present in the SM-CC cache, the SM-CC must provide a
coherency response that promises that it will supply the data to the requesting processor.
After the SM-CC reads its m etadata from main memory, if the line is found to be valid in local
memory, we categorize this miss as a local shared m iss with s ta te in form ation m iss (L S M S M).
In this case, the SM-CC must also read the data from memory and supply it to the processor
through a cache to cache copy.

• If the line is not valid in main memory, the SM-CC sends a message to the DC at the home
node requesting the data2. The DC invalidates the current owner, which forwards the block
directly to the requesting SM-CC. When the home node is the local node, we categorize this
as a local D C m iss (L D C M), which generates two network messages (the invalidation and the
ack). W hen the home node is a remote node, we categorize this as a R em o te D C m iss (R D C M),
which generates either two or three messages depending on whether the home node is also the
current owner.

Figure 7 shows the percentage of each type of miss. The minimum latency observed in our runs
for each type of miss was 32, 154, 354, and 452 cycles respectively. This shows the importance
of reducing the number of coherent misses in our architecture. T he LSMSM category represent

2If the local node happens to be the home node, the SM-CC sends the message to the local DC.

misses that could be handled directly by the local memory if not for the cached nature of the
W idget’s m etadata. The extra bus transactions add 50 to 59 cycles of latency to each of these
misses. Happily, for all of the benchmarks except for r a d ix , LSMSM misses represent less than
10% of all shared data misses, which limits the negative im pact of this design. Section 7 provides
more detail on the cause o f this overhead.

fpLSMSH ■ LSMSM BLDCM □ RDCM |
100

i i .
■ ;

F ig u r e 7 Miss Types Based on Latency

As described in Section 4, the SM-CC and DC are capable of handling up to four independent
requests concurrently. Figure 8 illustrates how effective the SM-CC and the DC were in overlapping
request processing. This study was done with an aggressive non-blocking cache similar to the PA-
8000. The active column shows the total cycles during which the SM -C C /D C was handling at least
one request. The cum ulative column shows the sum of cycles spent by all requests. The usage
column shows the tim e between when the SM -C C /D C first receives a request until it com pletes
processing the last request. The overlap column shows the additional penalty that would have
resulted if the controllers were totally sequential. This is significant considering the fact that the
SM-CC was active only for 0.7% to 6% of the tim e and the DC for 0.4% to 15% of the time. We
expect to see more overlap with larger problem sizes and multiple processors on the bus.

Application Cumulative Active Usage Overlap
radix DC 495177 469982 1% 6%

SM-CC 2707404 1537878 6% 44%
f f t DC 415033 334768 0.4% 20%

SM-CC 1177557 981484 4% 17%
LU non-contiguous DC 4628614 3336216 15% 28%

SM-CC 9450756 8445506 4% 11%
LU contiguous DC 1186936 896268 2% 25%

SM-CC 2696289 2518012 0.7% 7%
barnes DC 4034096 3828046 0.7% 6%

SM-CC 10861286 10211076 2% 6%

F ig u r e 8 DC and SM-CC Occupancy in Cycles

T he active cycles were spent in one of three ways: (i) busy performing useful work, (ii) w aiting
f o r the S B to supply m etadata, or (iii) w aiting f o r m a in m em o ry . The percentage of active cycles

11

spent performing useful work varied from 37% to 46%, meaning tha t between 54% and 63% of
the time when they were active, the SM-CC or DC were waiting for data or m etadata. Most of
the waiting time (between 32% to 50% of the total active cycles) was spent waiting for m etadata
to be supplied from the SB, which is primarily due to the latency of arbitrating for the shared
SRAM buffer. This delay could be reduced significantly by providing a separate SRAM buffer
for m etadata, but this option is precluded by the limited pin count available without significantly
increasing the cost and complexity of Widget fabrication. We are considering various other design
options such as caching additional m etadata in the Widget.

7 P e n a l t y f o r U s i n g O f f t h e S h e l f H a r d w a r e

Using a high degree of commercial hardware is more cost effective than custom solutions, and it
allows our design to be incorporated into a commercial product line relatively easily. However, it also
forces us to live with mechanisms and protocols tha t were not designed with scalable multiprocessing
in mind. This section discusses some of the problems tha t have arisen due to the use of commodity
hardware and their performance impact.

The backbone of a Hewlett-Packard workstation is the Runway bus [7] and the Main Memory
Controller (MMC) [15]. The split transaction Runway bus allows data to be delivered out of
order. A number of clients are connected to the bus, where a client can be a CPU or intelligent 10
controller. When any client performs a coherent memory operation, all clients are required to issue a
coherency response to the MMC indicating the state of the requested cache line in their respective
caches. The MMC collects the coherency responses from all clients before allowing subsequent
memory requests to be retired; in other words, a client must provide a coherency response to a
pending request before any additional memory operations can be completed.

For this discussion, the relevant coherency responses are (i) COH_OK, which indicates tha t the
responding client has no interest in the line, (ii) COH-SHR, which indicates tha t the responding
client has a read-only copy of the line and wishes to retain it, and (iii) COH_CPY, which indicates
tha t the responding client has a dirty copy of the line and will send the data directly to the
requesting client. If all clients respond with COH-OK, then the MMC supplies data from main
memory and the requesting client marks the state of the line as private. If any client responds with
COH-SHR, the MMC supplies the data from main memory, but the requesting client marks the
state of the line as shared. No client may write to a shared line without first performing a write
request. If a client responds with COH -CPY, the MMC discards the request and the requesting
client simply waits for the responding client to perform a cache to cache copy to supply the data,
which, because it is a split transaction bus, may be deferred arbitrarily long. Upon receiving the
data from the responding client, the requesting client marks the state of the line as private , and
the responding client is required to invalidate its copy of the data.

Three problems arose in designing Avalanche: inflexible memory operation ordering, Runway’s
migratory bus protocol, and out of address range bus exceptions.

In flex ib le m em o ry o p e ra t io n o rd e rin g : For every coherent read to shared memory, the SM-
CC must determine the state of the line before issuing a coherency response. If any of the nodes
for which it is acting as a proxy have a dirty copy of the data, it must respond with COH_CPY. If
any of the nodes have a shared copy of the data, it must respond with COH-SHR. If, however, the
state information associated with the line is not present in the SM-CC’s internal cache, the SM-CC
cannot make this determination. Ideally, the SM-CC would simply perform a read operation to
load the necessary state information, and respond appropriately. Unfortunately, such a read would
be blocked by the outstanding coherent operation, so the SM-CC is forced to generate a coherency

12

response without knowing the state of the line. Thus, it must assume the worst case, whereby
a remote node has a dirty copy of the data, and respond with COH -CPY. It can then issue the
read for the line’s state information. Having once responded with COH -CPY, even if it determines
tha t the line was valid in memory and tha t a C O H -O K would have been appropriate, it is still
required to supply the data to the requester. Thus, it must issue a read to main memory to obtain
the data and supply it to the requesting client via a cache to cache write, wasting bus bandwidth
and increasing latency. Also, because a node that performs a cache to cache write must invalidate
its copy, if it turns out tha t a remote node (or nodes) had a clean copy of the data, the SM-CC
must still invalidate those copies prior to sending the data to the requester. This is another source
of latency, and can increase the miss rate at the remote nodes if the data is not being used in a
migratory fashion. Note tha t this is due to the migratory nature of the Runway bus, and is required
for any sequentially consistent Avalancheprotocol. ,

If the MMC supported non-coherent, out-of-order reads, the SM-CC could read its state infor­
mation prior to generating a coherency response. In the case where the data was valid in local
memory, the SM-CC would respond with COH^OK or COH-SHR , the line would be supplied di­
rectly from memory, and remote copies would not be invalidated. The LSMSM portion of misses
in Figure 7 shows the percentage of shared memory misses where this problem arises, ranging from
1% to 23%. This problem is most noticeable when the SM-CC cache is cold or when the local
processor is accessing many shared memory lines, overwhelming the capacity of the SM-CC cache.
Reading the data from memory and supplying it to the local client adds between 50 and 59 cycles
per miss.

R u n w a y ’s m ig ra to ry bus p ro to co l: As described above, when a client responds with
C O H -C P Y and later supplies the data with a cache to cache write, the data migrates to the
requesting node. This design makes it impossible to support a sequentially consistent write inval­
idate protocol in a distributed shared memory environment! If a client performs a coherent read
to da ta th a t is invalid in local memory, the SM-CC must fetch the line from the remote node and
supply it to the local requester. However, the SM-CC cannot delay the coherency response while
it is requesting the data from the remote node, because doing so can lead to deadlock if two nodes
attem pt to invalidate lines in each o ther’s caches simultaneously. Thus, as above, the SM-CC must
respond with COH_CPY , supply the data via a cache to cache write after fetching it, and invalidate
all remote copies of the data. Thus, only a migratory protocol.can be sequentially consistent.

It would be easy to support a weak consistent write invalidate protocol th a t supports read
sharing, by having the SM-CC read the data back from the processor cache immediately after
supplying it. Should the local processor modify the data before we acquire a clean copy, we can
request ownership of the line and use the RIM’s diffing hardware to coalesce the local modifications
with any remote modifications tha t may have occurred. Figure 9 shows th a t 8% to 28% of shared
read misses would require the SM-CC to perform these extra bus transactions to change the state of
the cache line in the processor cache back to shared mode. Although these transactions would not
show up directly as latency to read misses, they would increase the Widget and MMC controller
occupancies and bus bandwidth consumption and thus indirectly impacts performance.

O u t o f a d d re s s ra n g e bus excep tio n s: Finally, when a processor generates an address tha t
lies outside the range of physical addresses supported by the local main memory, the MMC generates
a bus exception. This behavior makes it difficult to support the CC-NUMA model, because the
processor cannot directly generate remote physical memory addresses without causing the system
to crash. This problem led to the adoption of Simple-COMA as Avalanche’s primary memory
model, notwithstanding S-COMA’s much better caching of remote data. Figure 10 illustrates the
potential impact of using an Simple COMA-only design. It shows a snapshot of the page occupancy

13

things tha t architects must overcome when using commercial components. We hope that our expe­
rience will help guide future commercial system developers who might impose similar constraints
inadvertently if not made aware of the outcome of their decisions. As scalable SMPs become an
increasingly im portant market segment, their design needs should be considered.

8 R e l a t e d W o r k

The Stanford DASH multiprocessor [19, 18] used a directory-based cache design to interconnect
a collection of 4-processor SGI boards based on the MIPS 3000 RISC processor. The Convex
Exemplar employs a similar design based around the HP7100 PA RISC [3].

The MIT Alewife machine [11, 12] was one of the first machines to implement directory based
shared memory. It was also the first hardware-based SM system to use software for protocol pro­
cessing. Alewife used a directory-based cache design tha t supports invalidation-based consistency
protocol. Alewife also had support for fast message passing.

The Stanford FLASH [17, 14] is a second generation DASH multiprocessor tha t offloads the
protocol processing to a processor situated on the MAGIC chip. The MAGIC chip’s processor
possesses its own instruction and data caches for holding, respectively, the protocol code and the
protocol m etadata. By having a separate processor, the FLASH system is able to provide flexibility
tha t can be used to support different protocols.

The user level shared memory in the Tempest and Typhoon systems [22] supports cooperation
between software and hardware to implement both scalable shared memory and message passing
abstractions. Like FLASH, the proposed system uses low level software handlers to provide flex­
ibility including memory architecture similar to SCOMA called stache th a t uses the node’s local
memory to replicate remote data.

The SHRIMP Multicomputer [5] employs a custom designed network interface to provide both
shared memory and low-latency message passing. A virtual memory-mapped interface provides a
constrained form of shared memory in which a process can map in pages tha t are physically located
on another node. A store to such a shared page is forwarded to the remote node where it is placed
into main memory. Since the network controller is not tightly coupled with the processor, the
cache must be put into write-through rather than write-back mode so th a t stores to memory can
be snooped by the network interface; this results in an increase in bus traffic between the cache
and main memory.

The S3.mp multiprocessor system [21] was developed with the goal of using a hardware sup­
ported DSM system in a spatially distributed system connected by a local area network. For the
interconnect it used a new CMOS serial link which supported greater than lG bit/sec transfer rate.
The shared memory hardware system was tightly coupled to the memory controller and, even used
extra ECC bits to store state information.

9 C o n c l u s i o n s

The primary Avalanchedesign goal is to maximize the use of commercial components in the creation
of a scalable parallel cluster of workstation multiprocessor tha t supports both high performance
message passing and distributed shared memory. We have described a design tha t accomplishes this
goal by combining a cluster of commercial multiprocessor workstations, a high speed commodity
interconnect, and a small custom VLSI Widget. In our prototype, a Widget board plugs into a
processor slot on each of 64 nodes and interfaces with the Runway bus and the Myrinet fabric to
maintain data coherency.

15

A unique aspect of Avalanche’s architecture is tha t it is designed to support two scalable shared
memory architectures: CC-NUMA and Simple COMA (S-COMA). Supporting both models does
not add significant design complexity to the Widget, but our current prototype design supports only
the S-COMA model because of problems associated with the Runway bus controller. Notwithstand­
ing our desire to support both CC-NUMA and S-COMA, we have found tha t S-COMA’s greater
replication significantly improves performance in many circumstances due to Avalanche’s relatively
slow interconnect and the direct mapped nature of the HP chips’ LI cache. We are also designing
Avalancheto support multiple coherency protocols. We currently support a migratory and release
consistent delayed write update protocol, and are designing a release consistent write, invalidate
protocol.

Finally, the decision to use primarily off the shelf hardware led to a number of design com­
promises. Hewlett-Packard’s Runway bus and memory controller design introduced a number of
unexpected challenges involving the bus protocols and memory controller requirements. Despite
these problems, we believe tha t future scalable shared memory multiprocessors must be based on
commodity components, so it is imperative tha t architects designing both commodity components
and multiprocessor architectures consider scalability in their base designs. In the final analysis,
the Widget is a very minor component of the system cost and can be viewed as a Myrinet to
HP workstation interface card tha t minimizes latency while supporting DSM and message passing
transactions in the resulting cluster.

R e f e r e n c e s

[1] A. Agarwal and D. Chaiken et al. The MIT Alewife Machine: A large-scale distributed-memory multiprocessor.
Technical Report Technical Memp 454, MIT/LCS, 1991.

[2] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a multiprocessor simulation model.
A C M Transactions on Computer Systems, 4(4):273-298, November 1986.

[3] G. Astfalk, T. Breweh, and G. Palmeh. Cache coherency in the convex mpp. Convex Computer Corporation,
February 1994.

[4] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Adaptive software cache management for distributed shared
memory architectures. In Proceedings of the 17th Annual International Symposium on Computer Architecture,
pages 125-134, May 1990.

[5] M.A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E.W. Felten, and J. Sandberg. Virtual memory mapped net­
work interface for the SHRIMP multicomputer. In Proceedings of the 21st A nnual International Symposium on
Com puter Architecture, pages 142-153, April 1994.

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W.-K. Su. Myrinet - A
gigabit-per-second local-area network. IEEE MICRO, 15(l):29-36, February 1995.

[7] W.R. Bryg, K.K. Chan, and N.S. Fiduccia. A high-performance, low-cost multiprocessor bus for workstations
and midrange servers. Hewlett-Packard Journal, 47(l):18-24, February 1996.

[8] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the KSR-1 computer system. 'Technical Report
KSR-TR-9002001, Kendall Square Research, February 1992.

[9] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related communication in
distributed shared memory systems. A C M Transactions on Computer Systems, 13(3):205-243, August 1995.

[10] J.B. Carter, M. Hibler, and R.R. Kuramkote. Evaluating the potential of programmable multiprocessor cache
controllers. Technical report, University of Utah, 1994.

[11] D. Chaiken and A. Agarwal. Software-extended coherent shared memory: Performance and cost. In Proceedings
of the 21st Annual International Symposium on Computer Architecture, pages 314-324, April 1994.

[12] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A scalable cache coherence scheme. In
Proceedings of the 4th Symposium on Architectural Support fo r Programming Languages and Operating Systems,
pages 224-234, April 1991.

16

[13] A.L. Cox and R.J. Fowler. Adaptive cache coherency for detecting migratory shared data. In Proceedings of the
20th Annual International Symposium on Computer Architecture, pages 98-108, May 1993.

[14] M. Heinrich and J. Kuskin et al. The performance impact of flexibility in the Stanford FLASH multiprocessor. In
Proceedings of the 6th Symposium on Architectural Support for Programming Languages and Operating S ystem s,
pages 274-285, October 1994.

[15] T.R. Hotchkiss, N.D. Marschke, and R.M. McClosky. A new memory system design for commercial and technical
computing products. Hewlett-Packard Journal, 47(1):44-51, February 1996.

[16] R. Kuramkote, J. Carter, A. Davis, C. Kuo, L. Stoller, and M. Swanson. The design of shared memory cache
and directory controller in avalanche. Technical report, University of Utah - Computer Science Department,
November 1996. -

[17] J. Kuskin and D. Ofelt et al. The Stanford FLASH multiprocessor. In Proceedings of the 21st Annual Interna­
tional Symposium on Computer Architecture, pages 302-313, May 1994.

[18] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache coherence
protocol for the DASH multiprocessor. In Proceedings of the 17th Annual In ternational Symposium on Computer
Architecture, pages 148-159, May 1990.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam.
The Stanford DASH multiprocessor. IEEE Computer, 25(3):63-79, March 1992.

[20] J. Wang M. Dubois, L. Barroso and Y. Chen. Delayed consistency and its effects on the miss rate of parallel
programs. In Proceedings of Supercomputing ’91, pages 197-206, 1991.

[21] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, and S. Vishin. The S3.mp scalable shared
memory multiprocessor. In Proceedings of the 1995 International Conference on Parallel Processing, 1995.

[22] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-level shared memory. In Proceedings
of the 21st A nnual International Symposium on Computer Architecture, pages 325-336, April 1994.

[23] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin. An argument for Simple COMA. In Proceedings of the
First A nnual Symposium on High Performance Computer Architecture, pages 276-285, January 1995.

[24] P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive cache coherence protocol optimized for migratory
sharing. In Proceedings of the 20th Annual International Symposium on Computer Architecture, pages 109-118,
May 1993.

[25] L.B. Stoller, R. Kuramkote, and M.R. Swanson. PAINT- PA instruction set interpreter. Technical Report
UUCS-96-009, University of Utah - Computer Science Department, September 1996. Also available via WWW
under http://www.cs.utah.edu/projects/avalanche.

[26] L.B. Stoller and M.R. Swanson. Direct deposit: A basic user-level protocol for carpet clusters. Technical Report
UUCS-95-003, University of Utah - Computer Science Department, March 1995. Also available via WWW under
http://www.cs.utah.edu/projects/avalanche.

[27] M. Swanson and L. Stoller. Shared memory as a basis for conservative distributed architectural simulation. In
Parallel and Distributed Simulation (P A D S ’97), 1997. Submitted for publication.

[28] J.E. Veenstra and R.J. Fowler. Mint: A front end for efficient simulation of shared-memory multiprocessors. In
M ASCOTS 1994, January 1994.

[29] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings o f the 22nd Annual International Symposium on Computer A r ­
chitecture, pages 24-36, June 1995.

17

http://www.cs.utah.edu/projects/avalanche
http://www.cs.utah.edu/projects/avalanche

