
E v a l u a t i n g t h e P o t e n t i a l o f P r o g r a m m a b l e

M u l t i p r o c e s s o r C a c h e C o n t r o l l e r s

John B. C arter
Mike H ibler

R avindra R. K uram kote

UUCS-94-040

D epartm ent of C om puter Science
U niversity of U tah

A b s t r a c t

The next generation of scalable parallel systems (e.g., machines by KSR, Convex, and others)
will have shared memory supported in hardware, unlike most current generation machines (e.g.,
offerings by Intel, nCube, and Thinking Machines). However, current shared memory architectures
are constrained by the fact tha t their cache controllers are hardwired and inflexible, which limits
the range of programs tha t can achieve scalable performance. This observation has led a number of
researchers to propose building programmable multiprocessor cache controllers tha t can implement
a variety of caching protocols, support multiple communication paradigms, or accept guidance
from software. To evaluate the potential performance benefits of these designs, we have simulated
five SPLASH benchmark programs on a virtual multiprocessor tha t supports five directory-based
caching protocols. When we compared the off-line optimal performance of this design, wherein
each cache line was maintained using the protocol tha t required the least communication, with the
performance achieved when using a single protocol for all lines, we found tha t use of the “optimal”
protocol reduced consistency traffic by 10-80%, with a mean improvement of 25-35%. Cache miss
rates also dropped by up to 25%. Thus, the combination of programmable (or tunable) hardware
and software able to exploit this added flexibility, e.g., via user pragmas or compiler analysis, could
dramatically improve the performance of future shared memory multiprocessors.

1

John B. C a r te r
M ike Hibler

R a v in d ra R . K u ra m k o te

D e p a r tm e n t o f C o m p u te r Science
U n ivers i ty o f Utah

E v a l u a t i n g t h e P o t e n t i a l o f P r o g r a m m a b l e

M u l t i p r o c e s s o r C a c h e C o n t r o l l e r s

1 I n t r o d u c t i o n

There are two basic ways tha t parallel processes typically communicate: via message passing and
via shared memory. The current generation of massively parallel processors (e.g., machines by
Intel [19] and Thinking Machines [28]) support message passing as the sole means of communication
because of its architectural simplicity and relative scalability. However, message passing has failed
to establish itself as being as straightforward and intuitive a programming model as shared memory.
Message passing places all of the burden of data decomposition, synchronization, and data motion
on the programmer and compiler. Despite substantial effort, compiler technology has not yet
advanced to the stage where it can automatically extract and exploit parallelism (via the insertion
of message passing calls) on a wide range of programs, which forces the programmer to do much
of the work. Therefore, while message passing is, and will remain, an im portant communication
mechanism, parallel programmers are increasingly demanding support for shared memory.

Traditionally, this demand has been satisfied in two ways: (i) via software implementations of
distributed shared memory (DSM) on message-passing hardware [5, 8 , 9, 12, 23] or (ii) via hardware
implementations of scalable shared memory architectures [6 , 11, 22, 32]. Research in both of these
areas has been very successful in recent years. The performance of software DSM systems has
improved dramatically by addressing the problems of false sharing and excessive DSM-related
communication [9, 12]. Efficient DSM systems can now perform as well as hardware shared memory
for large grained programs [12], but the overhead associated with software implementations of DSM
limits its value for fine-grained computations. Spurred by scalable shared memory architectures
developed in academia [11, 21, 32], the next generation of massively parallel systems will support
shared memory in hardware (e.g., machines by Convex [2,3] and KSR [6]). However, current
shared memory multiprocessors all support a single, hardwired consistency protocol and do not
provide any reasonable hooks with which the compiler or runtime system can guide the hardware’s
behavior. Using traces of shared memory parallel programs, researchers have found there are a
small number of characteristic ways in which shared memory is accessed [4, 15, 17, 29]. These
characteristic “patterns” are sufficiently different from one another tha t any protocol designed to
optimize one will not perform particularly well for the others. Since all existing and announced
commercial multiprocessors implement a single hardware consistency mechanism, they will perform
well only for programs tha t access memory in the way tha t the hardware designers expect.

This research was supported in part by the National Science Foundation under the grant CCR-9308879 and the
Hewlett-Packard Research Grants Program, and the University of Utah.

2

These observations have led a number of researchers to propose building programmable multi
processor cache controllers th a t can execute a variety of caching protocols [7, 31], support multiple
communication paradigms [10, 18], or accept guidance from software [20, 25]. Programmable con
trollers would seem at first glance to be an ideal combination of software’s greater flexibility and
hardware’s greater speed - dedicated hardware could be used to handle the common cases effi
ciently, while software could be used to handle uncommon cases and/or tune the way in which the
hardware handles the common cases. However, this greater power and flexibility increases hardware
complexity, size, and cost. To determine if this added complexity and expense is worthwhile, we
must determine the extent to which it can improve performance. In this paper, we describe a study
tha t we undertook: (i) to determine the potential value of programmable cache controllers, (ii) if
they should prove valuable, to identify particular features tha t should be included in the design
of future programmable controllers, and (iii) to determine how much of an impact softwared can
have by tuning the hardware’s behavior. We should make it clear tha t we attem pted to derive
general conclusions about the value of programmable controllers and not specific conclusions about
the value, or lack thereof, of any particular design tha t has been proposed. Our intent is to guide
designers of these systems and to provide a framework under which to design a scalable shared
memory multiprocessor of our own. By using a programmable controller to reduce the amount of
communication required to maintain consistency, multiprocessor designer can either use a slower
(and thus cheaper) interconnect and achieve performance equal to tha t of a static controller and a
fast interconnect, or use the same fast interconnect, but support more processors.

We simulated the performance of the SPLASH benchmark suite [26] on a directory-based shared
memory multiprocessor tha t supported five different cache consistency protocols. To determine the
value of adding flexibility to the node cache controllers, we varied the number of protocols tha t
were supported, the size of cache lines, and the degree to which we assumed th a t software was
able to inform the controller of the “optimal” protocol for each cache line. In addition, we tested
a number of variants of the basic protocols. Varying the number of caching protocols and the size
of cache lines lets us determine how much hardware complexity is useful, while varying the degree
to which we assume tha t software correctly tunes the controller’s behavior lets us determine the
importance of higher level software (e.g., user pragmas or compiler analysis). We found tha t the use
of the “optimal” protocol for each cache line reduced consistency traffic by 10-80%, with a mean
improvement of 25-35%. Furthermore, for several of the applications, the use of the “optimal”
protocol in terms of minimizing consistency traffic also reduced the cache miss rate by up to 25%.
These numbers were relatively stable as we varied cache line sizes and the number of processors
involved in each computation, although the specific protocol tha t was “optimal” for a given line
was greatly affected by the cache line size (but, in general, not the number of processors).

These findings indicate tha t the use of flexible, programmable or software-tunable, multiproces
sor cache controllers can dramatically improve the performance of shared memory multiprocessors.
The key will be determining the appropriate hardware-software interface and being able to deter
mine and specify to the controller the “optimal” consistency protocol for handling pieces of shared
data.

The remainder of this paper is organized as follows. In Section 2, we describe the experiments
tha t we ran, with special emphasis on the system model tha t we used and the assumptions that
we made. Section 3 contains the results of our series of experiments, including a detailed look
at two specific refinements tha t we evaluated. Related work is discussed in Section 4, and we
draw conclusions and make recommendations for future programmable cache controller designs in
Section 5.

3

2.1 O v e rv ie w

We took great effort not to assume any specific hardware implementation of the programmable
cache controller or any specific machine architecture so as not to bias our results.

The reference system model tha t we used, illustrated in Figure 1, is a generalization of the
combined features of Alewife [10, 11], FLASH [18, 20], and Typhoon [25]. We assume a distributed
shared memory (DSM) model, whereby the main memory in the machine is equally distributed
across the processing nodes. Every block of physical memory has associated with it a “home node,”
which is the node at which the main memory copy of the block resides [21]. A directory-based cache
is used to support shared memory spanning all of the nodes in the machine [1, 11, 21]. When a node
accesses a word of shared data tha t is not local and tha t does not currently reside in the local cache,
the local cache controller interacts with the d a ta ’s home node, and possibly other nodes depending
on the particular caching protocol, to acquire a copy of the data and put it in the local cache.
The cache controller is responsible for maintaining the consistency of data in the local cache, and
for responding to requests from remote cache controllers to perform operations on either the local
cache or the local memory. The operations tha t are performed on local cache and memory depend
on the particular consistency protocol being used. Section 2.4 describes the various protocols tha t
we examined, and the operations tha t each performs to maintain consistency. Associated with each
line in the local cache are a number of tag bits, state bits, and protocol bits, as shown in Figure 2 .
The specific number of these “overhead” bits depends on the number and composition of protocols

2 E x p e r i m e n t a l S e t u p

Cache

Directory

Processor

------- $------

<3--------- E*

Cache controller

Network

Interface

, Cache , , Local Memory
r r r _______________o '

Per-block copyset, state information, etc.
Processing Node

F ig u re 1 Reference System Model (not to scale)

State Bits Tag Bits Protocols Data
(2-8) (0-32) (0-2) (32-512 bytes)

Figure 2 Layout of Cache Line

supported by the simulated controller. The number of overhead bits varies from 1-4% of the data
bits, depending on the size of the cache line and the complexity of the modeled hardware. The cache
directory in our model is used in the same way as the directories in DASH [21] and Alewife [11],
The home node for each block of physical memory maintains a directory entry corresponding to
the block with information about its global state, such as the set of processors with copies of the
block (the “copyset”) and the state of the block (read-shared, exclusive, etc.). Finally, although
Figure 1 shows a cubic topology, we do not assume any particular internode communication fabric.
We merely assume tha t point-to-point messages can be sent between any two nodes in the system.

In addition to this hardware model, we assume tha t software is capable of providing a limited
amount of direction to the hardware to tune its operation. Specifically, for some of our comparisons
we assume th a t software can specify which protocol to use to maintain consistency on a per-cache-
line basis, and can further tune the individual protocols by setting state bits appropriately. For
the purposes of this study, we do not specify how this is accomplished, since our intent is only to
measure the performance impact tha t correct tuning can provide. Alewife [10], Typhoon [25], and
FLASH [20] all provide mechanisms to allow software access to the caching hardware, to varying
degrees.

2 .2 M in t m u lt ip r o c e s s o r s im u la to r

We used the M int memory hierarchy simulator [30] running on a collection of Silicon Graphics
Indigo2’s to perform our simulations. M int simulates a collection of processors and provides sup
port for spinlocks, semaphores, barriers, shared memory, and most Unix system calls. It generates
multiple streams of memory reference events, which it uses to drive a user-provided memory system
simulator. We chose M int over several similar multiprocessor simulators, such as Tango [14] and
the Wisconsin Wind Tunnel (WWT) [24], for three reasons. First, it runs on fairly conventional
hardware, namely MIPS-based workstations from Silicon Graphics and DEC. This separates it from
W W T, which requires the use of a prohibitively expensive Thinking Machines CM-5. Second, it is
very efficient. While programs run under M int run between 15 and 70 times slower than they run
in native mode, this was more than adequate for the experiments tha t we ran. Depending on the
number of processors and the complexity of the cache controllers being simulated, our simulation
runs took between five minutes and two hours to complete. M int is approximately 100 times faster
than Tango [30], which would have required hours or days per simulation run. Finally, M int has a
clean user interface and is relatively easy to program. This let us modify our algorithms repeatedly
while refining our experiments, and in conjunction with its efficiency, made it possible for us to test
a large number of hypotheses.

2 .3 S P L A S H b e n c h m a r k p r o g r a m s

We used five programs from the SPLASH benchmark suite [26] in our study, mp3d, w ater, barnes,
LocusRoute, and cholesky. We were unable to compile the remaining two programs in our test
environment1. Table 1 contains the inputs for each test program. mp3d is a three-dimensional
particle simulator used to simulated rarified hypersonic airflow. Its primary data structure is an
array of records, each corresponding to a particular molecule in the system. mp3d displays a high
degree of fine-grained write sharing, w ater is a molecular dynamics simulator tha t solves a short
range N-body problem to simulate the evolution of a system of water molecules. The primary data
structure in water is a large array of records, each representing a single water molecule and a set

1 We are working to remedy this problem, and will include more complete results in the final version of the paper.

5

of forces on it. water is fairly coarse-grained compared to mp3d. barnes simulates the evolution of
galaxies by solving a hierarchical N-body problem. Its data structures and access granularities are
similar to that of water, but its program decomposition is quite different, lo cu s evaluates standard
cell circuit placements by routing them efficiently. The main data structure is a cost array that
keeps track of the number of wires running through the routing cell, lo cu s is relatively fine-grained,
and the granularity deviates by no more than 5% for all problem sizes. Finally, ch o lesk y performs
a sparse Cholesky matrix factorization. It uses a task queue model of parallelism, which results in
very little true sharing of data, although there is a moderate degree of false sharing when the cache
lines are fairly large. We detected data races in mp3d, barnes and LocusRoute, but most of the
them were localized to few words.

2 .4 P r o t o c o ls I n v e s t ig a te d

We evaluated the performance of five basic consistency protocols: (i) a sequentially consistent
multiple reader, singler writer, write invalidate protocol (“C o n v e n t io n a l”), (ii) a no-replicate
migratory protocol (“M ig r a to ry ”), (iii) a release consistent [16] implementation of a conventional
multiple reader, single writer, write invalidate protocol (“D ash ”), (iv) a protocol that adapts to
the way that it is used to dynamically switch between D ash and M ig ra to ry , depending on how a
cache line is being used [13, 27] (“A d a p tiv e ”) and (v) a release consistent multiple reader, multiple
writer, write update protocol (“M unin”). We selected these five protocols because they covered a
wide spectrum of options available to system designers. Table 2 summarizes the design parameters
of the four protocols. The rest of this section describes the protocols that we evaluated, including
the message count that was used to simulate various consistency operations.

Program Input parameters

mp3d

water

ch olesk y

barnes

lo cu s

5000 particles, 50 time steps, te s t .g e o m

LWI12, sam ple. in

b c s s tk l4

sam ple. in

bnrE .grin

T able 1 Programs and Problem Sizes Used in Experiments

Consistency
Protocol

Replicate
on reads?

Invalidate
or Update

Number of
Writers

Consistency
Model

C onventional Yes Invalidate 1 Sequential

M igratory No Invalidate 1 Sequential

Dash Yes Invalidate 1 Release

A daptive Yes Invalidate 1 Release

M unin Yes Update Multiple Release

Table 2 Summary of Consistency Protocols Investigated

6

The C o n v e n t io n a l protocol represents a direct extension of a conventional bus-based write-
invalidate consistency protocol to a directory-based implementation [1]. A node can only write to a
shared cache line when it is the owner and has the sole copy of the block in the system. To service
a write miss (or a write hit when the block is in read-shared mode), the faulting node sends an
ownership request to the block’s home node. If the block is not being used or is only being used
on the home node, the home node gives the requesting node ownership of the block (2 messages).
Otherwise, the home node forwards the request to the current owner, which forwards data to the
requesting node (5 messages including 2 messages for change of ownership). If the block is read
shared then the home sends invalidate messages to all other nodes tha t still have cached copies of
the block and the requesting node waits for acknowledgements (2 * N messages, where throughout
this discussion N is the number of remote nodes caching the data). To service a read miss, the
local processor requests a copy of the block from the block’s home node. If the home node has a
clean copy of the block, it responds directly (2 messages). If not, it forwards the request to the
current owner, which forwards a copy to the requester and the home node (4 messages).

Cache blocks being kept consistent using the M igratory protocol arc never replicated, even
when read by multiple processors with no intervening writes. Thus, both read and write misses
are treated identically. When a processor misses on a cache block, it requests a copy of the block
from the home node. If the home node has a copy, it returns it directly (2 messages), otherwise
it forwards the request to the current owner, which responds directly (3 messages). This protocol
is optimal for data th a t is only used by a single processor at a time, such as data always accessed
via exclusive RW locks, because it avoids unnecessary invalidations or updates when the data is
written after it is read. Several researchers have found tha t the provision of a migratory protocol
can improve system performance significantly [13, 27].

Dash is identical to the C onventional protocol, except tha t the new owner of a cache block
does not have to stall while it waits for acknowledgements to its invalidation messages. This
optimization assumes tha t the program is written using sufficient synchronization to avoid data
races, which is most often the case. The details of why this results in correct behavior is beyond
the scope of this paper - we refer you to the original DASH papers for a detailed explanation [16, 21].
For simplicity, we assume tha t all acknowledgement messages arrive before the processor reaches a
release point, and thus do not count invalidation acknowledgements for the Dash protocol.

The A daptive protocol is a version of Dash modified to detect migratory sharing patterns
and dynamically switch between the replicate-on-read-miss protocol of Dash and the migrate-on-
read-miss protocol of M igratory [13, 27]. All cache lines s ta rt out in Dasii mode and transition
to migratory if on a write hit requiring an invalidation there are exactly two copies of the line and
the current invalidating processor is not the last processor to perform an invalidation. A read miss
on a line in M igratory mode will then migrate the line to the requesting processor rather than
replicate it. A line drops out of M igratory mode on any miss for a line tha t has not been dirtied
since the last migration.

The M unin protocol is similar to the “write-shared” protocol employed in the Munin DSM
system [8 , 9]. Unlike the other three protocols, it uses an update-based consistency mechanism and
allows multiple nodes to modify the cache line concurrently. Like D ash, it exploits the power of
release consistency to improve performance. Specifically, a node is allowed to write to any cache
block tha t it has without communicating with any other node, regardless of whether or not the
block is currently replicated. To maintain consistency, when a node performs a release operation
as defined by release consistency [16] (releases a lock, arrives at a barrier, etc.), it is required to
update all replicas of blocks tha t it has modified since the last release. To support this protocol, the
hardware is assumed to have a per-word dirty bit so tha t a node only need send the particular words

7

within the block tha t it has modified. In this way, multiple nodes are able to write to different words
in the same block concurrently. W ith this scheme, write races can be detected easily [7, 9]. In the
basic scheme, a read miss is handled by requesting a copy of the data from the home node, which
always has a usable copy (2 messages). Writes hits are performed completely locally, and entail
only setting a dirty bit for the word tha t is being written and keeping track of the fact tha t the
line has been modified (0 messages). A write miss is handled as a read miss followed by a write hit
(2 messages). Unlike the previous protocols, M unin must perform memory consistency operations
when it arrives a t a release point. In the basic implementation, the M unin protocol sends an update
to the home node of each dirty line and wait for all of these updates to be acknowledged before
performing the release operation. An update message consists of a starting address, a bitmap of the
modified words in the line, and the new values of the modified words. When a home node receives
an update message for a cache line, it forwards a copy of the update message to each remote node
caching tha t line and waits for the update messages to be acknowledged. After all of the update
messages have been acknowledged, it sends an acknowledgement message to the node performing
the release. The update messages can be performed asynchronously. This basic protocol requires
2* N messages per dirty cache line during each release operation (where N is the number of copies
of each line).

There are a number of obvious problems with this basic implementation of the M unin protocol.
First, it does not take advantage of the fact tha t (i) most updates are to small subsets of the
complete cache line, especially for large cache lines and (ii) often many updates need to be sent to
the same remote nodes. These two facts allow multiple updates to be combined into single messages,
as was done successfully in the Munin system [9]. Except when otherwise noted, we assume that
the hardware is sm art enough to put several small updates destined to the same remote node into
a single message when there is space. This combining occurs both when a releasing node is sending
multiple updates to the same home node, and when a particular home node is updating multiple
cache lines on a remote node simultaneously. We do not assume tha t the hardware is capable
of fragmentation or reassembly, so no updates are allowed to span multiple messages. W ith this
optimization, the M unin protocol requires as many a s 2 * N messages per dirty line, but often quite
a bit fewer. This optimization proved especially valuable.

A second problem with the basic implementation is that, like conventional write-update proto
cols, there is no limit to how long a node will continue to receive updates for a block of data that
it is no longer using unless the block happens to be deleted from the cache due to contention for
a cache line. This can result in a large number of unnecessary updates to cache lines tha t are no
longer being used (so-called “stale” lines). To address this problem, cache lines being maintained
using the M unin protocol are automatically invalidated when they appear to have become stale.
We evaluated two strategies for timing out stale data. In the first strategy, a cache line is invali
dated after receiving T updates since it is last referenced, where T denotes some timeout count. In
the second strategy, a cache line tha t is not referenced for two consecutive releases is invalidated by
the processor performing the release. Both strategies require only a small (one or two bit) counter
associated with each cache line. We found tha t the second strategy, apart from being simple to
implement, resulted in very good performance for all of the SPLASH programs and hence was
employed in our comparisons. To invalidate a local cache line, a node simply sends an invalidation
message to the line’s home node, including a copy of the modified data if the line is dirty.

Finally, we also measured what we will refer to as the Optimal algorithm. This algorithm
assumes tha t software (e.g., the compiler) has correctly specified to the hardware on a per-cache-
line basis the optimal protocol to use for tha t cache line during tha t particular execution of the
application being simulated. We do this by determining off-line which protocol required the least

8

communication for each cache line, and using this protocol’s results for tha t line in our calculation
of O p tim a l’s performance. This measurement gives us a best case measurement of the potential
performance of a programmable cache controller-based system using the five protocols described
above, if software is able to perfectly specify in advance how each block of memory should be handled
and does not modify this hint during program execution. While it is probably not reasonable to
assume tha t this performance is achievable in general, it provides us with the answer to a very
fundamental question: Is it worthwhile to even consider building a programmable cache controller,
or are the potential benefits too small to be worth the effort? As we shall see, there are clear
benefits to building and utilizing a programmable controller.

Table 3 summarizes the number of messages transm itted by each protocol in response to different
system events.

2.5 A ssu m p tion s

In all simulation studies, it is im portant to be clear exactly what is and what is not being mea
sured and what assumptions are being made. Since the goal of this research is to explore the
potential impact of programmable cache controllers and not to evaluate the performance of one
particular design, our multiprocessor model was constrained in a number of ways. Specifically, our
multiprocessor model makes the following assumptions:

• Shared data is never removed from the cache due to contention for a limited number of cache
blocks (i.e., there is “infinite” cache).

• All program code and non-shared data fits into local “per processor” memory (i.e., we do not
measure message traffic for accesses to instructions or non-shared data).

• We do not assume any particular network topology or performance. This has a number of
effects, including:

- We could not model contention in the network.

- We could not assume tha t the network supported multicast.

- We could not assume tha t the network reliably delivered packets in order.

Consistency
Protocol

Read
Miss

Read
Hit

Write Miss
(Replicated)

Write Hit
(Replicated)

Release

C onventional (2,4) 0 (2, 5) + 2 * N 2 + 2* N 0

M igratory (2,3) 0 (2,3) — 0

Dash (2,4) 0 (2,5) + A t̂ 2 + N 0
Wd'.dirty

M unin 2 0 2 0 E 2 * N j

T able 3 Summary of Messages Required to Maintain Consistency

* There are actually 2 * N messages, but we only count N of them. This is explained in Section 2.5.
*This value is the upper bound assuming one update per message. In practice, it is often 20-60% lower.

9

• The network can send a complete cache line in a single message. However, we did evaluate the
effect of fixing the maximum packet size at 128 bytes (see Section 3.4).

• We do not measure latency or cycles, since these measurements require a specific system model.
Instead, we measure hardware independent parameters such as the cache hit ratio, and the
number of “messages” transm itted to maintain consistency.

• We assume tha t the write buffer in Dash never fills up and stalls the processor on a write. We
also assume tha t all Dash invalidation messages are acknowledged before the following release,
and thus do not count ownership changes or invalidate acknowledgements in the message totals
for Dash . This matches well with empirical experience with DASH.

The first two assumptions restrict our attention to the effect tha t using a programmable cache
controller has on consistency maintenance, which is the goal of this research. By choosing a simple
abstract model for the processor interconnection network, our results should translate well across
multiple communication topologies. We measure the number of cache misses, the number of mes
sages used to maintain consistency, and the size of these messages, so a rough estimate of system
performance can be calculated for any particular processor interconnect design. Although assuming
tha t the network can transm it cache lines in a single message may not be entirely realistic for very
large cache lines, e.g., 512 bytes, we assume tha t in a scalable shared memory multiprocessor the
network will be designed to not require fragmentation and reassembly of cache line messages. We
evaluated the impact of this assumption and present the results of this evaluation in Section 3.4.

3 R e s u l t s

We simulated the performance of our multiprocessor model on a large number of configurations.
For each of the five applications, we measured the performance of each protocol individually on
from 2 to 32 virtual processors (by powers of 2) and for cache line sizes ranging from 32 to 512
bytes. We collected a large number of statistics for each run, including the number of cache hits
and misses (reads and writes), the number of data request messages, the number of invalidate
or update messages, and the number of acknowledgement messages. In addition, we calculated
the number of hits, misses, messages, and other characteristics for an off-line “optimal” protocol.
The extent to which the Optimal protocol improves upon individual protocols is an indication of
the potential performance improvements tha t can be achieved by supporting multiple protocols in
hardware and letting software statically select the protocol to use on a per-cache-line basis. Further
improvement may be achievable with dynamic selection, i.e., hints tha t change during the execution
of the program, but we have not yet evaluated this possibility.

To evaluate the value of supporting multiple protocols in hardware and allowing software to
select the “optimal” protocol for each cache line, we performed two basic sets of experiments. In
the first set, we measured the performance of the various protocols for each application on a fixed
number of processors (8) as we varied the cache line size from 32 to 512 bytes. The results of these
experiments are discussed in Section 3.1. In the second set of basic experiments, we measured
the performance of the various protocols for each application for a fixed line size (128 bytes) as
we varied the number of processors from 2 to 32. These results, discussed in Section 3.2, did not
show as much variance as the results obtained when we modified the cache line size, so we chose
to present only the results for only one application, mp3d.

In addition to the two basic sets of experiments, we measured the impact of supporting a limited
number of protocols and of fixing the maximum packet size in the interconnect to 128 bytes (as

10

opposed to setting it equal to the cache line size). The former experiment is discussed in Section 3.3
and the latter is discussed in Section 3.4.

For all of our experiments, measured the cache miss rate and the number of messages required
to maintain consistency. Together these values give a good indication of the overall performance of
a shared memory multiprocessor.

3.1 E ffect o f V arying Line Size

The results for our experiments on the effects of varying line size on the choice of an “optimal”
protocol are presented in Figures 3 through 12 and Tables 4 through 7. The figures plot the
cache miss rates and number of messages required to maintain consistency for each of the five
applications on eight processors as we vary the cache line size. The values presented in the tables
are the percentage of cache lines in each configuration for each application tha t are “optimally”
maintained using each protocol. For example, in Table 5, 34.9% of the cache lines in mp3d are
read-only (and thus should be handled by any protocol but M igratory , 64/9% of the cache lines
should be handled using the M igratory protocol, and 0.3% of the cache lines should be handled
using the M unin protocol.

M P 3 D

As illustrated in Figure 4, using the optimal distribution of consistency protocols across the cache
lines can reduce the number of consistency messages from 10% to over 80% compared to any
single fixed protocol, depending on the line size and specific protocol being compared against.
This observation, which holds true to varying degrees across all five of the applications, strongly
supports the notion tha t shared memory multiprocessor performance can be significantly improved
by the use of flexible cache controllers, if the software is capable of determining the optimal (or
near optimal) protocol to use to keep a particular block of data consistent.

As can be seen in Tables 5-7, mp3d has a high percentage of migratory data. Thus, for small line
sizes, the M igratory and A daptive protocols work best, which is evident in Figure 4. As the
size of the cache lines is increased, the effects of false sharing cause M unin to perform better and
the invalidation-based protocols to perform more poorly, as expected given MuNlN’sgood handling
of false sharing [9].

Figure 3 illustrates tha t the use of the “optimal” protocol for each cache line can also reduce the
cache miss rate, despite the fact tha t our measure of “optimal” minimizes the number of consistency
messages, with no attention paid to the effect on cache miss rate. As with messages, the M unin
protocol performs relatively poorly for small cache lines (32 bytes) because it is unable to combine
updates, while Dash and A daptive perform best overall. The reverse becomes true as cache lines
grow to and beyond 128 bytes. While M igratory requires the fewest messages for small cache
lines, its inability to support read sharing results in a high miss rate. These results are another
indication tha t using the “Optimal” protocol for each cache line can improve performance. For
mp3d with small cache lines, the write-shared lines (lines tha t are shared and written at least once)
are best handled by the M igratory protocol, while the read-shared lines (lines tha t are shared,
but never written after initialization) should be supported by any of the other protocols, all of
which support read replication. As we can see in Tables 5 - 7, as the cache line size grows, the
write-shared data becomes better handled by the M unin protocol than the M igratory protocol.
In the case of mp3d, the standard Dash protocol is rarely optimal, although its average performance
is quite good (i.e., it is a good compromise if only one protocol can be supported).

11

There is a “crossover” in the curves at the point where cache lines grow to 128 bytes. Before
this point, the more conventional invalidate-based protocols perform best, but after this point their
performance degrades while M unin’s improves as it is able to more often pack multiple updates in
a single message. For large cache lines and messages (512 bytes), the optimized Munin protocol
was able to send an average of three updates per message.

Water

Overall, w ater is far better behaved as an application than mp3d, which is notorious for the fine
granularity of its sharing. As seen in Figures 5 and 6 , the miss rates for w ater are approximately
one-third those of mp3d, and w ater requires approximately an order of magnitude fewer consistency
messages, albeit to perform one-third as many memory operations (see Table 3). Nevertheless,
tuning the way in which individual cache lines are maintained still reduces the amount of commu
nication from 10% to 75%, with a mean improvement of approximately 40%. However, in this case
optimizing for message traffic does not significantly improve the cache miss rate, and in fact the
“optimal” performance can dip slightly below that of A d a p tiv e (see Figure 5). For w ater, both
D ash and A d a p tiv e perform almost as well as the “optimal” distribution, while M unin performs
relatively poorly. This result is another indication tha t it is useful to tune the cache’s behavior
based on the way in which data is being accessed. Somewhat surprisingly, although M ig ra to ry
performs quite poorly in the aggregate, as seen in the graphs, it contributes a significant percentage
of the “optimal” allocation of protocols, an indication tha t even in a single program, the “optimal”
protocol varies from line to line.

Barnes-Hut

Figures 7 and 8 show the performance of barnes. The results for M ig r a to ry are omitted, as
for both the miss rate and messages, it performed an order of magnitude worse than any other
protocol for all line sizes. The primary reason for this poor performance is tha t there is a large
amount of read-shared data, which M ig ra to ry does not support effectively. Compared to the
other protocols, the O p tim a l protocol requires from 10% to 50% less communication to maintain
consistency, while performing at least as well as the alternatives in terms of miss rates (except for
M unin for very large line sizes).

Like mp3d, there is clearly a point after which the performance of the invalidation-based protocols
drops off, while M unin becomes increasingly important. This observation is reinforced by the data
in Tables 5-7. The distribution of “optimal” protocols across cache lines changes dramatically as
the line size is varied. For small cache lines, Dash performs almost as well as the much more
complicated O ptimal protocol. However, for larger line sizes, Dash does not fare well. However,
the miss rates and message counts for barnes are quite low, so probably any protocol would achieve
acceptable performance.

Cholesky Factorization

As illustrated in Figures 9 and 10 and Tables 5-7, the performance of the various protocols on
cholesky is very stable, regardless of the line size. Individually, all of the protocols except M igra
tory perform approximately equally in terms of both miss rate and messages. However, the use of
an “optimal” distribution of protocols results in 25% to 75% fewer messages being transm itted than
is done for any single protocol, with no negative impact on the miss rate. As with w ater, although

12

M igratory performs poorly when it is the only protocol supported, it is a major contributor to
the optimal distribution.

LocusRoute

Like w ater and cholesky, what is the best protocol varies wildly from line to line in locus. Thus,
the “optimal” distribution results in 30% to 70% fewer messages and a 20% to 50% lower miss
rate than any individual protocol. Like mp3d and barnes, there is a threshold at approximately
128 bytes where the optimal protocol for most write-shared data changes from Dash/A daptive to
M unin . In any event, the performance of lo cu s gives us another strong indication of the potential
impact of a programmable cache controller.

3.2 Effect o f V arying N u m b er o f P rocessors

All five of the applications displayed similar characteristics when we varied the number of processors.
The reason for this is that, in general, the number of processors caching any given write-shared line
was not affected by the number of processors involved in the computation. Thus, while the miss
rate and total number of messages grew as we added processors, thus reducing the granularity of
sharing and increasing the number of read misses to read-only data, the relative performance of the
various protocols and the impact of using the O p tim a l protocol varied very little. Figures 13 and
14 illustrate this effect for mp3d. Other than the relatively poor performance in terms of message
count of the M unin protocol for 32 processors, the relative performance of the different protocols
did not change significantly as we varied the number of processors. Thus, the observations made in
Section 3.1 would seem to be relatively machine-size independent, with the exception of the M unin
protocol. We conjecture tha t the poor scalability of the M unin protocol would be eliminated if
we limited the number of processors tha t can simultaneously cache a given line of data, which is
required in large scale machines already because bitmaps are not scalable data structures [11].

3.3 Effect o f L im iting th e N u m b er o f P ro to co ls

To evaluate how effective a controller could be with limited “sm arts,” we measured the optimal
performance of a programmable controller when only a subset of the protocols was implemented.

Comparing the performance of the A daptive protocol with an O ptimal run involving just
Dash and M igratory shows how effective A daptive is at approximating Dash or M igratory
depending on the dynamic access behavior. The former dynamically switches cache lines between
the two protocols whereas the latter is a static partitioning of lines between the two protocols
based on which protocol performs better over the life of the application. Figures 15 and 16 gives
the results of this comparison, in terms of the number of messages required to maintain consistency.
In Figure 15, it can be seen tha t there are applications, in this case locus, where A daptive is
a poor approximation to the optimal combination of Dash and M igratory , which is in turn
a poor approximation to the overall O ptimal protocol combination. This was also the case for
barnes and mp3d. Figure 16, on the other hand, illustrates the fact tha t sometimes A daptive
is a good approximation of Optim a l , in this case for cholesky. Nevertheless, while A daptive
works noticeably better than static implementations of Dash or M igratory , in general it does not
compare well with an optimal combination of the two. The fact tha t the optimal static protocol
assignment consistently outperforms the dynamic approximation is yet another indication of the
potential of programmable cache controllers.

13

Program Reads Writes Total

mp3d

water

cholesky

barnes

locus

3288072

1726569

7914864

16622122

1510982

2206416

191781

287770

3243245

418220

5494488

1918350

8202634

19865367

1929202

Table 4 Number of Shared Data Accesses (eight processors)

Protocol mp3d water barnes cholesky locus
R ead- only

D ash

M igratory

M unin

34.9%

0.0%

64.9%

0.3%

38.6%

10.4%

51.0%

0.0%

12.1%

45.3%

32.5%

10.1%

22.5%

0.0%

77.4%

0.0%

46.2%

1.6%

50.2%

2.0%

Table 5 Contributions of the Various Protocols to “Optimal”
(eight processors, 32 byte cache lines)

Protocol mp3d water barnes cholesky locus
R ead- only

D ash

M igratory

M unin

33.5%

0.1%

58.4%

8.1%

34.9%

17.6%

45.6%

1.8%

10.8%

8.8%

7.8%

72.6%

22.4%

0.1%

76.6%

0.9%

40.2%

0.5%

46.4%

12.9%

Table 6 Contributions of the Various Protocols to “Optimal”
(eight processors, 128-byte cache lines)

Protocol mp3d water barnes cholesky locus
R ead- only

D ash

M igratory

M unin

39.4%

0.2%

13.9%

46.5%

31.7%

54.8%

10.3%

3.2%

14.9%

0.3%

0.0%

84.8%

22.1%

0.0%

67.1%

10.7%

33.5%

0.8%

41.8%

23.9%

Table 7 Contributions of the Various Protocols to “Optimal”
(eight processors, 512-byte cache lines)

More generally, limiting the number of protocols can significantly impact performance when you
do not include at least one update-based and one invalidate-based protocol, at least for large cache
line sizes, as can be seen in Figure 17 for mp3d. Similar behavior was noted for both barnes and
locu s. For water and cholesky, however, the level of sharing was sufficiently low that the impact
of restricting the number of protocols supported by the hardware was minimal, as illustrated in
Figure 18 for cholesky.

In summary, when there is not a high degree of sharing, the number of protocols has little
impact on optimal performance. However, for programs with a significant amount of sharing, the
provision of at least one invalidate and one update protocol is important, especially for larger cache
line sizes.

3.4 Effect o f Fixed M essage Sizes

Finally, to verify that our assumption that the network could transmit cache lines in a single
message does not make the programmable controller appear to be overly effective, we examined
the impact of fixing the packet size at some reasonable minimum, specifically 128 bytes. We chose
this value because it matches the payload size of the high-speed network controller that we are
developing as the backbone of our scalable parallel architecture. Figure 19 shows the effect that
this has on mp3d for eight processors. We compared the performance of the Dash and two variants
of the M unin protocols, each for fixed and variable sized messages. For Dash fixing the message
size at 128 bytes has no impact for small cache line sizes, because the small cache lines fit entirely
in 128 byte messages and Dash never has an opportunity to combine multiple events in a single
packet. However, fixing the message size at 128 bytes significantly increases the number of messages
required to maintain consistency for large line sizes, because D ash always transmits full cache lines
(being an invalidate protocol). The variant of M unin labeled as M unin ’ does not combine update
messages being sent to the same node, so like D ash , it does not benefit from the large message
size for small line sizes. However, its performance does not degrade as rapidly as Dash ’s for large
line sizes, because updates often consist of far fewer bytes than a full cache line. mp3d was chosen
because it tends to send large updates, unlike several of the other applications, to give M unin less
of an advantage. Finally, the version of M unin that combines messages clearly outperforms the
other two protocols. It can both benefit from large message sizes when the cache lines are small,
or from cache-line-sized messages when cache lines are large. This experiment also illustrates the
power of combining updates, a scheme that worked well in software for Munin [9] and seems to
translate well to hardware.

4 Related Work

There are a number of ongoing academic efforts with the goal of designing a scalable shared mem
ory multiprocessor. All of these projects are currently emphasizing the mechanisms needed to
implement a flexible cache controller, rather than the policies and software required to exploit this
flexibility.

The proposed user level shared memory in Tempest and Typhoon system [25] will support
cooperation between software and hardware to implement a scalable shared memory and message
passing abstraction. Tempest provides an interface allowing user level code to efficiently utilize
the underlying low-level communication and shared memory mechanism. Typhoon is a proposed
hardware implementation for this interface. Like the Alewife system, the proposed system uses

15

low level software handlers and provides more flexibility. As such, it requires extensive program
modifications and user effort to achieve the required performance.

The Stanford DASH multiprocessor [22, 21] uses a directory-based cache design to interconnect
a collection of 4-processor SGI boards based on the MIPS 3000 RISC processor. D ASH ’s cache con
sistency protocol was described in Section 2.4. A second generation DASH multiprocessor is being
developed that adds a limited amount of processing power and state at the distributed directories
to add some flexibility to the consistency implementation. This machine, called FLASH [20] will
support both DASH-like shared memory and efficient message passing, although it should have the
power to implement other caching protocols such as the ones described above.

The M IT Alewife machine [10, 11] also uses a directory-based cache design that supports both
very low-latency message passing and shared memory based on an invalidation-based consistency
protocol. The Alewife designers are currently extending the Alewife directory implementation to
add a limited amount of flexibility by allowing the controller to invoke specialized low-level software
trap handlers to handle uncommon consistency operations. This extension could allow multiple
consistency protocols to be supported by the hardware, but currently the Alewife designers are
only planning to use this capability to support an arbitrary number of “replica” pointers (a list
of the nodes in the system that are caching a given line) per cache-line, and a limited number of
specialized synchronization operations.

Sesame is a fast hardware network interface that supports distributed shared memory on a
network of high-speed workstations [32], Sesame aggressively attacks the problem of communication
latency caused by demand-driven data transfers by selectively sending updates to shared data in
advance of when they are requested, so-called eager sharing. Their results indicate that eager
sharing allows a hardware DSM system to scale well under circumstances that limit conventional
demand-driven consistency protocols to an order of magnitude less performance.

5 Conclusions and Recommendations

We have explored the impact that the use of a programmable cache controller can have on the per
formance of a shared memory multiprocessor, and found that it has the potential to be dramatic. In
our simulation study of five of the SPLASH programs running on a directory-based multiprocessor
that supported multiple consistency protocols and could accept software pragmas, we found that
the optimal distribution of protocols to individual cache lines could reduce the amount of commu
nication by from 10-80%, generally from 25-35% , compared to using a single, hardwired protocol.
Furthermore, for several of the applications, this tuning process reduced cache miss rates by up to
25% despite being optimized for reducing the number of consistency messages. This indicates that
it is worthwhile investigating (i) hardware techniques for supporting software control of multipro
cessor caches [10, 20, 25] and (ii) software techniques for fully exploiting this flexible hardware [25].
If successful, such systems could allow shared memory multiprocessors to scale to far larger designs
than is currently feasible, without requiring prohibitively expensive and complicated controllers
and interconnects. We plan to refine this study to determine whether its conclusions remain valid
on a more detailed system model, and use its results to aid in the design of a controller and software
environment like that described above.

References

[1] A . Agarwal, R. Simoni, J. Hennessy, and M . Horowitz. An evaluation of directory schemes for
cache coherence. In Proceedings o f the 15th Annual International Symposium on Computer

16

[2] G. Astfalk. Past progress and future abilities in high performance computing. In Proceedings
o f a 1993 meeting o f the Max Planck Society in Gemrany, 1993.

[3] G. Astfalk, T . Breweh, and G. Palmeh. Cache coherency in the convex mpp. Convex Computer
Corporation, February 1994.

[4] J.K. Bennett, J.B. Carter, and W . Zwaenepoel. Adaptive software cache management for
distributed shared memory architectures. In Proceedings o f the 17th Annual International
Symposium on Com puter Architecture, pages 125-134, May 1990.

[5] B.N. Bershad, M.J. Zekauskas, and W .A . Sawdon. The Midway distributed shared memory
system. In C O M P C O N ’93, pages 528-537, February 1993.

[6] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the KSR1 computer system.
Technical Report KSR-TR-9002001, Kendall Square Research, February 1992.

[7] J.B. Carter. Efficient Distributed Shared M em ory Based On Multi-Protocol Release Consis
tency. PhD thesis, Rice University, August 1993.

[8] J.B. Carter, J.K. Bennett, and W . Zwaenepoel. Implementation and performance of Munin.
In Proceedings o f the 13th A C M Symposium on Operating System s Principles, pages 152-164,
October 1991.

[9] J.B. Carter, J.K. Bennett, and W . Zwaenepoel. Techniques for reducing consistency-related
communication in distributed shared memory systems. A C M Transactions on Computer S ys
tems, 13(3):205-243, August 1995.

[10] D. Chaiken and A. Agarwal. Software-extended coherent shared memory: Performance and
cost. In Proceedings o f the 21st Annual International Symposium on Computer Architecture,
pages 314-324, April 1994.

[11] D. Chaiken, J. Kubiatowicz, and A . Agarwal. LimitLESS directories: A scalable cache coher
ence scheme. In Proceedings o f the 4th Symposium on Architectural Support fo r Programming
Languages and Operating System s, pages 224-234, April 1991.

[12] A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W . Zwaenepoel. Software versus
hardware shared-memory implementation: A case study. In Proceedings o f the 21st Annual
International Symposium, on Computer Architecture, pages 106-117, May 1994.

[13] A .L . Cox and R.J. Fowler. Adaptive cache coherency for detecting migratory shared data.
In Proceedings o f the 20th Annual International Symposium on Computer Architecture, pages
98-108, May 1993.

[14] H. Davis, S. Goldschmidt, and J. L. Hennessy. Tango: A multiprocessor simulation and tracing
system. Technical Report CSL-TR-90-439, Stanford University, 1990.

[15] S.J. Eggers and R.H. Katz. A characterization of sharing in parallel programs and its ap
plication to coherency protocol evaluation. In Proceedings o f the 15th Annual International
Symposium on Computer Architecture, pages 373-383, May 1988.

Architecture, pages 280-289, June 1988.

17

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A . Gupta, and J. Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of
the 17th Annual International Symposium on Com puter Architecture, pages 15-26, Seattle,
Washington, May 1990.

[17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

A. Gupta and W .-D . Weber. Cache invalidation patterns in shared-memory multiprocessors.
IE E E Transactions on Computers, 41(7):794-810, July 1992.

J. Heinlein, K. Gharachorloo, and A . Gupta. Integrating multiple communication paradigms
in high performance multiprocessors. Technical Report CSL-TR-94-604, Stanford Computer
Systems Laboratory, February 1994.

Intel Supercomputers Systems Division. Paragon technical summary, 1993.

J. Kuskin and D. Ofelt et al. The Stanford FLASH multiprocessor. In Proceedings o f the 21st
Annual International Symposium on Computer Architecture, pages 302-313, May 1994.

D. Lenoski, J. Laudon, K. Gharachorloo, A . Gupta, and J. Hennessy. The directory-based
cache coherence protocol for the DASH multiprocessor. In Proceedings o f the 17th Annual
International Symposium on Computer Architecture, pages 148-159, May 1990.

D. Lenoski, J. Laudon, K. Gharachorloo, W .-D . Weber, A . Gupta, J. Hennessy, M. Horowitz,
and M . S. Lam. The Stanford DASH multiprocessor. IE E E Com puter, 25(3):63—79, March
1992.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. A C M Transactions
on Com puter System s , 7(4) :321—359, November 1989.

S.K. Reinhardt, M .D . Hill, J.R. Larus, A .R . Lebeck, J.C. Lewis, and D .A . Wood. The Wiscon
sin Wind Tunnel: Virtual prototyping of parallel computers. In Proceedings o f the 1993 A C M
Sigmetrics Conference on Measurement and Modeling o f Computer System s , pages 48-60 , May
1993.

S.K. Reinhardt, J.R. Larus, and D .A . Wood. Tempest and Typhoon: User-level shared mem
ory. In Proceedings o f the 21st Annual International Symposium on Com puter Architecture,
pages 325-336, April 1994.

J.P. Singh, W .-D . Weber, and A . Gupta. SPLASH: Stanford parallel applications for shared-
memory. Technical Report CSL-TR-91-469, Stanford University, April 1991.

P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive cache coherence protocol opti
mized for migratory sharing. In Proceedings o f the 20th Annual International Symposium on
Computer Architecture, pages 109-118, May 1993.

Thinking Machines Corporation. The Connection Machine CM -5 technical summary, 1991.

J.E. Veenstra and R.J. Fowler. A performance evaluation of optimal hybrid cache coherency
protocols. In Proceedings o f the 5th Symposium on Architectural Support for Programming
Languages and Operating System s, pages 149-160, September 1992.

[30] J.E. Veenstra and R.J. Fowler. Mint: A front end for efficient simulation of shared-memory
multiprocessors. In M A S C O T S 1994, January 1994.

18

[31] A . Wilson and R. LaRowe. Hiding shared memory reference latency on the GalacticaNet
distributed shared memory architecture. Journal o f Parallel and Distributed Computing,
15(4):351-367, August 1992.

[32] L.D. Wittie, G. Hermannsson, and A . Li. Eager sharing for efficient massive parallelism. In
1992 International Conference on Parallel Processing, pages 251-255, St. Charles, IL, August
1992.

19

mp3dmp3d
miss raic (%)

8.50 MigratoryMigratory AdaptiveAdaptive MuninMurnn OptimalOptimal

line sizeline size

Figure 4 Messages vs Line Size (mp3d)Figure 3 Miss Rate vs Line Size (mp3d)

water
miss rate (%)

Figure 5 Miss Rate vs Line Size (water)

water
messages x 103

Figure 6 Messages vs Line Size (water)

20

barnes barnes
miss rate (%)

F igure 7 Miss Rate vs Line Size (barnes)

Dash
Adaptive
Munin
Optimal

F igure 8 Messages vs Line Size (barnes)

Dash
Migratory
* Adaptive
Munin-
Optimal -

messages x 10̂

1.40

1.30

1.20
1.10
1.00
0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20
0.10

miss rate (%)
1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20
1.10
1.00
0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

cholesky

Dash
Migratory
* Adaptive
Munin
Optimal

line size
512

cholesky

Figure 9 Miss Rate vs Line Size Figure 10 Messages vs Line Size
(cholesky) (cholesky)

21

locus locus

Figure 11 Miss Rate vs Line Size (locu s)

messages x 1(P

Figure 12 Messages vs Line Size (locu s)

mp3dmiss rate (%) messages x 10̂
mp3d

Figure 13 Figure 14
Miss Rate vs # of Processors Messages vs # of Processors
(mp3d, 128-byte cache lines) (mp3d, 128-byte cache lines)

22

locus
no3 messages x 10̂

cholesky

Figure 15 A daptive vs
O pt im a l (D ash + M igratory)

Figure 16 A daptive v s

O pt im a l (D ash + M ig rato ry)

i to6
mp3d

messages x 10̂
cholesky

Figure 17 Effect of Limiting
Protocols (mp3d)

Figure 18 Effect of Limiting
Protocols (cholesky)

23

