49,804 research outputs found

    The Directed Grid Theorem

    Full text link
    The grid theorem, originally proved by Robertson and Seymour in Graph Minors V in 1986, is one of the most central results in the study of graph minors. It has found numerous applications in algorithmic graph structure theory, for instance in bidimensionality theory, and it is the basis for several other structure theorems developed in the graph minors project. In the mid-90s, Reed and Johnson, Robertson, Seymour and Thomas (see [Reed 97, Johnson, Robertson, Seymour, Thomas 01]), independently, conjectured an analogous theorem for directed graphs, i.e. the existence of a function f : N -> N such that every digraph of directed tree-width at least f(k) contains a directed grid of order k. In an unpublished manuscript from 2001, Johnson, Robertson, Seymour and Thomas give a proof of this conjecture for planar digraphs. But for over a decade, this was the most general case proved for the Reed, Johnson, Robertson, Seymour and Thomas conjecture. Only very recently, this result has been extended to all classes of digraphs excluding a fixed undirected graph as a minor (see [Kawarabayashi, Kreutzer 14]). In this paper, nearly two decades after the conjecture was made, we are finally able to confirm the Reed, Johnson, Robertson, Seymour and Thomas conjecture in full generality and to prove the directed grid theorem. As consequence of our results we are able to improve results in Reed et al. in 1996 [Reed, Robertson, Seymour, Thomas 96] (see also [Open Problem Garden]) on disjoint cycles of length at least l and in [Kawarabayashi, Kobayashi, Kreutzer 14] on quarter-integral disjoint paths. We expect many more algorithmic results to follow from the grid theorem.Comment: 43 pages, 21 figure

    Search for the end of a path in the d-dimensional grid and in other graphs

    Get PDF
    We consider the worst-case query complexity of some variants of certain \cl{PPAD}-complete search problems. Suppose we are given a graph GG and a vertex s∈V(G)s \in V(G). We denote the directed graph obtained from GG by directing all edges in both directions by G′G'. DD is a directed subgraph of G′G' which is unknown to us, except that it consists of vertex-disjoint directed paths and cycles and one of the paths originates in ss. Our goal is to find an endvertex of a path by using as few queries as possible. A query specifies a vertex v∈V(G)v\in V(G), and the answer is the set of the edges of DD incident to vv, together with their directions. We also show lower bounds for the special case when DD consists of a single path. Our proofs use the theory of graph separators. Finally, we consider the case when the graph GG is a grid graph. In this case, using the connection with separators, we give asymptotically tight bounds as a function of the size of the grid, if the dimension of the grid is considered as fixed. In order to do this, we prove a separator theorem about grid graphs, which is interesting on its own right

    Trees and Matchings

    Full text link
    In this article, Temperley's bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the ``square-octagon'' lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon, our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson's algorithm allows us to quickly generate random samples of perfect matchings.Comment: 32 pages, 19 figures (minor revisions from version 1

    Adapting the Directed Grid Theorem into an FPT Algorithm

    Full text link
    The Grid Theorem of Robertson and Seymour [JCTB, 1986], is one of the most important tools in the field of structural graph theory, finding numerous applications in the design of algorithms for undirected graphs. An analogous version of the Grid Theorem in digraphs was conjectured by Johnson et al. [JCTB, 2001], and proved by Kawarabayashi and Kreutzer [STOC, 2015]. Namely, they showed that there is a function f(k)f(k) such that every digraph of directed tree-width at least f(k)f(k) contains a cylindrical grid of size kk as a butterfly minor and stated that their proof can be turned into an XP algorithm, with parameter kk, that either constructs a decomposition of the appropriate width, or finds the claimed large cylindrical grid as a butterfly minor. In this paper, we adapt some of the steps of the proof of Kawarabayashi and Kreutzer to improve this XP algorithm into an FPT algorithm. Towards this, our main technical contributions are two FPT algorithms with parameter kk. The first one either produces an arboreal decomposition of width 3k−23k-2 or finds a haven of order kk in a digraph DD, improving on the original result for arboreal decompositions by Johnson et al. The second algorithm finds a well-linked set of order kk in a digraph DD of large directed tree-width. As tools to prove these results, we show how to solve a generalized version of the problem of finding balanced separators for a given set of vertices TT in FPT time with parameter ∣T∣|T|, a result that we consider to be of its own interest.Comment: 31 pages, 9 figure

    Cyclewidth and the Grid Theorem for Perfect Matching Width of Bipartite Graphs

    Get PDF
    A connected graph G is called matching covered if every edge of G is contained in a perfect matching. Perfect matching width is a width parameter for matching covered graphs based on a branch decomposition. It was introduced by Norine and intended as a tool for the structural study of matching covered graphs, especially in the context of Pfaffian orientations. Norine conjectured that graphs of high perfect matching width would contain a large grid as a matching minor, similar to the result on treewidth by Robertson and Seymour. In this paper we obtain the first results on perfect matching width since its introduction. For the restricted case of bipartite graphs, we show that perfect matching width is equivalent to directed treewidth and thus the Directed Grid Theorem by Kawarabayashi and Kreutzer for directed \treewidth implies Norine's conjecture.Comment: Manuscrip

    1-Safe Petri nets and special cube complexes: equivalence and applications

    Full text link
    Nielsen, Plotkin, and Winskel (1981) proved that every 1-safe Petri net NN unfolds into an event structure EN\mathcal{E}_N. By a result of Thiagarajan (1996 and 2002), these unfoldings are exactly the trace regular event structures. Thiagarajan (1996 and 2002) conjectured that regular event structures correspond exactly to trace regular event structures. In a recent paper (Chalopin and Chepoi, 2017, 2018), we disproved this conjecture, based on the striking bijection between domains of event structures, median graphs, and CAT(0) cube complexes. On the other hand, in Chalopin and Chepoi (2018) we proved that Thiagarajan's conjecture is true for regular event structures whose domains are principal filters of universal covers of (virtually) finite special cube complexes. In the current paper, we prove the converse: to any finite 1-safe Petri net NN one can associate a finite special cube complex XN{X}_N such that the domain of the event structure EN\mathcal{E}_N (obtained as the unfolding of NN) is a principal filter of the universal cover X~N\widetilde{X}_N of XNX_N. This establishes a bijection between 1-safe Petri nets and finite special cube complexes and provides a combinatorial characterization of trace regular event structures. Using this bijection and techniques from graph theory and geometry (MSO theory of graphs, bounded treewidth, and bounded hyperbolicity) we disprove yet another conjecture by Thiagarajan (from the paper with S. Yang from 2014) that the monadic second order logic of a 1-safe Petri net is decidable if and only if its unfolding is grid-free. Our counterexample is the trace regular event structure E˙Z\mathcal{\dot E}_Z which arises from a virtually special square complex Z˙\dot Z. The domain of E˙Z\mathcal{\dot E}_Z is grid-free (because it is hyperbolic), but the MSO theory of the event structure E˙Z\mathcal{\dot E}_Z is undecidable
    • …
    corecore