482 research outputs found

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Portable Wireless Particulate Sensor System for Continuous Real-Time Environmental Monitoring

    Get PDF
    Airborne particulate matter has been shown to be associated with morbidity and mortality, and may interfere with certain sensitive experiment. Understanding the levels and movements of particulate matter in an enclosed space can lead to a reduction in the impact of this material on health and experimental results. A system of environmental sensors including particulate matter, selected gasses, humidity, temperature, and pressure can be used to assist in tracking air movement, providing real-time mapping of potential contaminants as they move through a space. In this paper we present a system that is capable of sensing these environmental factors, collecting data from multiple dispersed nodes and presenting the aggregated information in real-time. The highly modular system is based on a flexible and scalable framework developed for use in aircraft cabin environments. Use of this framework enables the deployment of a custom suite of sensors with minimal development effort. Individual nodes communicate using a self-organizing mesh network and can be powered from a variety of sources, bringing a high level of flexibility in the arrangement and distribution of the sensor array. Sensor data is transmitted to a coordinator node, which then passes the time-correlated information to a server-hosted database through a choice of wired or wireless networks. Presentation software is used to either monitor the real-time data stream, or to extract records of interest from the database. A reference implementation has been created for the National Institutes of Health consisting of a custom optical particle counter and off-the-shelf sensors for CO2, CO, temperature, humidity, pressure, and acoustic noise. The total environmental sensing system provides continuous, real-time data in a readable format that can be used to analyze ambient air for events of interest

    Wireless Monitoring Systems for Long-Term Reliability Assessment of Bridge Structures based on Compressed Sensing and Data-Driven Interrogation Methods.

    Full text link
    The state of the nation’s highway bridges has garnered significant public attention due to large inventories of aging assets and insufficient funds for repair. Current management methods are based on visual inspections that have many known limitations including reliance on surface evidence of deterioration and subjectivity introduced by trained inspectors. To address the limitations of current inspection practice, structural health monitoring (SHM) systems can be used to provide quantitative measures of structural behavior and an objective basis for condition assessment. SHM systems are intended to be a cost effective monitoring technology that also automates the processing of data to characterize damage and provide decision information to asset managers. Unfortunately, this realization of SHM systems does not currently exist. In order for SHM to be realized as a decision support tool for bridge owners engaged in performance- and risk-based asset management, technological hurdles must still be overcome. This thesis focuses on advancing wireless SHM systems. An innovative wireless monitoring system was designed for permanent deployment on bridges in cold northern climates which pose an added challenge as the potential for solar harvesting is reduced and battery charging is slowed. First, efforts advancing energy efficient usage strategies for WSNs were made. With WSN energy consumption proportional to the amount of data transmitted, data reduction strategies are prioritized. A novel data compression paradigm termed compressed sensing is advanced for embedment in a wireless sensor microcontroller. In addition, fatigue monitoring algorithms are embedded for local data processing leading to dramatic data reductions. In the second part of the thesis, a radical top-down design strategy (in contrast to global vibration strategies) for a monitoring system is explored to target specific damage concerns of bridge owners. Data-driven algorithmic approaches are created for statistical performance characterization of long-term bridge response. Statistical process control and reliability index monitoring are advanced as a scalable and autonomous means of transforming data into information relevant to bridge risk management. Validation of the wireless monitoring system architecture is made using the Telegraph Road Bridge (Monroe, Michigan), a multi-girder short-span highway bridge that represents a major fraction of the U.S. national inventory.PhDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116749/1/ocosean_1.pd

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    A data estimation for failing nodes using fuzzy logic with integrated microcontroller in wireless sensor networks

    Get PDF
    Continuous data transmission in wireless sensor networks (WSNs) is one of the most important characteristics which makes sensors prone to failure. a backup strategy needs to co-exist with the infrastructure of the network to assure that no data is missing. The proposed system relies on a backup strategy of building a history file that stores all collected data from these nodes. This file is used later on by fuzzy logic to estimate missing data in case of failure. An easily programmable microcontroller unit is equipped with a data storage mechanism used as cost worthy storage media for these data. An error in estimation is calculated constantly and used for updating a reference “optimal table” that is used in the estimation of missing data. The error values also assure that the system doesn’t go into an incremental error state. This paper presents a system integrated of optimal data table, microcontroller, and fuzzy logic to estimate missing data of failing sensors. The adapted approach is guided by the minimum error calculated from previously collected data. Experimental findings show that the system has great potentials of continuing to function with a failing node, with very low processing capabilities and storage requirements

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes

    Attack-Tolerant Time-Synchronization in Wireless Sensor Networks

    Get PDF
    Abstract—Achieving secure time-synchronization in wireless sensor networks (WSNs) is a challenging, but very important problem that has not yet been addressed effectively. This pa-per proposes an Attack-tolerant Time-Synchronization Protocol (ATSP) in which sensor nodes cooperate to safeguard the time-synchronization service against malicious attacks. ATSP exploits the high temporal correlation existing among adjacent nodes in a WSN to achieve (1) adaptive management of the profile of each sensor’s normal behavior, (2) distributed, cooperative detection of falsified clock values advertised by attackers or compromised nodes, and (3) significant improvement of syn-chronization accuracy and stability by effectively compensating the clock drifts with the calibrated clock. To reduce the risk of losing time-synchronization due to attacks on the reference node, ATSP utilizes distributed, mutual synchronization and confines the impact of attacks to a local area (where attacks took place). Furthermore, by maintaining an accurate profile of sensors’ normal synchronization behaviors, ATSP detects various critical attacks while incurring only reasonable communication and computation overheads, making ATSP attack-tolerant and ideal for resource-constrained WSNs. I

    Securing Our Future Homes: Smart Home Security Issues and Solutions

    Get PDF
    The Internet of Things, commonly known as IoT, is a new technology transforming businesses, individuals’ daily lives and the operation of entire countries. With more and more devices becoming equipped with IoT technology, smart homes are becoming increasingly popular. The components that make up a smart home are at risk for different types of attacks; therefore, security engineers are developing solutions to current problems and are predicting future types of attacks. This paper will analyze IoT smart home components, explain current security risks, and suggest possible solutions. According to “What is a Smart Home” (n.d.), a smart home is a home that always operates in consideration of security, energy, efficiency and convenience, whether anyone is home or not
    • …
    corecore