133,096 research outputs found

    Reduced order modelling through system identification using stochastic filtering

    Get PDF
    This thesis presents a novel approach to model order reduction, through system identification and using stochastic filtering. Order reduction is a particularly relevant application in the automotive context, as the generation of simplified simulation models for the whole vehicle and its subsystems is an increasingly important aspect of vehicle design. First, grey-box parameter identification of vehicle handling dynamics is explored, including identification of a combined-slip tyre model. This introductory study serves as an intermediate step to review three alternative stochastic filters: identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are here compared for effectiveness, complexity and computational efficiency. Despite being initially merely considered as a stepping stone towards black-box identification, this phase of the PhD generated its own and independent outcomes and might be viewed as a spin-off of the main research topic. All three filters appear suited to system identification and could operate in on-line model predictive controllers or estimators, with varying levels of practicability at different sampling rates. Work on black-box system identification then starts through a non-linear Kalman filter, extended to identify all the parameters of a canonical linear state-space structure. In spite of all model parameters being unknown at the start, the filter is able to evolve parameter estimates to achieve 100%\% accuracy in noise-free test cases, and is also proven to be robust to noise in the measurements. The canonical form ensures that a minimal number of parameters need to be identified and produces additional information in terms of eigenvalues and dominant modes. After extensive testing in the linear domain, state-space is extended into a non-linear framework, with each parameter becoming a non-linear function of system inputs or states. Parameter variation is first constrained by cubic spline polynomials, to provide continuity and maintain relatively small extended state-parameter vectors. This early approach is later simplified, with each element of state-space generated through unconstrained, generic non-linear functions and defined through a number of equally spaced, fixed nodes. Conditioning and convergence are maintained through the definition of additional system outputs, based on specific functions of the non-linear node ordinates. Unlike other methods published in the literature, this new approach does not focus on a specific non-linear structure, but consists in the prescription of a generic and yet simple non-linear state-space model structure, that allows various non-linearities to be identified and approximated solely based on inputs and outputs. The method is illustrated in practice through simple non-linear examples and test cases, which include the identification of a full vehicle model, a highly non-linear brake model and CFD data. These applications show that it is possible to easily expand the order of the system and the complexity of the non-linearities, to achieve higher accuracy while ensuring good parameter conditioning. The approach is completely black-box and requires no physical understanding of the process for successful identification, making it an ideally suited mechanism for order reduction of high order simulation models. In addition to high order simulation data, the developed approach can be used as a tool for conventional system identification and applied to experimental test data as well.</div

    The disturbance model in model based predictive control

    Get PDF
    Model Based Predictive Control (MBPC) is a control methodology which uses a process model on-line in the control computer; this model is used for calculating output predictions and optimizing control actions. The importance of the system model has been generally recognized, but less attention has been paid to the role of the disturbance model. In this paper the importance of the disturbance model is indicated with respect to the EPSAC approach to MBPC. To illustrate this importance, an example of this advanced control methodology applied to a typical mechatronic system is presented, to compare the performances obtained by using different disturbance models. It clearly shows the benefits of using an "intelligent" disturbance model instead of the "default" model generally adopted in practice

    Predictive voltage control of phase-controlled series-parallel resonant converter

    Get PDF

    State-space approach to nonlinear predictive generalized minimum variance control

    Get PDF
    A Nonlinear Predictive Generalized Minimum Variance (NPGMV) control algorithm is introduced for the control of nonlinear discrete-time multivariable systems. The plant model is represented by the combination of a very general nonlinear operator and also a linear subsystem which can be open-loop unstable and is represented in state-space model form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The solution for the control law is derived in the time-domain using a general operator representation of the process. The controller includes an internal model of the nonlinear process but because of the assumed structure of the system the state observer is only required to be linear. In the asymptotic case, where the plant is linear, the controller reduces to a state-space version of the well known GPC controller

    Model Prediction-Based Approach to Fault Tolerant Control with Applications

    Get PDF
    Abstract— Fault-tolerant control (FTC) is an integral component in industrial processes as it enables the system to continue robust operation under some conditions. In this paper, an FTC scheme is proposed for interconnected systems within an integrated design framework to yield a timely monitoring and detection of fault and reconfiguring the controller according to those faults. The unscented Kalman filter (UKF)-based fault detection and diagnosis system is initially run on the main plant and parameter estimation is being done for the local faults. This critical information\ud is shared through information fusion to the main system where the whole system is being decentralized using the overlapping decomposition technique. Using this parameter estimates of decentralized subsystems, a model predictive control (MPC) adjusts its parameters according to the\ud fault scenarios thereby striving to maintain the stability of the system. Experimental results on interconnected continuous time stirred tank reactors (CSTR) with recycle and quadruple tank system indicate that the proposed method is capable to correctly identify various faults, and then controlling the system under some conditions
    • …
    corecore