1,721 research outputs found

    A Policy-Based Management Architecture for Mobile Collaborative Teams

    No full text

    Wide Maritime Area Airborne Surveillance (WIMAAS) WP5 Final Report

    Get PDF
    This report of WIMA2S Work Package 5 (WP5), describes the definition, planning, execution and evaluation of the WIMA2S UAS flight experiment. The main aim of the WIMA2S project consists of developing key technologies to prepare the future for the operational use of Unmanned Aerial Systems (UAS), innovative mission aircraft and space assets, as key building blocks integrated in a System of Systems approach. WIMA2S takes into account the current operational user requirements and the needs to develop strong European capabilities in the fields of maritime policy, integrated border management and security R&T, identified as top priorities by the EU. The main objectives of WP5 comprised the definition and performance of a UAS flight experiment based on one of the maritime surveillance scenarios elaborated in task WP2.2, the illustration of a complete information flow of the planning of a multi-sensor/multi-platform surveillance mission and the remote control concept for mission system. The UAS flight experiment has successfully illustrated the remote control of a maritime surveillance system using different scenarios derived from the end-users requirements/needs identified in WP2. The experiment was carried out at El Arenosillo airbase, in Huelva, Spain in close cooperation with Guardia Civil, INTA (Instituto Nacional de Técnica Aeroespacial) and ISDEFE (Ingeniería de Sistemas para la Defensa de España). The UAS flight experiment comprised the following sequence of events. The Command and Control Centre at INTA airbase tasked the UAS for a routine maritime surveillance flight. During the UAS flight, Guardia Civil deployed a small rubber boat. The boat was detected by the Huelva SIVE station through its coastal radar and camera. The Guardia Civil classified the non-identified target as a potential non-cooperative target and tasked the UAS for an investigation flight. The UAS flew to the area where the non-cooperative target was detected by the SIVE station and detected and classified the non-identified target as a small rubber boat (Tiger type) and sent the video of the target to the Command and Control Centre via Satellite communications. The UAS tracked the target for a while to collect additional information and try to identify it. A complete information flow of the planning of a multi-sensor/multi-platform surveillance mission has also been illustrated. All WP5 objectives have been fully achieved according to the planned.JRC.G.4-Maritime affair

    ISME research trends: Marine robotics for emergencies at sea

    Get PDF
    One of the main recent research trends of the Italian Interuniversity Research Center on Integrated Systems for Marine Environment (ISME) is the use of marine cooperative teams of autonomous robots within the fields of security, prevention and management of emergencies at sea. Such fields are of worldwide interest for obvious reasons, but they have recently gained relevance in the current historical moment, especially in the Mediterranean sea. Within such a dramatic context, the use of robots could certainly provide helpful for the execution of patrolling and detection, identification and classification of interesting elements, such as people to be saved or oil leaks, as well as the successive execution of the intervention/rescue strategy. This paper presents the Key Enabling Technologies as well as some Key Research Areas that are being currently investigated by ISME toward the ambitious objective of employing robotic solutions for the management of emergencies at sea

    Live-Fly, Large-Scale Field Experimentation for Large Numbers of Fixed-Wing UAVs

    Get PDF
    In this paper, we present extensive advances in live-fly field experimentation capabilities of large numbers of fixed-wing aerial robots, and highlight both the enabling technologies as well as the challenges addressed in such large-scale flight operations. We showcase results from recent field tests, including the autonomous launch, flight, and landing of 50 UAVs, which illuminate numerous operational lessons learned and generate rich multi-UAV datasets. We detail the design and open architecture of the testbed, which intentionally leverages low-cost and open-source components, aimed at promoting continued advances and alignment of multi-robot systems research and practice

    Extending the tactical horizon networking aircraft to enable persistent surveillance and target development for SOF

    Get PDF
    The NPS Tactical Horizon Extension Project objective is to define and demonstrate a concept by which task force-level commanders and below can obtain a persistent, over-the-horizon surveillance capability for the purpose of target development and other missions without tasking national or theater-level assets. Our goal is to increase the ISR capacity of units who normally would not rate the priority to task a Predator, Global Hawk, or U-2. There are two guiding tenets in developing this concept. First, the equipment and its control should be organic to the SOF unit or task force. Second, utilizing this capability should not require the soldier to carry any additional equipment into the field. Initial research led us to the idea of using networked unmanned aerial systems (UAS's) to generate an over-the-horizon surveillance capability for SOF. We demonstrated the concept by forming a network comprised of a forward ground team, an inexpensive, test-bed UAS equipped with an off-the-shelf video camera, a manned aircraft, and a tactical operations center (TOC). We attained connectivity through an ITT Mesh structure at 2.4 GHz, amplified to 1W. Researchers were from the Defense Analysis, Mechanical and Astronautical Engineering, and Information Sciences Departments. We conducted successful experiments through the USSOCOM-NPS Cooperative Field Experimentation Program.http://archive.org/details/extendingtactica109452582Outstanding ThesisApproved for public release; distribution is unlimited

    Algorithms for multi-robot systems on the cooperative exploration & last-mile delivery problems

    Get PDF
    La aparición de los vehículos aéreos no tripulados (UAVs) y de los vehículos terrestres no tripulados (UGVs) ha llevado a la comunidad científica a enfrentarse a problemas ideando paradigmas de cooperación con UGVs y UAVs. Sin embargo, no suele ser trivial determinar si la cooperación entre UGVs y UAVs es adecuada para un determinado problema. Por esta razón, en esta tesis, investigamos un paradigma particular de cooperación UGV-UAV en dos problemas de la literatura, y proponemos un controlador autónomo para probarlo en escenarios simulados. Primero, formulamos un problema particular de exploración cooperativa que consiste en alcanzar un conjunto de puntos de destino en un área de exploración a gran escala. Este problema define al UGV como una estación de carga móvil para transportar el UAV a través de diferentes lugares desde donde el UAV puede alcanzar los puntos de destino. Por consiguiente, proponemos el algoritmo TERRA para resolverlo. Este algoritmo se destaca por dividir el problema de exploración en cinco subproblemas, en los que cada subproblema se resuelve en una etapa particular del algoritmo. Debido a la explosión de la entrega de paquetes en las empresas de comercio electrónico, formulamos también una generalización del conocido problema de la entrega en la última milla. En este caso, el UGV actúa como una estación de carga móvil que transporta a los paquetes y a los UAVs, y estos se encargan de entregarlos. De esta manera, seguimos la estrategia de división descrita por TERRA, y proponemos el algoritmo COURIER. Este algoritmo replica las cuatro primeras etapas de TERRA, pero construye una nueva quinta etapa para producir un plan de tareas que resuelva el problema. Para evaluar el paradigma de cooperación UGV-UAV en escenarios simulados, proponemos el controlador autónomo ARIES. Este controlador sigue un enfoque jerárquico descentralizado de líder-seguidor para integrar cualquier paradigma de cooperación de manera distribuida. Ambos algoritmos han sido caracterizados para identificar los aspectos relevantes del paradigma de cooperación en los problemas relacionados. Además, ambos demuestran un gran rendimiento del paradigma de cooperación en tales problemas, y al igual que el controlador autónomo, revelan un gran potencial para futuras aplicaciones reales.The emergence of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has conducted the research community to face historical complex problems by devising UGV-UAV cooperation paradigms. However, it is usually not a trivial task to determine whether or not a UGV-UAV cooperation is suitable for a particular problem. For this reason, in this thesis, we investigate a particular UGV-UAV cooperation paradigm over two problems in the literature, and we propose an autonomous controller to test it on simulated scenarios. Driven by the planetary exploration, we formulate a particular cooperative exploration problem consisting of reaching a set of target points in a large-scale exploration area. This problem defines the UGV as a moving charging station to carry the UAV through different locations from where the UAV can reach the target points. Consequently, we propose the cooperaTive ExploRation Routing Algorithm (TERRA) to solve it. This algorithm stands out for splitting up the exploration problem into five sub-problems, in which each sub-problem is solved in a particular stage of the algorithm. In the same way, driven by the explosion of parcels delivery in e-commerce companies, we formulate a generalization of the well-known last-mile delivery problem. This generalization defines the same UGV’s and UAV’s rol as the exploration problem. That is, the UGV acts as a moving charging station which carries the parcels along several UAVs to deliver them. In this way, we follow the split strategy depicted by TERRA to propose the COoperative Unmanned deliveRIEs planning algoRithm (COURIER). This algorithm replicates the first four TERRA’s stages, but it builds a new fifth stage to produce a task plan solving the problem. In order to evaluate the UGV-UAV cooperation paradigm on simulated scenarios, we propose the Autonomous coopeRatIve Execution System (ARIES). This controller follows a hierarchical decentralized leader-follower approach to integrate any cooperation paradigm in a distributed manner. Both algorithms have been characterized to identify the relevant aspects of the cooperation paradigm in the related problems. Also, both of them demonstrate a great performance of the cooperation paradigm in such problems, and as well as the autonomous controller, reveal a great potential for future real applications

    Self-management Framework for Mobile Autonomous Systems

    Get PDF
    The advent of mobile and ubiquitous systems has enabled the development of autonomous systems such as wireless-sensors for environmental data collection and teams of collaborating Unmanned Autonomous Vehicles (UAVs) used in missions unsuitable for humans. However, with these range of new application domains comes a new challenge – enabling self-management in mobile autonomous systems. The primary challenge in using autonomous systems for real-life missions is shifting the burden of management from humans to these systems themselves without loss of the ability to adapt to failures, changes in context, and changing user requirements. Autonomous systems have to be able to manage themselves individually as well as to form self-managing teams that are able to recover or adapt to failures, protect themselves from attacks and optimise performance. This thesis proposes a novel distributed policy-based framework that enables autonomous systems to perform self management individually and as a team. The framework allows missions to be specified in terms of roles in an adaptable and reusable way, enables dynamic and secure team formation with a utility-based approach for optimal role assignment, caters for communication link maintenance among team members and recovery from failure. Adaptive management is achieved by employing an architecture that uses policy-based techniques to allow dynamic modification of the management strategy relating to resources, role behaviour, team and communications management, without reloading the basic software within the system. Evaluation of the framework shows that it is scalable with respect to the number of roles, and consequently the number of autonomous systems participating in the mission. It is also shown to be optimal with respect to role assignments, and robust to intermittent communication link disconnections and permanent team-member failures. The prototype implementation was tested on mobile robots as a proof-ofconcept demonstration

    Objectively Optimized Earth Observing Systems

    Get PDF

    Cooperative Air and Ground Survaillance

    Get PDF
    Unmanned aerial vehicles (UAVs) can be used to cover large areas searching for targets. However, sensors on UAVs are typically limited in their accuracy of localization of targets on the ground. On the other hand, unmanned ground vehicles (UGVs) can be deployed to accurately locate ground targets, but they have the disadvantage of not being able to move rapidly or see through such obstacles as buildings or fences. In this article, we describe how we can exploit this synergy by creating a seamless network of UAVs and UGVs. The keys to this are our framework and algorithms for search and localization, which are easily scalable to large numbers of UAVs and UGVs and are transparent to the specificity of individual platforms. We describe our experimental testbed, the framework and algorithms, and some results
    corecore