9 research outputs found

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    An experimental study of reduced-voltage operation in modern FPGAs for neural network acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect ofenvironmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W ) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.The work done for this paper was partially supported by a HiPEAC Collaboration Grant funded by the H2020 HiPEAC Project under grant agreement No. 779656. The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the LEGaTO Project (www.legato-project.eu), grant agreement No. 780681.Peer ReviewedPostprint (author's final draft

    eCNN: A Block-Based and Highly-Parallel CNN Accelerator for Edge Inference

    Full text link
    Convolutional neural networks (CNNs) have recently demonstrated superior quality for computational imaging applications. Therefore, they have great potential to revolutionize the image pipelines on cameras and displays. However, it is difficult for conventional CNN accelerators to support ultra-high-resolution videos at the edge due to their considerable DRAM bandwidth and power consumption. Therefore, finding a further memory- and computation-efficient microarchitecture is crucial to speed up this coming revolution. In this paper, we approach this goal by considering the inference flow, network model, instruction set, and processor design jointly to optimize hardware performance and image quality. We apply a block-based inference flow which can eliminate all the DRAM bandwidth for feature maps and accordingly propose a hardware-oriented network model, ERNet, to optimize image quality based on hardware constraints. Then we devise a coarse-grained instruction set architecture, FBISA, to support power-hungry convolution by massive parallelism. Finally,we implement an embedded processor---eCNN---which accommodates to ERNet and FBISA with a flexible processing architecture. Layout results show that it can support high-quality ERNets for super-resolution and denoising at up to 4K Ultra-HD 30 fps while using only DDR-400 and consuming 6.94W on average. By comparison, the state-of-the-art Diffy uses dual-channel DDR3-2133 and consumes 54.3W to support lower-quality VDSR at Full HD 30 fps. Lastly, we will also present application examples of high-performance style transfer and object recognition to demonstrate the flexibility of eCNN.Comment: 14 pages; appearing in IEEE/ACM International Symposium on Microarchitecture (MICRO), 201

    REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System

    Get PDF
    In this work, we perform analysis of detection and counting of cars using a low-power IBM TrueNorth Neurosynaptic System. For our evaluation we looked at a publicly-available dataset that has overhead imagery of cars with context present in the image. The trained neural network for image analysis was deployed on the NS16e system using IBM's EEDN training framework. Through multiple experiments we identify the architectural bottlenecks present in TrueNorth system that does not let us deploy large neural network structures. Following these experiments we propose changes to CNN model to circumvent these architectural bottlenecks. The results of these evaluations have been compared with caffe-based implementations of standard neural networks that were deployed on a Titan-X GPU. Results showed that TrueNorth can detect cars from the dataset with 97.60% accuracy and can be used to accurately count the number of cars in the image with 69.04% accuracy. The car detection accuracy and car count (–/+ 2 error margin) accuracy are comparable to high-precision neural networks like AlexNet, GoogLeNet, and ResCeption, but show a manifold improvement in power consumption

    Ultra low-power, high-performance accelerator for speech recognition

    Get PDF
    Automatic Speech Recognition (ASR) is undoubtedly one of the most important and interesting applications in the cutting-edge era of Deep-learning deployment, especially in the mobile segment. Fast and accurate ASR comes at a high energy cost, requiring huge memory storage and computational power, which is not affordable for the tiny power budget of mobile devices. Hardware acceleration can reduce power consumption of ASR systems as well as reducing its memory pressure, while delivering high-performance. In this thesis, we present a customized accelerator for large-vocabulary, speaker-independent, continuous speech recognition. A state-of-the-art ASR system consists of two major components: acoustic-scoring using DNN and speech-graph decoding using Viterbi search. As the first step, we focus on the Viterbi search algorithm, that represents the main bottleneck in the ASR system. The accelerator includes some innovative techniques to improve the memory subsystem, which is the main bottleneck for performance and power, such as a prefetching scheme and a novel bandwidth saving technique tailored to the needs of ASR. Furthermore, as the speech graph is vast taking more than 1-Gigabyte memory space, we propose to change its representation by partitioning it into several sub-graphs and perform an on-the-fly composition during the Viterbi run-time. This approach together with some simple yet efficient compression techniques result in 31x memory footprint reduction, providing 155x real-time speedup and orders of magnitude power and energy saving compared to CPUs and GPUs. In the next step, we propose a novel hardware-based ASR system that effectively integrates a DNN accelerator for the pruned/quantized models with the Viterbi accelerator. We show that, when either pruning or quantizing the DNN model used for acoustic scoring, ASR accuracy is maintained but the execution time of the ASR system is increased by 33%. Although pruning and quantization improves the efficiency of the DNN, they result in a huge increase of activity in the Viterbi search since the output scores of the pruned model are less reliable. In order to avoid the aforementioned increase in Viterbi search workload, our system loosely selects the N-best hypotheses at every time step, exploring only the N most likely paths. Our final solution manages to efficiently combine both DNN and Viterbi accelerators using all their optimizations, delivering 222x real-time ASR with a small power budget of 1.26 Watt, small memory footprint of 41 MB, and a peak memory bandwidth of 381 MB/s, being amenable for low-power mobile platforms.Los sistemas de reconocimiento automático del habla (ASR por sus siglas en inglés, Automatic Speech Recognition) son sin lugar a dudas una de las aplicaciones más relevantes en el área emergente de aprendizaje profundo (Deep Learning), specialmente en el segmento de los dispositivos móviles. Realizar el reconocimiento del habla de forma rápida y precisa tiene un elevado coste en energía, requiere de gran capacidad de memoria y de cómputo, lo cual no es deseable en sistemas móviles que tienen severas restricciones de consumo energético y disipación de potencia. El uso de arquitecturas específicas en forma de aceleradores hardware permite reducir el consumo energético de los sistemas de reconocimiento del habla, al tiempo que mejora el rendimiento y reduce la presión en el sistema de memoria. En esta tesis presentamos un acelerador específicamente diseñado para sistemas de reconocimiento del habla de gran vocabulario, independientes del orador y que funcionan en tiempo real. Un sistema de reconocimiento del habla estado del arte consiste principalmente en dos componentes: el modelo acústico basado en una red neuronal profunda (DNN, Deep Neural Network) y la búsqueda de Viterbi basada en un grafo que representa el lenguaje. Como primer objetivo nos centramos en la búsqueda de Viterbi, ya que representa el principal cuello de botella en los sistemas ASR. El acelerador para el algoritmo de Viterbi incluye técnicas innovadoras para mejorar el sistema de memoria, que es el mayor cuello de botella en rendimiento y energía, incluyendo técnicas de pre-búsqueda y una nueva técnica de ahorro de ancho de banda a memoria principal específicamente diseñada para sistemas ASR. Además, como el grafo que representa el lenguaje requiere de gran capacidad de almacenamiento en memoria (más de 1 GB), proponemos cambiar su representación y dividirlo en distintos grafos que se componen en tiempo de ejecución durante la búsqueda de Viterbi. De esta forma conseguimos reducir el almacenamiento en memoria principal en un factor de 31x, alcanzar un rendimiento 155 veces superior a tiempo real y reducir el consumo energético y la disipación de potencia en varios órdenes de magnitud comparado con las CPUs y las GPUs. En el siguiente paso, proponemos un novedoso sistema hardware para reconocimiento del habla que integra de forma efectiva un acelerador para DNNs podadas y cuantizadas con el acelerador de Viterbi. Nuestros resultados muestran que podar y/o cuantizar el DNN para el modelo acústico permite mantener la precisión pero causa un incremento en el tiempo de ejecución del sistema completo de hasta el 33%. Aunque podar/cuantizar mejora la eficiencia del DNN, éstas técnicas producen un gran incremento en la carga de trabajo de la búsqueda de Viterbi ya que las probabilidades calculadas por el DNN son menos fiables, es decir, se reduce la confianza en las predicciones del modelo acústico. Con el fin de evitar un incremento inaceptable en la carga de trabajo de la búsqueda de Viterbi, nuestro sistema restringe la búsqueda a las N hipótesis más probables en cada paso de la búsqueda. Nuestra solución permite combinar de forma efectiva un acelerador de DNNs con un acelerador de Viterbi incluyendo todas las optimizaciones de poda/cuantización. Nuestro resultados experimentales muestran que dicho sistema alcanza un rendimiento 222 veces superior a tiempo real con una disipación de potencia de 1.26 vatios, unos requisitos de memoria modestos de 41 MB y un uso de ancho de banda a memoria principal de, como máximo, 381 MB/s, ofreciendo una solución adecuada para dispositivos móviles

    Ultra low-power, high-performance accelerator for speech recognition

    Get PDF
    Automatic Speech Recognition (ASR) is undoubtedly one of the most important and interesting applications in the cutting-edge era of Deep-learning deployment, especially in the mobile segment. Fast and accurate ASR comes at a high energy cost, requiring huge memory storage and computational power, which is not affordable for the tiny power budget of mobile devices. Hardware acceleration can reduce power consumption of ASR systems as well as reducing its memory pressure, while delivering high-performance. In this thesis, we present a customized accelerator for large-vocabulary, speaker-independent, continuous speech recognition. A state-of-the-art ASR system consists of two major components: acoustic-scoring using DNN and speech-graph decoding using Viterbi search. As the first step, we focus on the Viterbi search algorithm, that represents the main bottleneck in the ASR system. The accelerator includes some innovative techniques to improve the memory subsystem, which is the main bottleneck for performance and power, such as a prefetching scheme and a novel bandwidth saving technique tailored to the needs of ASR. Furthermore, as the speech graph is vast taking more than 1-Gigabyte memory space, we propose to change its representation by partitioning it into several sub-graphs and perform an on-the-fly composition during the Viterbi run-time. This approach together with some simple yet efficient compression techniques result in 31x memory footprint reduction, providing 155x real-time speedup and orders of magnitude power and energy saving compared to CPUs and GPUs. In the next step, we propose a novel hardware-based ASR system that effectively integrates a DNN accelerator for the pruned/quantized models with the Viterbi accelerator. We show that, when either pruning or quantizing the DNN model used for acoustic scoring, ASR accuracy is maintained but the execution time of the ASR system is increased by 33%. Although pruning and quantization improves the efficiency of the DNN, they result in a huge increase of activity in the Viterbi search since the output scores of the pruned model are less reliable. In order to avoid the aforementioned increase in Viterbi search workload, our system loosely selects the N-best hypotheses at every time step, exploring only the N most likely paths. Our final solution manages to efficiently combine both DNN and Viterbi accelerators using all their optimizations, delivering 222x real-time ASR with a small power budget of 1.26 Watt, small memory footprint of 41 MB, and a peak memory bandwidth of 381 MB/s, being amenable for low-power mobile platforms.Los sistemas de reconocimiento automático del habla (ASR por sus siglas en inglés, Automatic Speech Recognition) son sin lugar a dudas una de las aplicaciones más relevantes en el área emergente de aprendizaje profundo (Deep Learning), specialmente en el segmento de los dispositivos móviles. Realizar el reconocimiento del habla de forma rápida y precisa tiene un elevado coste en energía, requiere de gran capacidad de memoria y de cómputo, lo cual no es deseable en sistemas móviles que tienen severas restricciones de consumo energético y disipación de potencia. El uso de arquitecturas específicas en forma de aceleradores hardware permite reducir el consumo energético de los sistemas de reconocimiento del habla, al tiempo que mejora el rendimiento y reduce la presión en el sistema de memoria. En esta tesis presentamos un acelerador específicamente diseñado para sistemas de reconocimiento del habla de gran vocabulario, independientes del orador y que funcionan en tiempo real. Un sistema de reconocimiento del habla estado del arte consiste principalmente en dos componentes: el modelo acústico basado en una red neuronal profunda (DNN, Deep Neural Network) y la búsqueda de Viterbi basada en un grafo que representa el lenguaje. Como primer objetivo nos centramos en la búsqueda de Viterbi, ya que representa el principal cuello de botella en los sistemas ASR. El acelerador para el algoritmo de Viterbi incluye técnicas innovadoras para mejorar el sistema de memoria, que es el mayor cuello de botella en rendimiento y energía, incluyendo técnicas de pre-búsqueda y una nueva técnica de ahorro de ancho de banda a memoria principal específicamente diseñada para sistemas ASR. Además, como el grafo que representa el lenguaje requiere de gran capacidad de almacenamiento en memoria (más de 1 GB), proponemos cambiar su representación y dividirlo en distintos grafos que se componen en tiempo de ejecución durante la búsqueda de Viterbi. De esta forma conseguimos reducir el almacenamiento en memoria principal en un factor de 31x, alcanzar un rendimiento 155 veces superior a tiempo real y reducir el consumo energético y la disipación de potencia en varios órdenes de magnitud comparado con las CPUs y las GPUs. En el siguiente paso, proponemos un novedoso sistema hardware para reconocimiento del habla que integra de forma efectiva un acelerador para DNNs podadas y cuantizadas con el acelerador de Viterbi. Nuestros resultados muestran que podar y/o cuantizar el DNN para el modelo acústico permite mantener la precisión pero causa un incremento en el tiempo de ejecución del sistema completo de hasta el 33%. Aunque podar/cuantizar mejora la eficiencia del DNN, éstas técnicas producen un gran incremento en la carga de trabajo de la búsqueda de Viterbi ya que las probabilidades calculadas por el DNN son menos fiables, es decir, se reduce la confianza en las predicciones del modelo acústico. Con el fin de evitar un incremento inaceptable en la carga de trabajo de la búsqueda de Viterbi, nuestro sistema restringe la búsqueda a las N hipótesis más probables en cada paso de la búsqueda. Nuestra solución permite combinar de forma efectiva un acelerador de DNNs con un acelerador de Viterbi incluyendo todas las optimizaciones de poda/cuantización. Nuestro resultados experimentales muestran que dicho sistema alcanza un rendimiento 222 veces superior a tiempo real con una disipación de potencia de 1.26 vatios, unos requisitos de memoria modestos de 41 MB y un uso de ancho de banda a memoria principal de, como máximo, 381 MB/s, ofreciendo una solución adecuada para dispositivos móviles.Postprint (published version

    The dark side of DNN pruning

    No full text
    DNN pruning has been recently proposed as an effective technique to improve the energy-efficiency of DNN-based solutions. It is claimed that by removing unimportant or redundant connections, the pruned DNN delivers higher performance and energy-efficiency with negligible impact on accuracy. However, DNN pruning has an important side effect: it May reduce the confidence of DNN predictions. We show that, although top-1 accuracy May be maintained with DNN pruning, the likelihood of the class in the top-1 is significantly reduced when using the pruned models. For applications such as Automatic Speech Recognition (ASR), where the DNN scores are consumed by a successive stage, the workload of this stage can be dramatically increased due to the loss of confidence in the DNN. An ASR system consists of a DNN for computing acoustic scores, followed by a Viterbi beam search to find the most likely sequence of words. We show that, when pruning the DNN model used for acoustic scoring, the Word Error Rate (WER) is maintained but the execution time of the ASR system is increased by 33%. Although pruning improves the efficiency of the DNN, it results in a huge increase of activity in the Viterbi search since the output scores of the pruned model are less reliable. Based on this observation, we propose a novel hardware-based ASR system that effectively integrates a DNN accelerator for pruned models with a Viterbi accelerator. In order to avoid the aforementioned increase in Viterbi search workload, our system loosely selects the N-best hypotheses at every time step, exploring only the N most likely paths. To avoid an expensive sort of the hypotheses based on their likelihoods, our accelerator employs a set-associative hash table to keep track of the best paths mapped to each set. In practice, this solution approaches the selection of N-best, but it requires much simpler hardware. Our approach manages to efficiently combine both DNN pruning and Viterbi search, and achieves 9x energy savings and 4.2x speedup with respect to the state-of-the-art ASR solutions.Peer ReviewedPostprint (published version
    corecore