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In this work, we perform analysis of detection and counting of cars using a low-power IBM

TrueNorth Neurosynaptic System. For our evaluation we looked at a publicly-available

dataset that has overhead imagery of cars with context present in the image. The trained

neural network for image analysis was deployed on the NS16e system using IBM’s

EEDN training framework. Through multiple experiments we identify the architectural

bottlenecks present in TrueNorth system that does not let us deploy large neural

network structures. Following these experiments we propose changes to CNN model

to circumvent these architectural bottlenecks. The results of these evaluations have

been compared with caffe-based implementations of standard neural networks that were

deployed on a Titan-X GPU. Results showed that TrueNorth can detect cars from the

dataset with 97.60% accuracy and can be used to accurately count the number of cars

in the image with 69.04% accuracy. The car detection accuracy and car count (–/+ 2

error margin) accuracy are comparable to high-precision neural networks like AlexNet,

GoogLeNet, and ResCeption, but show a manifold improvement in power consumption.

Keywords: deep learning, convolutional neural network, IBM TrueNorth Neurosynaptic System, neuromorphic

computing, spiking neural network, aerial image analysis

1. INTRODUCTION

Neural networks today are achieving state-of-the-art performance in competitions across a range
of fields. Recent advances in deep learning (LeCun et al., 2015) have motivated the development
of neural hardware substrates that are tailored to implementing deep networks with extremely
low power and efficiency for a variety of embedded systems applications. Hardware that mimics
the computational capabilities of a human brain through spiking neural networks has been
shown to be not only extremely energy-efficient, but also capable of scaling up to large neural
networks. Examples include the IBM TrueNorth Neurosynaptic System (Merolla et al., 2014),
SpiNNaker (Furber et al., 2014), and the BrainScaleS project (Schemmel et al., 2008), all of
which mimic the computational behavior of spiking neurons and can also be used to deploy deep
neural networks.

One of the major challenges that these spiking neural network-based platforms faced was
deploying convolutional neural networks (CNNs) on spiking neurons. This issue was addressed
in the recent work from Cao et al. (2015) and Esser et al. (2016), and Eta Compute (Moore,
2018). The authors in Esser et al. (2016) have proposed an algorithm named energy-efficient deep
neuromorphic networks (EEDN) to map CNNs on TrueNorth. EEDN networks achieved at or
near state of the art accuracy when compared with traditional 32-bit precision neural networks
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on standard benchmarks and they operated at a much higher

throughput (Frames Per Second) per watt. These promising

results show potential for deploying spiking neural network

based platforms for a variety of applications where battery life
and power consumption are primary concerns. Such applications
include video surveillance, UAV surveillance, aerial image
analysis, etc.

Prior work such as Esser et al. (2015, 2016), Wen et al. (2016),

Rueckauer et al. (2017), and Sengupta et al. (2018) have discussed

about how to efficiently train neural network models so that
the inference neural network can be easily mapped onto low

precision hardware such as TrueNorth without any loss in output

accuracy. But these prior works have only done the evaluations

against small object recognition datasets such as MNIST, CIFAR-

10, and CIFAR-100.
Prior work never listed out the challenges that might occur

when mapping large CNN or DNN structures on TrueNorth
for bigger datasets with large annotated images. For bigger
datasets resource limitations and the CNN model limitations
that TrueNorth can support start becoming a bottleneck. In
this paper we evaluate the challenges related to deployment
of EEDN trained neural network on TrueNorth hardware.
Discussions that have been reported in this article are meant to
complement the opportunities and challenges for spiking neural
network hardware that have been reported in Pfeiffer and Pfeil
(2018). The evaluations have been done against publicly-available
dataset of overhead aerial images of cars that was proposed
by Mundhenk et al. (2016) (Henceforth referred as COWC
dataset). Examples from COWC dataset have been shown in
Figure 1. As the neural network structures start becoming more
complex, we have to keep in mind limited number of TrueNorth
(Henceforth referred as TN) cores that are available and design
a neural network structure so that we can obtain benefits by
using hardware substrates more judiciously. This paper presents
design decisions that a developer would have to make to design
a neural network for the TrueNorth NS16e system (Sawada

FIGURE 1 | Sample images from COWC dataset (Mundhenk et al., 2016). Images are 192-by-192 pixels. For detection, (A,B), the model’s goal is to detect whether a

car is present in the center 48-by-48 pixels or not. Even though there are cars present in (B), the label has been set to false because there is no car in the center

48-by-48 pixels of the image. For the counting task, (C), the goal is to count the exact number of cars present in an image. The example shown in the figure has the

label value “13,” since there are 13 cars in the image.

et al., 2016) that is shown in Figure 2A. The goal of this work
is to present how knowledge of hardware architecture affects
the decisions and parameter choices made while training and
deploying neural networks on TrueNorth. These observations
can assist us in maximizing the benefits of TrueNorth’s available
hardware computational resources.

Contributions of the research proposed in this paper are:

• Evaluate TrueNorth deployed CNNs for counting and
detection tasks on COWC dataset (Mundhenk et al., 2016).

• Resources consumed by AlexNet (Krizhevsky et al., 2012) and
VGG-16 (Simonyan and Zisserman, 2014) neural networks
when deployed on NS16e hardware (Sawada et al., 2016).
Identifying the architectural bottlenecks of these CNN
structures and proposed changes to the CNN structure so that
it could be deployed on NS16e hardware.

• Analysis of change in resource consumption and output
accuracy based on the prior works such as, network-in-
network structure (Lin et al., 2013), MobileNets (Howard
et al., 2017), and YOLO (Redmon and Farhadi, 2016) neural
network models.

• Discussions presented in section 4 outline the opportunities
that are present in SNN hardware that can address the
challenges present in TrueNorth architecture and EEDN
training algorithm.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Cars Overhead With Context Dataset
Paraphrasing the work presented by Mundhenk et al. (2016), the
cars overhead with context (COWC) data set is a large set of
annotated overhead aerial images that contain cars. This dataset
is useful for training Deep Neural Networks (DNNs) so that they
are able to perform area based surveillance by detecting and
counting cars that are present in the image. This dataset could
be potentially used to keep track of volume of cars by deploying
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FIGURE 2 | (A) NS16e hardware system that was developed by IBM (Image from Shah, 2016). (B) Single neurosynaptic core which forms the computational block of

the TrueNorth chips with the details presented in Cassidy et al. (2013) and Nere (2013).

the trained DNNs on unmanned aerial vehicles or drones. The
goal of this dataset is to allowDNNs to determine the relationship
between context and appearance such that something that looks
very much like a car is detected even if it is in an unusual
place. Unlike datasets such as MNIST, CIFAR-10, and CIFAR-
100, where the maximum image size for which the neural
network models were trained was 64-by-64 pixels (Esser et al.,
2015, 2016), the COWC dataset consists of annotated images
of size 192-by-192 pixels and this dataset requires us to solve a
regression problem (counting the number of cars present in the
entire image).

Figure 1 shows some of the sample images from the dataset.
The goal of our work is to map this problem onto a low-power
neural network architecture such as TrueNorth and evaluate its
performance. The images in this dataset cannot be cropped out
for training because the labels have been set for the entire image.
For example, if the image shown in Figure 1C was cropped out
for training, then the label “13” won’t be correct, because the
cropped out piece of image won’t have the same number of cars
as the label.

2.1.2. NS16e System
Summarizing the details of TrueNorth, as presented in Sawada
et al. (2016), a single chip consists of 4,096 neurosynaptic
cores (as shown in Figure 2B), tiled as a 64×64 array. Neurons
integrate incoming spikes weighted by the synaptic strength
and when a neuron membrane potential integrates beyond
its threshold, it fires a spike, transmitting it to a target
axon on any core in the network. In the same clock tick
when neuron fired, the neuron would reset its membrane
potential. Truenorth chips can be scaled beyond a single chip
using SerDes links. As a result it is relatively simple to tile
TrueNorth chips in a two-dimensional array, enabling the NS16e
scale-up system.

Figure 3 shows a high-level setup for NS16e system and,
the flow of computations happens between the off-chip system
and NS16e hardware. In TrueNorth (as shown in Figure 3A)
image binarization (data transduction) happens outside the TN
chips, that is, in the CPU/FPGA hybrid system. 1 When an
RGB image is fed to the TrueNorth system, 2 based on the
learned convolutional layer weights and output feature count of
the transduction layer, a corresponding number of binary images
is produced. 3 These binary images are then sent to TN chips
and on these TN chips these image features are fanned out using
splitters (Figure 3B) so that multiple filter weights can operate in
parallel on the same set of binary image features.

2.2. CNN Design Decisions
In this section we present design decisions for modifying
standard neural network structures for NS16e hardware
platform. First we will understand different set of computations
that happen in standard neural network architectures, followed
by what are the resource or architectural bottlenecks that we
face when mapping these standard neural network architectures.
Once we have understood the challenges and the architectural
bottlenecks, we will look at how these issues can be addressed by
proposing different neural network structure design.

2.2.1. Formulate Regression Problem as a

Classification Problem
To maintain high throughput, TrueNorth performs operations
in stream of single bits. A trained TrueNorth network will have
ternary weights {–1,0,1} and binary activation {0,1}; as a result,
algorithms that require us to solve regression problems, i.e.,
infer continuous output values, such as the car count in the
image, present a challenge. Being able to estimate high precision
values by using binary activation functions is a hard problem.
In the context of TrueNorth and spiking neural networks, prior
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FIGURE 3 | The figure describes the NS16e system setup. (A) NS16e system consists of three stages. The hybrid CPU/FPGA system performs data pre/post

processing and image binarization. The computed spikes are later sent to TN chips on which the CNN has been deployed (B) An image of how splitters are used on

TrueNorth for increasing a neuron’s fan-out.

work such as Diehl et al. (2016) and Shukla et al. (2017,
2018) have represented regression output values using rate
coding scheme, where the expected value of spike train over a
time window represented the value. But with this scheme the
operating frequency of hardware starts becoming the bottleneck.
To match the biological clock rate TrueNorth operates at 1 KHz
frequency (Akopyan et al., 2015); as a result, if the problem
requires us to estimate continuous numbers, we would have to
count the number of spikes received over a window of time
to estimate the output and this ends up slowing down the
computation time. We can circumvent this issue by recasting
the regression problem as a classification problem with estimated
discrete values as outputs. This approach might require more
hardware neurons for a large number of output bins. For the
dataset that we are studying, the car counting problem would
predict from 65 classes. As noted in Mundhenk et al. (2016), the
number of cars in each image patch lie in the interval between
0 to 64.

2.2.2. Case Study: Map AlexNet Neural Network

Model Onto TrueNorth
We will start off the discussion by mapping AlexNet neural
network model onto TrueNorth NS16e hardware. The accuracy
and hardware analysis of AlexNet-TrueNorth model has been
presented in Table 1.

Figure 4A shows the neural network model of a standard
AlexNet structure and Figure 5A shows the modified AlexNet
neural network model for TrueNorth ns16e hardware. The

TABLE 1 | Convolutional neural network structure analysis and testing accuracy.

Model name Detection

accuracy

(in %)

Counting

accuracy

(in %)

Chips required

for first 3 TN

CNN layers

AlexNet (Figure 4A) 97.62 67.97 N/A

AlexNet modified (Figure 5A) 89.98 48.82 3.19

VGG-16 modified (1) (Figure 8A) 96.09 67.96 8.67

VGG-16 modified (2) (Figure 8B) 97.25 67.82 8.67

Deeper CNN structure 1

(Figure 11A)

97.52 68.21 11.16

Deeper CNN structure 2

(Figure 11B)

97.60 69.04 11.16

difference between the neural network is highlighted using the
rectangular box as described in Figures 4B, 5B. As shown in Esser
et al. (2016), Equation (1) defines the activation function used by
CNN layers that are deployed on TN.

TN defined activation function =

{

1 neuron filter response ≥ 0

0 otherwise

(1)

2.2.2.1. Challenges with AlexNet neural network model
In TrueNorth, neural network architectures where a large set
of convolutional network neurons need to be connected to
fully connected layers will consume a considerable amount
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FIGURE 4 | This figure shows the standard AlexNet neural network architecture. The numbers written on top of the blocks show the output feature dimension of that

block in CNN model. (A) Shows the standard AlexNet neural network model (Krizhevsky et al., 2012). (B) Sections in the standard AlexNet neural network structure

that pose a problem when trying to map it onto TrueNorth.

FIGURE 5 | This figure shows the AlexNet implementation on TrueNorth. The numbers written on top of the blocks show the output feature dimension of that block in

CNN model. (A) Shows the modified AlexNet architecture for TrueNorth implementation. (B) Sections in the modified AlexNet neural network structure there later fixed

when trying to map the standard AlexNet onto TrueNorth. The output feature dimensions of 9th CNN layer in the proposed modified AlexNet is different for standard

AlexNet model (Figure 4). This is because the 8th CNN layer in this modified layer has a padding of 1, unlike the standard AlexNet mode where the 8th CNN layer did

not have any padding.

of hardware resources. Thus, the proposed CNN avoid fully-
connected layers, and instead the convolutional features are
progressively downsampled to a one-by-one convolution. For
example, in AlexNet (Krizhevsky et al., 2012), there are 9,216
neurons that present the output features of the 5th convolutional
layer and these have to be connected to 4,096 neurons present
in first fully connected layer. This kind of structure is crucial for
datasets where we have to scan through the entire image pixels
before predicting an output, such as counting the number of
cars in our experiments. Prior work done by the authors have
used either only a convolutional neural network structure (Esser
et al., 2016) or just a fully connected neural network (Esser et al.,
2015) in the context of object recognition. Earlier work have
not addressed how to interface convolutional to fully connected
layers. Mapping such CNN outputs on TrueNorth would require
us to connect each convolutional layer neuron to all neurons in
the fully connected layer. As a result, we might either end up
using large number of cores as splitters to implement this fanout,

as shown in Figure 3B, or we might use additional hardware
resources to rearrange the 3D convolutional layers for a 1D fully
connected layer.

2.2.2.2. Proposed modification for AlexNet neural network

model
We have addressed the challenges associated with convolutional
layer and fully connected layer connections by downsampling the
CNN output all the way down to a one-by-one convolution using
strided convolutions. The downsampling has been performed
by having a convolutional layer that has convolution window
of size 7 x 7 pixels and a stride of 7, as shown by the
rectangular box in Figure 5A. Similar downsampling has been
used in MobileNets (Howard et al., 2017). This structure ensures
that the output layer considers the entire image but is more
friendly to TrueNorth’s limited fanout capability. The proposed
AlexNet Figure 5A requires 9 TN chips for deployment onto
NS16e hardware.
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FIGURE 6 | This figure shows the standard VGG-16 neural network architecture implementation. The numbers written on top of the blocks show the output feature

dimension of that block in CNN model. (A) Shows the standard VGG-16 neural network model (Simonyan and Zisserman, 2014). (B) Three sections in the standard

VGG-16 neural network structure that pose a problem when trying to map it onto TrueNorth.

FIGURE 7 | This figure shows the standard VGG-16 neural network architecture that has been modified for TrueNorth implementation. The numbers written on top of

the blocks show the output feature dimension of that block in CNN model. Similar to AlexNet, this standard VGG-16 neural network model has CNN features that

have been downsampled all the way down to a one-by-one convolution using convolution kernels of size 7 x 7 and stride of 7.

Readers should observe that the output feature dimensions of
9th CNN layer is different for standard AlexNet model (Figure 4)
andmodified AlexNet model (Figure 5A). This is because the 8th
CNN layer in this modified layer has a padding of 1, unlike the
standard AlexNet model where the 8th CNN layer did not have
any padding.

2.2.3. Case Study: Map VGG-16 Neural Network

Model Onto TrueNorth
Next we will look at the challenges that come up when we map
VGG-16 style architecture onto the TrueNorth ns16e hardware.
As explained earlier, Equation (1) defines the activation function
used by CNN layers deployed on TN.

Figure 6A shows the neural network model of a standard
VGG-16 structure. Three different sections of VGG-16
neural network structure that pose a problem for TrueNorth
implementation have been highlighted using the rectangular box
in Figure 6B.

Figure 7 shows the standard VGG-16 neural network
architecture that has been modified for TrueNorth
implementation. Similar to AlexNet, this standard VGG-
16 neural network model has CNN features that have
been downsampled all the way down to a one-by-one
convolution using convolution kernels of size 7 x 7 and
stride of 7.

2.2.3.1. Challenges in VGG-16: hardware resource limitation
If the users were to map the standard VGG-16 neural network
model that has been shown in Figure 7, then the EEDN trained
CNN model would require more than 49 TrueNorth chips to
deploy the said neural network; whereas, NS16e hardware has
only 16 available TN chips. It is important for us to understand
the architectural bottlenecks in the NS16e hardware that does not
allow us to map the VGG-16 neural network structure and how
can it be addressed when designing a neural network model for
an application.
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FIGURE 8 | This figure shows the modified VGG-16 neural network architecture for TrueNorth ns16e hardware. The numbers written on top of the blocks show the

output feature dimension of that block in CNN model. (A) Shows the modified VGG-16 neural network model (1) where the input image size if kept at 224x224 pixels.

(B) Shows the modified VGG-16 neural network model (2) where the input image size if kept at 192x192 pixels.

2.2.3.2. Challenges in VGG-16: input feature size and feature

count
In TrueNorth (as shown in Figure 3A) image binarization (data
transduction) happens outside the TN chips, that is, in the
CPU/FPGA hybrid system. As discussed in section 2.1.2, step
3 , the binary image features representation are fanned out
inside TN chips, thus, a considerable amount of resources are
taken up by splitters for this pixel fan-out. That is, neurons that
could have been potentially used for computation, have to be
utilized as resources that would create multiple copies of the
input features so that different convolutional filters can operate
on these input features in parallel. Since prior work (Esser et al.,
2015, 2016) have trained neural networks for a maximum input
image size of 64-by-64 pixels, this problem of fan-out becomes
more significant if the dataset has larger image size (192-by-
192 pixels in case of COWC dataset). To minimize the fan-
out resource utilization we have to either reduce the image
size or reduce the number of input features. Next section will
explain the reduction in required hardware resources for fan-
out with the modified VGG-16 architecture (Figure 8). A more
thorough analysis on the trade-off between fan-out requirement
and, different input features and smaller input image sizes, has
been presented in section 3.2.

2.2.3.3. Proposed modification for VGG-16 input
Figures 8A,B show themodified neural networkmodels of VGG-
16 structure and Figure 9 shows the hardware requirements
for mapping CNN layers on TrueNorth. For understanding the
hardware resource consumption, we focus on the TN chips

required by first three layers of CNNs deployed on TN and
splitters. Figure 8A keeps the input image size same as the one
for standard VGG-16 structure, but the number of features in
the initial layer had to be reduced from 64 to 40. This is because
having a feature count of 64 for the first layer requires 14 chips
just to handle the fan-out using splitters. By reducing the number
of feature count to 40, TrueNorth requires 3 chips for fan-out.
Similarly, the fan-out constraints can be addressed by reducing
the input image size as shown in Figure 8B. Here the goal was
to keep the number of features in the initial layer to be 64,
same as the one standard VGG-16 structure. To achieve this
we have proposed an input image of comparatively smaller size,
that is, instead of having an image of size 224 x 224 pixels,
we have an input image of size 192 x 192 pixels. As explained
earlier (section 2.1.1), the COWC dataset has images of size
192 x 192 pixels. Therefore, by having a comparatively smaller
images as input we do not sacrifice any pixel level information,
but after this modification we require only 5 TN chips to serve
as splitters.

Figure 9 shows the breakdown of chip utilization for the

splitters, and convolutional layers 2, 3, and 4, since these four

layers consumed the most number of hardware resources. It can
be inferred from Figure 9 that by having small input feature size,
TN requires significantly less number of hardware resources for
splitters and the first CNN layer that is deployed on TN. AlexNet
downsamples the input images by having a CNN layer of stride 5
in the initial layer. Whereas, for VGG-16 models, the user would
have to keep inmind the input feature count and input image size
because the initial layer has CNN layer of stride 2.
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FIGURE 9 | Percentage of TN chips required on NS16e system for splitters and the three CNN layers that are deployed on the hardware. These chip consumption

values are for AlexNet CNN presented in Figure 5, VGG-16 CNN models that have been presented in Figures 7, 8.

2.2.3.4. Challenges in VGG-16: size of convolutional kernels
Selecting an appropriate convolutional kernel size is crucial for
deploying CNNs on a hardware constrained substrate. Hence,
smaller convolutional kernel would be very helpful. TrueNorth
convolutional layers support 1 x 1 convolutions that were
proposed by Lin et al. (2013). The pooling layers in EEDN
networks have been implemented as convolutional operations
with a stride of 2, as proposed by Springenberg et al. (2014).
Larger kernels such as 5 x 5 kernels are good for learning higher
level features in an image, whereas smaller kernels such as 3 x 3
and 1 x 1 kernels are good for learning lower level features and 1 x
1 convolutions can add non-linearity at a pixel level of the image.
These convolution operations tend to learn the object properties
and give prediction results based on these properties.

2.2.3.5. Proposed method for selecting kernel size
Convolution kernels that are bigger than 3 x 3, are used
only in the preprocessing layers. As presented in section 2.1.2
and Figure 3A, image binarization or preprocessing happens
off-chip. As a result, even if larger convolutional kernels are
selected for the first CNN layer, TrueNorth resources do not
get consumed because the first layer (or preprocessing layer)
gets implemented off-chip. Therefore, as shown in Figure 8, the
first CNN layer of modified VGG-16 structure has convolutional
kernels of size 5 x 5 pixels and this layer is implemented off-chip.
Similarly, we were able to have convolutional kernels of size 11 x
11 for the first CNN layer in modified AlexNet model as shown
in Figure 5A. On the other hand, rest of the CNN layers have
smaller sized convolutional kernels, that is, the convolutional
kernels are of size 3 x 3 or 1 x 1. Smaller kernels require fewer
computational resources, enabling us to fit a denser and wider
network on the TrueNorth substrate. The 1 x 1 convolution layers
require 9 times fewer groups than the 3 x 3 layers and 25 times
fewer groups than the 5 x 5 layers. A similar idea of having only
1 x 1 and 3 x 3 convolution layers in the CNN structure was
proposed by the authors of SqueezeNet (Iandola et al., 2016).

Figure 10 shows a comparison between hardware resources
required by replacing certain 3 x 3 convolutions in standard
VGG-16 neural network structure with 1 x 1 convolutions.
Note that the x-axis of plot in Figure 10 shows the CNN
layer in standard VGG-16 that were replaced with 1 x 1
convolution kernels. 5th convolution layer of standard VGG-
16 corresponds to 3rd convolution layer of modified VGG-
16 structures; similarly 8th convolution layer of standard
VGG-16 corresponds to 6th convolution layer of modified
VGG-16 structures, 12th convolution layer of standard VGG-
16 corresponds to 9th convolution layer of modified VGG-
16 structures and 16th convolution layer of standard VGG-
16 corresponds to 12th convolution layer of modified VGG-
16 structures. It can be observed from the plots that by
having smaller convolutional kernels, modified VGG model (1)
(Figure 8A) is able to achieve up to 6.6x reduction in hardware
resources; similarly modified VGG model (2) (Figure 8B) is
able to achieve up to 8.3x hardware resources. Note that the
second modified VGG model is performing computations on
comparatively smaller image patches, as a result, it requires less
number of hardware resources when compared with all of the
other neural network structure models.

2.2.3.6. Discussion on fully convolutional neural network of

VGG-16
As presented in section 2.2.2, one of the challenges that
users might face when mapping standard neural network
structures onto TrueNorth is that currently the proposed
hardware architecture does not support convolutional layer to
fully connected layer connections. Similar to modified AlexNet
model, while mapping VGG-16 onto TrueNorth, the CNN
features are downsampled all the way down to a one-by-
one convolution using strided convolutions. The downsampling
has been performed by having a convolutional layer that has
convolution window of size 7 x 7 pixels and a stride of 7, (as
shown in Figure 8A) or by having a convolutional layer that has
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FIGURE 10 | Hardware savings that is achieved by replacing 3 x 3 convolution kernels in standard VGG-16 model with 1 x 1 convolution kernels. Modified VGG-16

model (1) refers to the CNN structure presented in Figure 8A, and modified VGG-16 model (2) refers to the CNN structure presented in Figure 8B. X-axis shows the

convolutional layer in standard VGG-16 (Simonyan and Zisserman, 2014) CNN that originally had 3 x 3 convolution kernel, but they were replaced by 1 x 1 kernels in

the modified VGG-16 (Figure 8) model for NS16e. Y-axis shows the number of chips that were consumed by the CNN layer when deployed onto NS16e.

convolution window of size 6 x 6 pixels and a stride of 6 (as shown
in Figure 8B).

2.2.4. Case Study: Deeper Fully Convolutional Neural

Network
As we have discussed in earlier designs, TrueNorth does not
support convolutional layer to fully connected layer connections.
The proposed solutions for the earlier neural network designs
were to downsample intermediate CNN features all the way down
to a one-by-one convolution using strided convolutions. We
achieved this by taking average of CNN features that are of size 7
x 7 pixels (as shown in Figures 5A, 8A) or 6 x 6 pixels (as shown
in Figure 8B). In this section we propose having a deeper fully
convolutional neural network for modified VGG-16 network
(that were earlier shown in Figure 8). Unlike the proposed
previous two designs, the CNN features are downsampled all
the way down to a one-by-one convolution using additional
strided convolutions of size 2 x 2 instead of having convolutional
filters of size 7 x 7 or 6 x 6. The deeper convolutional neural
network has been shown in Figure 11. The proposed deep
CNN model does not require any additional TrueNorth chips
for deployment. Since the image size has become significantly
small, we do not observe any significant change in hardware
requirements. As a result, the proposed deep CNN model can be
mapped using all of the 16 TrueNorth chips that are available on
NS16e hardware.

3. RESULTS

This section describes how the decisions that have been proposed
in section 2.2 affect accuracy and hardware resource utilization.
The EEDN-trained CNN structures have been compared against
more standard neural network models that were deployed on
Titan X GPU. All of the neural networks were trained only for
COWC dataset. For EEDN trained CNNs the output layer has a
softmax loss function. The car detection dataset had two output

classes, whereas the car counting dataset has 65 output classes
which predict car count from 0 to 64. Momentum was set at
0.9; the spikeDecay parameter which controls the backpressure
of input spikes to a neuron was set at 7.5e − 5; and weightDecay
parameter was set at 1e− 6 for all of the layers.

3.1. Accuracy Analysis
Table 2, shows the detection and accuracy for Alexnet (baseline
neural network) and different CNN models that have been
proposed in Figures 5A, 8A, 8B, 11A, 11B. The results of this
table also quantifies the number of chips that are utilized to map
the first three TN-deployed convolutional layers.

Based on the results reported in Table 1, a modified
AlexNet model (Figure 5A) achieves significantly low accuracy
compared to is floating-point counterpart (Figure 4A) that was
implemented on a GPU. This loss in accuracy is due to ternary
weight and binary activation representation that IBM TrueNorth
computes on (as explained in McKinstry et al., 2018), as well as,
aggressively downsampling the input images by a factor of 4 in
the first layer because of which, the EEDN based CNN is not able
to capture the unique features properly. Whereas, we can observe
a significant improvement in accuracy with modified VGG-16
neural network models. Unlike AlexNet, the modified VGG-16
models (Figures 8A,B) are much deeper and are able to learn
distinguishable features much more efficiently.

Figure 12 shows a comparison between counting labels
estimated by AlexNet CNN structure (Figure 5A) and deep
modified VGG-16 model (Figure 12B) that were deployed on
TrueNorth. As stated earlier, AlexNet model is not able to learn
the distinguishable features as efficiently as the deeper CNN
models. It can be observed from the plots in Figure 12 that
average error is high for high value of counting labels. For high
label values (45–49 and 50–54) images have high density of cars
in them, therefore, it is important to have CNN structures that
are able to learn the features which can detect individual cars and
later use them for counting task.
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FIGURE 11 | This figure shows deeper convolutional neural network architecture for TrueNorth ns16e hardware. The numbers written on top of the blocks show the

output feature dimension of that block in CNN model. These CNN models are extensions of the VGG-16 models that were proposed in Figure 8. (A) shows the deep

convolutional neural network model where the input image size is kept at 224x224 pixels. (B) shows the deep convolutional neural neural network model where the

input image size is kept at 192x192 pixels.

FIGURE 12 | Error in estimating the label of car count vs the actual car count label. The plot compares the counting labels that were predicted with AlexNet CNN

(Figure 5A) and deep modified VGG-16 model (Figure 11B). X-axis shows the range of labels associated with the counting dataset. For example, in the x-axis a

value of 0–9 represents all of the counting dataset labels that were counting values in the range from 0 to 9. In (A) Y-axis plots the average error in estimating car

count, and in (B) Y-axis plots the standard deviation of error in estimating car count.

Table 2, shows the detection and accuracy for Alexnet and
different CNN models that have been proposed in Figure 13.
The results of this table also quantifies the number of
chips that are utilized to map the first three TN-deployed
convolutional layers.

3.2. Experiments With Additional Neural
Network Structures
Figure 13 shows the different CNN models that were trained
using EEDN training algorithm. All of these proposed CNN
models are a variation of deep CNN structure that was shown

in Figure 11. Equation (1) shows the activation function used by
CNN layers deployed on TN. It is important for us to understand
how different input image size or feature count of convolutional
layers would affect the hardware resource consumption and
the test accuracy. If the CNN structure is designed naively,
then we might waste critical compute resources for performing
operations such as creating multiple instances of input data. On
the other hand, if the proposed design is extremely conservative,
then the accuracy may reduce significantly. Therefore, in this
section we will discuss how different design proposals will affect
hardware usage and dataset accuracy.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shukla et al. Rethinking CNN Models for TrueNorth

TABLE 2 | Hardware resource analysis and testing accuracy for additional CNN

structures.

Model name Detection

accuracy (in

%)

Counting

accuracy (in

%)

Chips required

for first 3 TN

CNN layers

AlexNet 97.62 67.97 N/A

CNN Model 1 (Figure 13A) 97.87 68.62 19.88

CNN Model 2 (Figure 13B) 97.21 66.73 9.45

CNN Model 3 (Figure 13C) 97.52 68.21 8.67

CNN Model 4α (Figure 13D) 97.60 69.04 11.16

CNN Model 4β (Figure 13E) 90.98 53.4 11.16

CNN Model 5 (Figure 13F) 97.1 65.31 8.99

Each of the proposed CNN structure has a different
input image size, and different output feature counts for the
first four convolutional layers. The first convolutional layer
(or transduction layer) is deployed on CPU/FPGA off-chip
system (Esser et al., 2016; Sawada et al., 2016), whereas
convolutional layers 2, 3, and 4 are deployed on the TrueNorth
hardware. The proposed CNNmodels, Figures 13B–F require 16
chips to be deployed on TN hardware.

The CNN models shown in Figures 13A–D,F, are all 23-
layered CNN models, and the final layer serves as softmax loss
function. Figures 13D,E are meant for comparison with prior
approach to model CNNs. Figure 13E is a 19-layered CNN
model, and in this structure we do not downsample the image
features to a 1× 1 patch. Instead for CNNmodel 4β (Figure 13E)
we downsample the patches until the size of the patch is 6-by-
6 pixels. Even though CNN models 4α (Figure 13D) and 4β
(Figure 13E) have a different number of layers, the input image
size and feature count in the initial layers are the same for the
both models

Figure 14 shows the breakdown of chip utilization for the
splitters, and convolutional layers 2, 3, and 4, since these four
layers consumed the most number of hardware resources. In
section 2.2.3.2 we introduced the concept of balancing input
image size with the transduction layer’s output feature count
so that a minimum number of chips are used up for fan-out
while keeping the test accuracy comparable to more standard
approaches. Table 2 shows that by proposing a neural network
architecture that is similar to CNN model 4, we can have
test accuracy that is similar to the full precision AlexNet
implementation. In CNNmodel 4 (Figure 13C), the input image
is of size 192-by-192 pixels, as a result, there is no loss in
pixel information due to early downsampling. If input images
are downsampled aggressively (by using pooling layers), or the
number of features is reduced significantly, test accuracy for
detection and counting will also decrease. For example, if the
input images are downsampled from 160-by-160 pixels to a small
size of say 80-by-80 pixels in the first convolutional layer, then
we can have more number of features, but the output accuracy
is still less compared to CNN model 4. Having more output
feature does not help in improving the test accuracy because
the image features do not get captured nicely with an aggressive
downsampling operation.

3.3. Comparison With Prior Approach
Section 2.2.3.6 motivated the need for fully convolutional neural
networks where the image patch has been downsampled to a 1
× 1 patch. Prior work by Esser et al. (2016) proposed a fully
convolutional neural network where a 64-by-64 pixel input image
was downsampled to an 8-by-8 patch for output prediction. We
compare our proposed CNN structure with the decision that was
presented (Esser et al., 2016) and (Alom et al., 2018). We perform
this comparison by analyzing the test accuracy of CNNmodel 4α
(Figure 13D) and CNN model 4β (Figure 13E). In CNN model
4β , the input image patch is downsampled only to a 6-by-6 pixel
patch. Both of these CNN models require 16 TN chips to be
deployed. The training parameters were also the same for both
of these models.

Based on the results shown in Table 2, we can observe there is
a significant difference in test accuracy between the two models.
This might be because CNN model 4β does not get to scan the
entire image before making the prediction. In contrast, CNN
model 4α is able to find a relationship between all of the pixels
in the image and provide a better output prediction. There is a
difference of 6.62% in detection accuracy and 15.64% in counting
accuracy between CNN model 4α and CNN model 4β , with
our approach of CNN model 4α having a considerably higher
test accuracy.

3.4. Hardware Analysis
As per the detection and counting accuracies shown in Table 2,
CNN model 4α (Figure 13C) has the best accuracy among all of
the neural network models that were evaluated. This model can
also be deployed on NS16e TrueNorth hardware. Therefore, rest
of the discussion in this section will focus on the test accuracy
results obtained from CNN model 4, as well as report hardware
analysis for this neural network model.

Table 2 shows the results for COWC dataset after the trained
network (CNN model 4) was deployed on NS16e system.
Neural network structures for both counting and detection tasks
consumed all of the 16 chips available in NS16e platform. The
standard neural networks were implemented using the Caffe
neural network framework (Jia et al., 2014) and the trained full-
precision neural networks were deployed on NVIDIA Titan X
GPU. Table 3 shows the percentage accuracy for three different
tasks. The first task is car detection, a binary classification
problem where the goal is to predict whether a car has been
detected in the center of the image or not. For the entire
detection test dataset, accuracy of car detection with CNNmodel
4 (Figure 13C) is 97.35%, precision score is 96.36%, recall score
is 97.33%, and the F1 score of this task is 96.84%. Overall, the
mapped neural network on TrueNorth does very well in detecting
the objects. The second task is to count the number of cars in
the image and predict how many cars are present in the image in
the range from 0 to 64. The third goal is to count the number of
cars in the image by relaxing the output prediction condition; that
is, if an error margin of −/+ 2 is allowed for estimating the car
count, then what would be the prediction accuracy. For example,
in Figure 1C the correct label is 13 for counting. With −/+ 2
margin error, if the neural network predicts any label in the range
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FIGURE 13 | Convolutional neural network structures trained using EEDN for COWC dataset. The numbers written on top of the blocks show the output feature

dimension of that block in CNN model. (A–F) shows different design decisions for all of the six CNN models. Each of the proposed CNN model either has (1) different

input image size, or (2) different output feature count for first four convolutional layers, or (3) different number of pooling layers (CNN models 4α and 4β). (A–D) and (F)

are all 23-layered CNN models, and the final layer serves as softmax loss function. (D) and (E) are meant for comparison with prior approach to model CNNs. (E) is a

19-layered CNN model, and in this structure we do not downsample the image features to a 1 × 1 patch.

FIGURE 14 | Stacked bar plot illustrating percentage chips utilized in the NS16e system by splitters and convolutional layers for different convolutional models.
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TABLE 3 | This table reports accuracy for car detection and car counting on TrueNorth and NVIDIA Titan X, as well as throughput for car counting on these platforms.

Neural network

structure

Detection

accuracy

(in %)

Counting

accuracy

(in %)

Counting accuracy

with −/+2 error

margin (in %)

Frames per second

(FPS) for counting

task

FPS per watt

Truenorth (EEDN) 97.60 69.04 96.57 3.38 0.444 (at 0.775 V) 0.387 (at 1.0 V)

AlexNet 97.62 67.97 98.82 11.48 0.046

GoogLeNet 99.12 80.35 98.87 2.73 0.011

ResCeption 99.14 80.34 98.86 2.91 0.012

∈ [11, 15] our model would classify that as a correct output with
respect to the input image of Figure 1C.

As per the results for CNN model 2 (Figure 13C) in
Table 3, neural networks deployed on TrueNorth with EEDN
framework have accuracy that is close to AlexNet, but have
a considerable difference when compared with GoogLeNet (as
proposed in Szegedy et al., 2014) and ResCeption (as proposed
in Mundhenk et al., 2016). This could be due to the rich feature
representations that GoogLeNet and ResCeption can capture.
Each layer in these two neural networks has different-sized filters
operating in parallel, and the outputs from these filters get
depth concatenated. As a result GoogLeNet and ResCeption can
capture robust, differentiable features. However, this difference
reduces significantly with an allowed errormargin of−/+ 2 when
predicting the car count.

Table 3 shows the frames per Second (FPS) for car counting
based classification problem for the neural networks that were
deployed on different hardware platforms. As per (Mundhenk
et al., 2016) a single frame in FPS is defined as the scene of
size 2048-by-2048 pixels with additional padding so that the first
patch has a center at (0,0). The image frame is divided into
multiple patches of 192-by-192 pixels and a stride of 167 pixels.
Therefore, the frames per Second (FPS) for counting task is
meant to quantify how fast the CNN models can scan though an
entire image frame of 2048-by-2048 pixel and be able to count the
number of cars in this entire frame. The tick period of TrueNorth
operation had to be increased to 1.75 ms (operating frequency
was reduced to 571.43 Hz) to get the results shown in Table 3,
possibly because for smaller tick period, spikes were getting
bottlenecked when trying to cross chip boundaries. Article on
TrueNorth ecosystem (Sawada et al., 2016) presents how spikes
travel during inter-chip communication. First a spike has to
traverse one row of the network-on-chip, then travel through
the chip I/O peripheral circuitry and finally it is delivered to the
destination chip through limited I/O connections that are present
between two chips. Since the spikes have to travel peripheral
circuitry and limited I/O connections that are present between
two chips, these sections become a bottleneck for inter-chip
communication if the spike rate is high. As a result, the spikes
were not getting delivered for smaller tick periods since the inter-
chip communication bandwidth was becoming the bottleneck
for multi-chip networks. Prior work by Akopyan et al. (2015)
have proposed wire-length minimization placement algorithm
for TrueNorth. A better placement of cores could improve the
runtime as well as the FPS.

In this section we report the first-order analysis of NS16e
TrueNorth power consumption values based on the analysis
that was presented in Merolla et al. (2014) and Sawada et al.

(2016). TrueNorth chips can operate at 0.775 V and 1.0 V. The
power consumption values were calculated with an operating
frequency of 571.43 Hz, static power was set to 70 mW for 0.775
V operating voltage and 114 mW for 1.0 V operating voltage.
We assumed that dynamic power is the same as static power
for an operating frequency 1KHz and later these dynamic power
values were scaled down linearly to account for the chip operating
frequency of 571.43 Hz. When all of the chips on NS16e board
are computing at the same time, the total combined active power
consumed by TrueNorth chips is 1.76 W and 2.87 W with the
operating voltage set at 0.775 V and 1.0 V, respectively. Total
peak power consumed by the NS16e system is 7.62 W for 0.775
V operating voltage and 8.73 W for 1.0 V operating voltage. In
contrast, an NVIDIA Titan X GPU can consume a peak power of
250W to run these neural network structures at its highest frames
per second rate.

4. DISCUSSION

4.1. Summary
In this paper we described four design decisions that a
designer would have to address to deploy CNN structures on a
neurosynaptic system such as IBM TrueNorth. These decisions
are very important if the goal is to perform tasks such as detection
and counting in a hardware constrained environment. Section 2.2
introduced the need to have a systematic approach for proposing
neural network designs that can be mapped onto TrueNorth.
Here we discussed how we can leverage prior work that have
been proposed for CNN design and extend those ideas to EEDN
based CNNmodels for TrueNorth. We showed that if a standard
VGG-16 CNN model is modified systematically, while keeping
in mind the architectural bottlenecks that are present in NS16e,
hardware resource requirements can be reduced by 3x (refer to
Figures 9, 10).

Similarly, we discussed in Table 1 that with systematic
approach to mapping CNNs on TrueNorth, the accuracy could
be improved by 8% for detection based task and by 20% for
counting based task when compared to having a naive ternary-
weight AlexNet implementation on NS16e. Results presented in
Table 2 show that EEDN trained neural network can have similar
accuracy as full precision AlexNet.

It is important for us to consider how many TN cores are
performing relevant computations. The analysis presented in
Figure 14 shows that it is extremely important for users to
consider the trade-off between the hardware resources that is
available for mapping the neural network, and the input image
size and feature counts of initial layers, to achieve the desired
test accuracy.
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Section 3.4 analyzes the cost of the deployed neural network
on TN hardware. As per the results presented in Table 3, the
EEDN-trained neural network when deployed on TN hardware
has test accuracy that is comparable to high-precision neural
networks like AlexNet, GoogLeNet, and ResCeption, but shows
a manifold improvement in FPS per watt.

4.2. Extending This Work to Other
Benchmarks and Neuromorphic Chips
As neuromorphic computing is becoming more promising, it is
important for researchers to understand the challenges that came
up in TrueNorth architecture/algorithm and address these issues
in future neuromorphic computing architectures/algorithms.

First, it is important for us to have a new set of benchmarks
and datasets that can be used to evaluate neuromorphic
hardware for bigger CNN models or that require us to estimate
continuous numbers such as regression problems. There have
been benchmarks that were proposed keeping in mind SNN
algorithms, viz., N-MNIST (Orchard et al., 2015) and CIFAR-
10 DVS (Li et al., 2017), but both of these benchmarks have
very small image sizes and both of these benchmarks can solved
using classification models. Problems that require us to estimate
continuous numbers bring out the architectural limitations that
might arise if the goal is to predict large range of numbers.
On the other hand, benchmarks from domains such as Micro-
Aerial Vehicles (Ma et al., 2013) and video surveillance would
be very interesting for the SNN community because these small
drones already have SNN controllers in them (Clawson et al.,
2016). Having video surveillance dataset fromMAVs, will help us
realize potential of SNNs to be deployed in energy-constrained
environments. Evaluating the hardware with bigger CNNmodels
will help us understand the architectural limitations that are
present in the hardware and it will also motivate researchers to
investigate better algorithms for hardware/software co-design on
neural networks.

Second, it is critical to investigate the fan-out limitations
of architectures such as TrueNorth, so that neural networks
can also support connections between convolutional and fully-
connected layers. Even though there have been prior research
that have proposed algorithms to train inception neural networks
or residual networks for SNN hardware (Rueckauer et al.,
2017; Sengupta et al., 2018), the current architectural limitations
related to fan-out in SNN hardware such as TrueNorth, do not
support such skip connection based CNNs. Concurrently, CNN
structures such as MobileNets (Howard et al., 2017) have shown
to significantly reduce the memory accesses and computations
for embedded platforms. To the best of author’s knowledge,
currently there is no research that has successfully trained ternary
quantized model for depthwise separable filters, which is a
critical part of MobileNets. Prior work done in Holesovsky
and Maki (2018) have attempted to train a depthwise separable
CNN with ternary weights and activation, but reported a

significant drop in accuracy when compared to the same
CNN structure that was trained with single precision weights
and activation.

Third, it is important to address the architecture bottlenecks
present between the CPU/FPGA hybrid system and the
neuromorphic chips, otherwise, a considerable amount
of computation resources may end up getting used up
to handle these interactions, as shown in CNN baseline
example of Figure 14. Another direction that researchers can
potentially investigate is improving the speed of deployed neural
networks by analyzing the bottleneck present during inter-chip
communication on a scaled-up hardware such as NS16e system.

Finally, as neural network models become deeper and
wider, there will be a considerable amount of communication
happening between neurons mapped onto different chips. This
bottleneck could be addressed by having a better placement
algorithm formulti-chip placement whichwould constrain group
neurons that communicate a lot with each other to a single
chip, unlike the work proposed in Akopyan et al. (2015) where
the goal of the placement algorithm is to minimize the wire-
length of placed neurons. Or, researchers can propose a new
interconnect architecture for inter-chip communication that
could handle high backpressure of spikes that get delivered from
one neuromorphic chip to another.

Pruning may not always be the best approach to address
hardware constraints while DNN training. As presented
in Yazdani et al. (2018) even though pruningmay give correct test
accuracy, the inference confidence score reduces significantly.
Researchers from hardware community have proposed pruning
algorithms to reduce the size of bigger CNNs for hardware
deployment (Han et al., 2015; Iandola et al., 2016). At present
EEDN trained CNN models are highly sparse due to ternary
weight representation, having more aggressive, such as pruning
away TN cores for deep learning model, pruning technique may
result in further drop in test accuracy. Therefore, rethinking
the placement strategy for deep learning models on SNN
may be an important step forward to address the issue of
hardware constraints.
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