254 research outputs found

    SenseBelt:a belt-worn sensor to support cross-device interaction

    Get PDF
    Mobile interaction is shifting from a single device to simultaneous interaction with ensembles of devices such as phones, tablets, or watches. Spatially-aware cross-device interaction between mobile devices typically requires a fixed tracking infrastructure, which lim- its mobility. In this paper, we present SenseBelt – a sensing belt that enhances existing mobile interactions and enables low-cost, ad hoc sensing of cross-device gestures and interactions. SenseBelt enables proxemic interactions between people and their personal devices. SenseBelt also supports cross-device interaction be- tween personal devices and stationary devices, such as public displays. We discuss the design and implementation of SenseBelt together with possible applications. With an initial evaluation, we provide insights into the benefits and drawbacks of a belt-worn mediating sensor to support cross-device interactions

    Cross-surface:challenges and opportunities of spatial and proxemic interaction

    Get PDF
    In this workshop, we will review and discuss open issues, technical challenges and conceptual models for multi-device spatial or proxemic interaction. We aim to bring together researchers, students and practitioners working on technical infrastructures, studies and designs of spatial interfaces, or domain specific multi-device applications that use space as a unit of analysis. We focus specifically on analysing how such interfaces, tools and tracking technology can be deployed "in the wild". The workshop will facilitate knowledge exchange about the current state of spatial and proxemic interactive systems, identify application domains and enabling technologies for cross-surface interactions in the wild, and establish a research community to develop effective strategies for successful design of cross-device interactions

    Cross-surface:challenges and opportunities of spatial and proxemic interaction

    Get PDF
    In this workshop, we will review and discuss open issues, technical challenges and conceptual models for multi-device spatial or proxemic interaction. We aim to bring together researchers, students and practitioners working on technical infrastructures, studies and designs of spatial interfaces, or domain specific multi-device applications that use space as a unit of analysis. We focus specifically on analysing how such interfaces, tools and tracking technology can be deployed "in the wild". The workshop will facilitate knowledge exchange about the current state of spatial and proxemic interactive systems, identify application domains and enabling technologies for cross-surface interactions in the wild, and establish a research community to develop effective strategies for successful design of cross-device interactions

    EagleSense:tracking people and devices in interactive spaces using real-time top-view depth-sensing

    Get PDF
    Real-time tracking of people's location, orientation and activities is increasingly important for designing novel ubiquitous computing applications. Top-view camera-based tracking avoids occlusion when tracking people while collaborating, but often requires complex tracking systems and advanced computer vision algorithms. To facilitate the prototyping of ubiquitous computing applications for interactive spaces, we developed EagleSense, a real-time human posture and activity recognition system with a single top-view depth sensing camera. We contribute our novel algorithm and processing pipeline, including details for calculating silhouetteextremities features and applying gradient tree boosting classifiers for activity recognition optimised for top-view depth sensing. EagleSense provides easy access to the real-time tracking data and includes tools for facilitating the integration into custom applications. We report the results of a technical evaluation with 12 participants and demonstrate the capabilities of EagleSense with application case studies

    Gesture elicitation study on how to opt-in & Opt-out from interactions with public displays

    Get PDF
    Public interactive displays with gesture-recognizing cameras enable new forms of interactions. However, often such systems do not yet allow passers-by a choice to engage voluntarily or disengage from an interaction. To address this issue, this paper explores how people could use different kinds of gestures or voice commands to explicitly opt-in or opt-out of interactions with public installations. We report the results of a gesture elicitation study with 16 participants, generating gestures within five gesture-types for both a commercial and entertainment scenario. We present a categorization and themes of the 430 proposed gestures, and agreement scores showing higher consensus for torso gestures and for opting-out with face/head. Furthermore, patterns indicate that participants often chose non-verbal representations of opposing pairs such as ‘close and open’ when proposing gestures. Quantitative results showed overall preference for hand and arm gestures, and generally a higher acceptance for gestural interaction in the entertainment setting

    Proxemic interactions with multi-artifact systems

    Get PDF
    Abstract — The artifact ecologies emerging from an increasing number of interactive digital artifacts, capable of communicating with each other wirelessly, have created an interaction space where software applications are no longer limited by the physical boundaries of a single device. With the new opportunities follows an added complexity that interaction designers need to address. Previous work have shown the potential of proxemic interactions as one way of dealing with design challenges of ubicomp systems. However, the work focused on interactions involving multiple digital artifacts is limited. In this paper, we analyze two multi-artifact systems from our prior work within the domain of music consumption and identify four concepts of multi-artifact interactions: Plasticity, migration, complementarity, and multi-user. These concepts forms the basis for a discussion on the potential use of proxemic interactions in the design of multi-artifact systems. Keywords- artifact ecology, multi-artifact systems, proxemic interactions, music systems. I

    Creating Your Bubble: Personal Space On and Around Large Public Displays

    Get PDF
    We describe an empirical study that explores how users establish and use personal space around large public displays (LPDs). Our study complements field studies in this space by more fully characterizing interpersonal distances based on coupling and confirms the use of on-screen territories on vertical displays. Finally, we discuss implications for future research: limitations of proxemics and territoriality, how user range can augment existing theory, and the influence of display size on personal space

    Applications across Co-located Devices

    Get PDF
    We live surrounded by many computing devices. However, their presence has yet to be fully explored to create a richer ubiquitous computing environment. There is an opportunity to take better advantage of those devices by combining them into a unified user experience. To realize this vision, we studied and explored the use of a framework, which provides the tools and abstractions needed to develop applications that distribute UI components across co-located devices. The framework comprises the following components: authentication and authorization services; a broker to sync information across multiple application instances; background services that gather the capabilities of the devices; and a library to integrate web applications with the broker, determine which components to show based on UI requirements and device capabilities, and that provides custom elements to manage the distribution of the UI components and the multiple application states. Collaboration between users is supported by sharing application states. An indoor positioning solution had to be developed in order to determine when devices are close to each other to trigger the automatic redistribution of UI components. The research questions that we set out to respond are presented along with the contributions that have been produced. Those contributions include a framework for crossdevice applications, an indoor positioning solution for pervasive indoor environments, prototypes, end-user studies and developer focused evaluation. To contextualize our research, we studied previous research work about cross-device applications, proxemic interactions and indoor positioning systems. We presented four application prototypes. The first three were used to perform studies to evaluate the user experience. The last one was used to study the developer experience provided by the framework. The results were largely positive with users showing preference towards using multiple devices under some circumstances. Developers were also able to grasp the concepts provided by the framework relatively well.Vivemos rodeados de dispositivos computacionais. No entanto, ainda não tiramos partido da sua presença para criar ambientes de computação ubíqua mais ricos. Existe uma oportunidade de combiná-los para criar uma experiência de utilizador unificada. Para realizar esta visão, estudámos e explorámos a utilização de uma framework que forneça ferramentas e abstrações que permitam o desenvolvimento de aplicações que distribuem os componentes da interface do utilizador por dispositivos co-localizados. A framework é composta por: serviços de autenticação e autorização; broker que sincroniza informação entre várias instâncias da aplicação; serviços que reúnem as capacidades dos dispositivos; e uma biblioteca para integrar aplicações web com o broker, determinar as componentes a mostrar com base nos requisitos da interface e nas capacidades dos dispositivos, e que disponibiliza elementos para gerir a distribuição dos componentes da interface e dos estados de aplicação. A colaboração entre utilizadores é suportada através da partilha dos estados de aplicação. Foi necessário desenvolver um sistema de posicionamento em interiores para determinar quando é que os dispositivos estão perto uns dos outros para despoletar a redistribuição automática dos componentes da interface. As questões de investigação inicialmente colocadas são apresentadas juntamente com as contribuições que foram produzidas. Essas contribuições incluem uma framework para aplicações multi-dispositivo, uma solução de posicionamento em interiores para computação ubíqua, protótipos, estudos com utilizadores finais e avaliação com programadores. Para contextualizar a nossa investigação, estudámos trabalhos anteriores sobre aplicações multi-dispositivo, interação proxémica e sistemas de posicionamento em interiores. Apresentámos quatro aplicações protótipo. As primeiras três foram utilizadas para avaliar a experiência de utilização. A última foi utilizada para estudar a experiência de desenvolvimento com a framework. Os resultados foram geralmente positivos, com os utilizadores a preferirem utilizar múltiplos dispositivos em certas circunstâncias. Os programadores também foram capazes de compreender a framework relativamente bem
    corecore