126,739 research outputs found

    The Critical Phase for Random Graphs with a Given Degree Sequence

    Get PDF
    We consider random graphs with a fixed degree sequence. Molloy and Reed [11, 12] studied how the size of the giant component changes according to degree conditions. They showed that there is a phase transition and investigated the order of components before and after the critical phase. In this paper we study more closely the order of components at the critical phase, using singularity analysis of a generating function for a branching process which models the random graph with a given degree sequence

    Generalized Threshold-Based Epidemics in Random Graphs: the Power of Extreme Values

    Get PDF
    Bootstrap percolation is a well-known activation process in a graph, in which a node becomes active when it has at least rr active neighbors. Such process, originally studied on regular structures, has been recently investigated also in the context of random graphs, where it can serve as a simple model for a wide variety of cascades, such as the spreading of ideas, trends, viral contents, etc. over large social networks. In particular, it has been shown that in G(n,p)G(n,p) the final active set can exhibit a phase transition for a sub-linear number of seeds. In this paper, we propose a unique framework to study similar sub-linear phase transitions for a much broader class of graph models and epidemic processes. Specifically, we consider i) a generalized version of bootstrap percolation in G(n,p)G(n,p) with random activation thresholds and random node-to-node influences; ii) different random graph models, including graphs with given degree sequence and graphs with community structure (block model). The common thread of our work is to show the surprising sensitivity of the critical seed set size to extreme values of distributions, which makes some systems dramatically vulnerable to large-scale outbreaks. We validate our results running simulation on both synthetic and real graphs

    Percolation by cumulative merging and phase transition for the contact process on random graphs

    Full text link
    Given a weighted graph, we introduce a partition of its vertex set such that the distance between any two clusters is bounded from below by a power of the minimum weight of both clusters. This partition is obtained by recursively merging smaller clusters and cumulating their weights. For several classical random weighted graphs, we show that there exists a phase transition regarding the existence of an infinite cluster. The motivation for introducing this partition arises from a connection with the contact process as it roughly describes the geometry of the sets where the process survives for a long time. We give a sufficient condition on a graph to ensure that the contact process has a non trivial phase transition in terms of the existence of an infinite cluster. As an application, we prove that the contact process admits a sub-critical phase on d-dimensional random geometric graphs and on random Delaunay triangulations. To the best of our knowledge, these are the first examples of graphs with unbounded degrees where the critical parameter is shown to be strictly positive.Comment: 50 pages, many figure

    Vacant sets and vacant nets: Component structures induced by a random walk

    Full text link
    Given a discrete random walk on a finite graph GG, the vacant set and vacant net are, respectively, the sets of vertices and edges which remain unvisited by the walk at a given step tt.%These sets induce subgraphs of the underlying graph. Let Γ(t)\Gamma(t) be the subgraph of GG induced by the vacant set of the walk at step tt. Similarly, let Γ^(t)\widehat \Gamma(t) be the subgraph of GG induced by the edges of the vacant net. For random rr-regular graphs GrG_r, it was previously established that for a simple random walk, the graph Γ(t)\Gamma(t) of the vacant set undergoes a phase transition in the sense of the phase transition on Erd\H{os}-Renyi graphs Gn,pG_{n,p}. Thus, for r3r \ge 3 there is an explicit value t=t(r)t^*=t^*(r) of the walk, such that for t(1ϵ)tt\leq (1-\epsilon)t^*, Γ(t)\Gamma(t) has a unique giant component, plus components of size O(logn)O(\log n), whereas for t(1+ϵ)tt\geq (1+\epsilon)t^* all the components of Γ(t)\Gamma(t) are of size O(logn)O(\log n). We establish the threshold value t^\widehat t for a phase transition in the graph Γ^(t)\widehat \Gamma(t) of the vacant net of a simple random walk on a random rr-regular graph. We obtain the corresponding threshold results for the vacant set and vacant net of two modified random walks. These are a non-backtracking random walk, and, for rr even, a random walk which chooses unvisited edges whenever available. This allows a direct comparison of thresholds between simple and modified walks on random rr-regular graphs. The main findings are the following: As rr increases the threshold for the vacant set converges to nlogrn \log r in all three walks. For the vacant net, the threshold converges to rn/2  lognrn/2 \; \log n for both the simple random walk and non-backtracking random walk. When r4r\ge 4 is even, the threshold for the vacant net of the unvisited edge process converges to rn/2rn/2, which is also the vertex cover time of the process.Comment: Added results pertaining to modified walk

    Percolation on sparse random graphs with given degree sequence

    Full text link
    We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that in fact these coincide. As a special case, our results apply to power law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.Comment: 20 page
    corecore