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We consider random graphs with a fixed degree sequence. Molloy and Reed [11, 12] studied

how the size of the giant component changes according to degree conditions. They showed

that there is a phase transition and investigated the order of components before and after

the critical phase. In this paper we study more closely the order of components at the

critical phase, using singularity analysis of a generating function for a branching process

which models the random graph with a given degree sequence.

1. Introduction and main result

1.1. Standard random graph model

One of the most interesting results about the standard random graph model, G(n, p), is

the phase transition studied by Erdős and Rényi [6], where G(n, p) is a random graph on

n vertices where every possible edge is included in the graph independently of each other,

with probability p = p(n). Suppose that p = c
n
. Erdős and Rényi [6] proved that if c < 1,

then asymptotically almost surely (a.a.s. for short), which means with probability tending

to 1 as n → ∞, all the components in G(n, p) have order O(log n), whereas if c > 1, then

a.a.s. there is a unique component with Θ(n) vertices, while all other components have

O(log n) vertices. In the case c = 1, they proved that G(n, p) a.a.s. has components of order

at least n2/3/ω(n) but no components of order greater than n2/3ω(n) for any function

ω(n) → ∞. Bollobás [3] and �Luczak [8] considered the case that c → 1 in more detail. Let

λ be such that

p =
1

n
+

λ

n4/3
. (1.1)
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If λ → −∞, then a.a.s. all the components have order o(n2/3). If λ → ∞, then there is

a.a.s. a unique component of order � n2/3, while all other components have order o(n2/3).

Furthermore, if we consider G(n, p) as a graph process where edges are added one by one,

then the largest component will a.a.s. remain largest until the end of the process.

1.2. Random graphs with a given degree sequence

Molloy and Reed [11] showed that a random graph model with a given degree sequence

has a similar phase transition. An asymptotic degree sequence is a sequence of integer-

valued functions D = {d0(n), d1(n), . . . }, such that di(n) = 0 for i � n, and
∑

i�0 di(n) = n.

The value di(n) denotes the number of vertices of degree i in a graph of order n. If D
is an asymptotic degree sequence, we let Dn be the degree sequence {a1, a2, . . . , an}, where

aj � aj+1 for every j = 1, . . . , n− 1, and #{j|aj = i} = di(n). Let Ω(Dn) be the set of graphs

on n vertices with degree sequence Dn. An asymptotic degree sequence D is feasible if

Ω(Dn) �= ∅ for all n � 1. All asymptotic degree sequences in this paper are assumed to be

feasible.

If D is an asymptotic degree sequence, we let Gn = Gn(D) be a random graph chosen

from the set Ω(Dn) uniformly at random.

For i � 0, we let λi(n) = di(n)/n. If D is such that λi(n) converges to a constant as

n → ∞, for every i � 0, then D is said to be smooth , and we define

λ∗
i = lim

n→∞
λi(n).

We will assume that the asymptotic degree sequence D is well-behaved in the following

sense, which is similar to the definition in [11], although slightly stronger.

Definition. An asymptotic degree sequence D is well-behaved if the following conditions

are satisfied.

1 D is feasible and smooth.

2 Let f(i) be a polynomial in i with degree at most 3. Then

(a) f(i)λi(n) tends uniformly to f(i)λ∗
i : that is, for all ε > 0, there exists N such that, for

all n � N and for all i � 0,

|f(i)λi(n) − f(i)λ∗
i | < ε.

(b) The limit

lim
n→∞

∑
i�0

f(i)λi(n)

exists, and the sum approaches the limit Lf(D) =
∑

i�0 f(i)λ∗
i uniformly: that is, for

all ε > 0, there exist i∗ and N such that, for all n � N,

∣∣∣∣
i∗∑
i=0

f(i)λi(n) − Lf(D)

∣∣∣∣ < ε.

In [11], the function Q(D) =
∑

i�1 i(i− 2)λ∗
i is defined. The following theorem is the

main theorem of [11] and says that a phase transition occurs when Q(D) = 0.
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Theorem 1.1. (Molloy and Reed 1995) Let D be a well-behaved sparse asymptotic degree

sequence for which there exists ε > 0 such that, for all n and i > n1/4−ε, di(n) = 0.

(a) If Q(D) < 0, and for some function 0 � ω(n) � n1/8−ε, di(n) = 0 for all i � ω(n), then

for some constant R dependent on Q(D), Gn a.a.s. has no component with more than

Rω(n)2 log n vertices, and a.a.s. has fewer than 2Rω(n)2 log n cycles. Also, a.a.s. no

component of Gn has more than one cycle.

(b) If Q(D) > 0, then there exist constants ζ1, ζ2 > 0 dependent on D, such that Gn a.a.s.

has a component with at least ζ1n vertices and ζ2n cycles. Furthermore, if Q(D) is finite,

then Gn a.a.s. has exactly one component of size greater than C log n for some constant

C dependent on D.

To see that it is natural to consider the quantity Q(D), suppose that we start with

a randomly chosen vertex v in the graph and want to determine the order of the

component it lies in. The vertex v has degree i with probability λi(n). Then we can

expose the component containing v with a branching process, starting with the neighbours

of v. When a vertex of degree i is exposed, the number of ‘unsaturated’ vertices increases by

i− 2. The probability that this happens is roughly iλi(n)
d

, where d =
∑

i iλi(n) is the average

degree, so the expected increase in the number of unsaturated vertices is 1
d

∑
i i(i− 2)λi(n).

If this value is negative, then we expect that the branching process will die out rather

quickly. If it is positive, then there is a chance that the number of unsaturated vertices

will just continue to grow, so that a large component is generated.

1.3. Main result

The structure of random graphs with an asymptotic degree sequence D such that Q(D) = 0

depends on how fast the quantity
∑

i�1 i(i− 2)λi(n) converges to 0. In order to study this,

we define a generating function in the variable x,

Qn(x) =
∑
i�1

i(i− 2)λi(n)x
i.

If λ∗
i > 0 for some i � 3, then for sufficiently large n, Q′′

n(x) =
∑

i�3 i
2(i− 1)(i− 2)λi(n)x

i−2

is positive when x > 0, and hence the function Qn(x) is strictly convex on the interval

[0,∞) and therefore has at most two zeros on this interval. Let τn be the largest value

such that

Qn(τn) = 0. (1.2)

Note that if limn→∞ τn = 1, then Q(D) = 0, and further that if Q(D) = 0, then λ∗
1 > 0 if

and only if λ∗
i > 0 for some i � 3. In the rest of the paper we will make the assumptions

that limn→∞ τn = 1 and λ∗
1 > 0.

We define the generating function

Λn(x) =
∑
i�0

λi(n)x
i. (1.3)



70 M. Kang and T. G. Seierstad

Then Qn(x) can be written as

Qn(x) = x2Λ′′
n(x) − xΛ′

n(x). (1.4)

Note that since D is well-behaved, Λ′(1), Λ′′(1) and Λ′′′
n (1) are all bounded as n → ∞. The

average degree of Gn equals Λ′(1) and is denoted by d.

We will prove the following theorem, which is comparable to the study on the critical

phase of G(n, p) by Bollobás [3] and �Luczak [8] (see Section 6).

Theorem 1.2. Assume that D is a well-behaved asymptotic degree sequence, such that for

some ε > 0, di(n) = 0 whenever i > n1/4−ε. Furthermore assume that limn→∞ τn = 1 and λ∗
1 >

0. Let

δn = 1 − τn. (1.5)

(a) If δnn
1/3 → −∞, then a.a.s. all components in Gn have o(n2/3) vertices.

(b) There is a constant c1 such that if δnn
1/3 � c1 log n, then a.a.s. Gn has a single component

of order � n2/3, while all other components have order o(n2/3).

Note that Q(D) = limn→∞ Qn(1). Since Q(D) is the quantity used in the statement of

Theorem 1.1, it may be interesting to see what Theorem 1.2 says about Qn(1). The

quantities δn and Qn(1) are asymptotically related by

Qn(1) ∼ δnQ
′
n(1), (1.6)

i.e., limn→∞
Qn(1)
δnQ′

n(1)
= 1, where Q′

n(1) converges to a positive constant when n → ∞. (This

can be shown using Lemma 4.1 later on.) The quantity Qn(1)n1/3 is analogous to the

parameter λ in the critical phase of G(n, p), which is given in (1.1); see Section 6 for

details. Our theorem is weaker than the corresponding theorem for G(n, p), by �Luczak [8],

in the sense that we require a lower bound on how quickly Qn(1)n1/3 tends to infinity.

In the theorem we use the quantity δn rather than Qn(1), since it occurs naturally in the

proof, and it therefore simplifies the notation to state the theorem in terms of δn.

In order to prove Theorem 1.2, we will model the order of the components by a

branching process introduced in Section 3. In Section 4 we study the behaviour of

the branching process, using singularity analysis of the probability generating function

associated with the branching process. Then the proof of Theorem 1.2 follows in Section 5.

2. Random configurations

It is difficult to study random graphs with a given degree sequence directly. Instead it

has become customary to take the route via random configurations. The configuration

model was introduced by Bender and Canfield [2], and later studied by Bollobás [4] and

Wormald [14].

We define a random configuration Cn with a given degree sequence Dn, as follows. Let

Dn = {a1, . . . , an}. We let v1, . . . , vn be vertices, and let Ln be a set consisting of ai distinct
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copies of the vertex vi for i = 1, . . . , n. These copies are called half-edges. We let Cn be

equal to Ln, together with a perfect matching Pn of Ln, chosen uniformly at random.

A random perfect matching can be constructed greedily: at every step we take an

arbitrary, unmatched half-edge, and match it with another half-edge chosen uniformly at

random from the remaining half-edges. Using this procedure, every perfect matching has

the same probability of being generated.

Given a configuration Cn on n vertices, we let G∗
n be the multigraph obtained by

identifying all copies of vi with one another, for every i = 1, . . . , n, and letting the pairs of

the perfect matching in Cn become edges.

Assume that di(n) = 0 for all i > n1/4−ε for some ε > 0, and that Dn otherwise satisfies

the conditions of Theorem 1.2. As observed in [11], the main result of [10] implies that

G∗
n is a simple graph with probability tending to e−ν(Dn), for some ν(Dn) = O(n1/2−ε). If

Qn(1) is bounded, then ν(Dn) tends to a constant. This implies the following lemma.

Lemma 2.1. If the underlying multigraph G∗
n of a random configuration Cn with a given

degree sequence Dn meeting the conditions of Theorem 1.2 has a property P a.a.s., and if

supn Qn(1) < ∞, then a random graph Gn with the same degree sequence has P a.a.s.

3. Branching process

We use a branching process in order to study the order of the components in the

underlying multigraph G∗
n of the random configuration defined in Section 2.

Consider the set Ln, and suppose that the perfect matching Pn has not been chosen

yet. We start by choosing a single pair uniformly at random. We want to determine the

order of the component containing this edge, and we will do this by exposing the pairs of

the perfect matching Pn. Suppose that the pair we choose contains the two half-edges v1

and v2. Then we say that v1 and v2 are exposed , while all other half-edges are unexposed.

A vertex v (consisting of one or more half-edges) is unexposed if none of its half-edges

are exposed, partially exposed if some, but not all, of its half-edges are exposed, and fully

exposed if all its half-edges have been exposed.

The process of exposing the component containing the pair v1v2 goes on as follows. At

every step we choose an unexposed half-edge w1, randomly or otherwise, in any partially

exposed vertex, if such a vertex exists. Then we choose another half-edge w2, chosen

uniformly at random from all unexposed half-edges in Ln distinct from w1. Then we add

the pair w1w2 to the matching and say that w1 and w2 are exposed.

When there is no partially exposed vertex left in the configuration, we stop the process.

The component containing the edge v1v2 is then fully exposed. The set of exposed vertices

forms a connected component in the underlying multigraph.

We will model this process as a branching process, where the particles in the branching

process are edges. An edge consists of two half-edges, which we will call the upper and

lower half-edge. In the branching process an edge gets i edges as children, for i = 0, 1, 2, . . . ,

with probability (i+1)λi+1(n)
d

, where we recall that d =
∑
iλi(n) is the average degree. This

equals the probability that a randomly chosen half-edge is a part of a vertex of degree

i+ 1. We will interpret the branching process such that the lower half-edge of an edge,
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Figure 1. The first step of the branching process

together with the upper half-edges of all its children, comprise one vertex in the random

graph.

The branching process starts with a single edge, v1v2, which is special in that we consider

both the half-edges v1 and v2 to be lower half-edges. Thus the branching process starts

off with two branches which continue independently of each other. Figure 1 shows the

situation after the first step of the branching process.

We let Bn be the random variable denoting the number of vertices produced in the

branching process before it dies out. If the branching process does not die out, but

continues forever, then Bn = ∞.

Since the branching process starts with two independent branches, it will be convenient

to consider the corresponding branching process, which starts with one edge v1v2, but

only lets the branching process continue from one of the half-edges, say v1, as in the

boxed part of Figure 1. Let βn be the random variable denoting the number of edges

produced in this process, including the original edge. The total number of edges in the

original branching process is then β(1)
n + β(2)

n − 1, where β(1)
n and β(2)

n are independent

random variables with the same distribution as βn. The number of vertices produced in

the process is then Bn = β(1)
n + β(2)

n .

We let pn(z) be the probability generating function for the number of children of an

edge in the branching process. Then

pn(z) =
∑
i�0

pi(n)z
i =

∑
i�0

(i+ 1)λi+1(n)zi∑
j jλj(n)

=
Λ′
n(z)

Λ′
n(1)

. (3.1)

The following is a classical theorem for branching processes. For its proof, see [1].

Theorem 3.1. Let p(x) be the probability generating function for the number of children

produced by one particle in a branching process. If the branching process starts with a single

particle, then the extinction probability of the branching process is the smallest non-negative

root of the equation

p(x) = x.
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Let µ be the expected number of children produced by one particle. If µ � 1, then the extinc-

tion probability is 1 (except for certain trivial cases). Otherwise, the extinction probability

is strictly less than 1.

The expected number of children of an edge is p′
n(1). It then follows from Theorem 3.1

that if p′
n(1) � 1, then P[βn < ∞] = P[Bn < ∞] = 1.

Let e be any edge in the branching process. Let qk(n) be the probability that the total

number of descendant edges of e, including e itself, is exactly k. Let qn(z) =
∑
qk(n)z

k be

the corresponding probability generating function. The probability that e has i children is

pi(n), so

qn(z) = z
∑
i�0

pi(n)qn(z)
i = zpn(qn(z)). (3.2)

Since Bn = β(1)
n + β(2)

n , the probability generating function for Bn is qn(z)
2.

There are two difficulties which are not taken account of by the branching process,

compared with Gn. The first problem is that in the random graph Gn, or more precisely

in the underlying multigraph G∗
n of the random configuration, a half-edge may choose

to form an edge with a half-edge in a vertex which already contains exposed half-edges,

which causes a cycle to be formed. We will show that this happens sufficiently seldom

that the branching process is a good enough approximation. The second problem is that

when some vertices are already partially exposed, the probability that a new half-edge is

in a vertex of degree i generally deviates from iλi(n)
d

in random configurations. However,

we will see in Lemma 4.6 that this deviation is also small enough, and that the branching

process is a good approximation.

4. Analysis of generating functions

In this section we will study the behaviour of the branching process. In particular we

want to calculate the probability P[Bn � k] for various values of k. The event that Bn � k

can happen in two ways: either the branching process dies out after it has produced k

vertices, or it continues forever. Hence

P[Bn � k] = P[k � Bn < ∞] + P[Bn = ∞]. (4.1)

In order to calculate this quantity, we will have to study the behaviour of various functions

close to 1, and we will use the following observation repeatedly.

Lemma 4.1. Let fn(x) =
∑

i�0 αnix
i, where αni are real numbers for n � 1 and i � 0. As-

sume that αni → α∗
i as n → ∞ for constants α∗

i for all i � 0. Let r(n) = max({i : αni �=
0} ∪ {0}). Let {an}n�0 and {bn}n�0 be sequences of real numbers such that an → 1 and

bn → 0. Assume that r(n)bn = o(1). Then, as n → ∞,

fn(an + bn) = fn(an) + bnf
′
n(an) +

1

2
b2
nf

′′
n (an) + O(b3

n). (4.2)
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Proof.

fn(an + bn) =
∑
i�0

αni(an + bn)
i

=
∑
i�0

(
αni

i∑
j=0

(
i

j

)
ai−jn bjn

)

=
∑
i�0

αni

(
ain + iai−1

n bn +
1

2
i(i− 1)ai−2

n b2
n + O(b3

n)

)

= fn(an) + bnf
′
n(an) +

1

2
b2
nf

′′
n (an) + O(b3

n).

We are then able to calculate the second summand of (4.1), the probability that the

branching process continues forever, and we find that it is proportional to δn in the

supercritical phase, and 0 in the subcritical phase.

Lemma 4.2. If τn ↓ 1, then P[Bn = ∞] = 0. If τn ↑ 1. Then

P[Bn = ∞] ∼ 4δn. (4.3)

Proof. If τn ↓ 1, the extinction probability is 1 by Theorem 3.1, so assume that τn ↑ 1.

We let ηn = P[βn = ∞]. Theorem 3.1 implies that pn(1 − ηn) = 1 − ηn, so by (3.1) and

Lemma 4.1,

(1 − ηn)Λ
′
n(1) = Λ′

n(1 − ηn)
(4.2)
= Λ′

n(1) − ηnΛ
′′
n(1) +

1

2
η2
nΛ

′′′
n (1) + O(η3

n),

which gives us

Λ′′
n(1) − Λ′

n(1) =
1

2
ηnΛ

′′′
n (1) + O(η2

n). (4.4)

The left-hand side of this equation is Qn(1). Since Qn(τn) = 0 by assumption and δn → 0,

we can use Lemma 4.1 to calculate this value. We note that Qn(x) and Q′
n(x) can be

written as

Qn(x) = x2Λ′′
n(x) − xΛ′

n(x),

Q′
n(x) = x2Λ′′′

n (x) + xΛ′′
n(x) − Λ′

n(x)

(1.4)
= x2Λ′′′

n (x) +
Qn(x)

x
. (4.5)

Thus, by Lemma 4.1 and (1.5),

Qn(τn) = Qn(1) − δnQ
′
n(1) + δ2

nQ
′′
n(1) + O(δ3

n)

(4.5)
= Qn(1) − δn(Λ

′′′(1) + Qn(1)) + O(δ2
n),

so

Qn(1) =
1

1 − δn

(
δnΛ

′′′(1) + O(δ2
n)

)
= δnΛ

′′′(1) + O(δ2
n). (4.6)
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Equations (4.4) and (4.6) imply that

δn + O(δ2
n) =

1

2
ηn + O(η2

n),

so

P[βn = ∞] ∼ 2δn. (4.7)

Since Bn = ∞ if and only if β(1)
n = ∞ or β(2)

n = ∞, equation (4.3) follows.

We then have to find P[k � Bn < ∞], and for this we will use singularity analysis of

generating functions. The key to this approach is the following theorem, which follows

from [7, Theorem VI.6]. A function φ(w) is periodic if, for some d � 2 and function ψ, we

have φ(w) = ψ(wd).

Theorem 4.3. Let φ(w) be a function analytic at 0, having non-negative Taylor coefficients

with φ(0) �= 0, such that there exists a positive solution τ to the characteristic equation,

φ(τ) − τφ′(τ) = 0,

strictly within the disc of convergence of φ. Let y(z) be the solution analytic at the ori-

gin of y(z) = zφ(y(z)). Then y(z) has a dominant singularity at z = ρ, where ρ = τ
φ(τ)

. If

furthermore φ′′(τ) �= 0 and φ(w) is aperiodic, then the coefficients of y(z) satisfy

[zi]y(z) ∼ cρ−ii−
3
2

(
1 + O(i−1)

)
,

where c = φ(τ)
2πφ′′(τ) .

We recall that the functions pn(x) and qn(x) are related by (3.2). In view of Theorem 4.3,

taking φ = pn and y = qn, we define τn to be such that

pn(τn) − τnp
′
n(τn) = 0,

which is equivalent to (1.2). This can also be expressed as

Λ′
n(τn)

τnΛ′′
n(τn)

= 1. (4.8)

We then define

ρn =
τn

pn(τn)
,

which is the radius of convergence and the location of the dominant singularity of pn(x).

The next lemma gives us a relation between ρn and δn.

Lemma 4.4. Assume that τn → 1, and let ρn and δn be as before. Then

log ρn ∼ c2δ
2
n ,

for a constant c2 = 1
2

+ 1
2

limn→∞
Λ′′′
n (1)

Λ′
n(1)

> 0.
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Proof. Applying Lemma 4.1 to (1.5), we see that for all suitable functions fn(x),

fn(τn) = fn(1) − δnf
′
n(1) +

1

2
δ2
nf

′′
n (1) + O(δ3

n). (4.9)

Furthermore, using the equation

log(1 + x) = x− x2

2
+ O(x3), (4.10)

we get

log fn(τn)
(4.9)
= log

(
fn(1) − δnf

′
n(1) +

δ2
n

2
f′′
n (1) + O(δ3

n)

)

= log fn(1) + log

(
1 − δnf

′
n(1)

fn(1)
+
δ2
nf

′′
n (1)

2fn(1)
+ O(δ3

n)

)

(4.10)
= log fn(1) − δn

f′
n(1)

fn(1)
+
δ2
n

2

(
f′′
n (1)

fn(1)
− f′

n(1)2

fn(1)2

)
+ O(δ3

n). (4.11)

The function Λ′
n(x) satisfies the conditions of Lemma 4.1. Hence,

log ρn
(4.8)
= log

τnΛ
′
n(1)

Λ′
n(τn)

= log τn + log Λ′
n(1) − log Λ′

n(τn)

(4.11)
= δn

(
Λ′′
n(1)

Λ′
n(1)

− 1

)
+
δ2
n

2

(
Λ′′
n(1)2

Λ′
n(1)2

− Λ′′′
n (1)

2Λ′
n(1)

− 1

)
+ O(δ3

n). (4.12)

Because of (4.8) and the fact that τn → 1, we might expect that Λ′′
n(1)/Λ′

n(1) is close to

1. Indeed, applying Lemma 4.1 to the function xΛ′′
n(x), we get

Λ′′
n(1) = τnΛ

′′
n(τn) + δn(Λ

′′
n(1) + Λ′′′

n (1)) + O(δ2
n),

and using instead the function Λ′
n(x), we get

Λ′
n(1) = Λ′

n(τn) + δnΛ
′′
n(1) + O(δ2

n).

Thus

Λ′′
n(1)

Λ′
n(1)

=
τnΛ

′′
n(τn) + δn(Λ

′′
n(1) + Λ′′′

n (1)) + O(δ2
n)

Λ′
n(τn) + δnΛ′′

n(1) + O(δ2
n)

=
1

Λ′
n(τn)

τnΛ
′′
n(τn) + δn(Λ

′′
n(1) + Λ′′′

n (1)) + O(δ2
n)

1 + δn
Λ′′
n (1)

Λ′
n(τn)

+ O(δ2
n)

=
1

Λ′
n(τn)

(
τnΛ

′′
n(τn) + δn(Λ

′′
n(1) + Λ′′′

n (1)) + O(δ2
n)

)(
1 − δn

Λ′′
n(1)

Λ′
n(τn)

+ O(δ2
n)

)

=
1

Λ′
n(τn)

(
τnΛ

′′
n(τn) + δn

(
Λ′′
n(1) + Λ′′′

n (1) − τnΛ
′′
n(τn)

Λ′′
n(1)

Λ′
n(τn)

)
+ O(δ2

n)

)
.

Using (4.8), and the fact that Λn(τn) = Λn(1) + O(δ),

Λ′′
n(1)

Λ′
n(1)

= 1 + δn

(
Λ′′
n(1) + Λ′′′

n (1)

Λ′
n(τn)

− Λ′′
n(1)

Λ′
n(1)

)
+ O(δ2

n)

= 1 + δn
Λ′′′
n (1)

Λ′
n(1)

+ O(δ2
n),
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so by (4.12),

log ρn =
δ2
n

2

(
1 +

Λ′′′
n (1)

Λ′
n(1)

)
+ O(δ3

n). (4.13)

Lemma 4.5. The probability that one branch of the branching process dies out after pro-

ducing at least k vertices is

P[k � βn < ∞] ∼ c3e
−c2kδ

2
n k−1/2, (4.14)

where c3 > 0 is a constant, and c2 > 0 is as in Lemma 4.4.

Proof. Recall that qk(n) is the probability that the branching process dies out after

precisely k vertices have been produced. According to Theorem 4.3,

qk(n) ∼ cρ−k
n k

−3/2(1 + O(k−1)),

for a constant c. Hence

P[k � βn < ∞] =
∑
i�k

qi(n) ∼
∑
i�k

cρ−i
n i

−3/2(1 + O(i−1))

∼ c
∞

k

ρ−x
n x−3/2(1 + O(x−1))dx

∼ c −ρ−x
n x−1/2

(
2 +

4

3
log ρn + o(x−1)

)]∞

k

= cρ−k
n k

−1/2

(
2 +

4

3
log ρn + o(k−1)

)
.

Now (4.14) follows from Lemma 4.4.

Lemma 4.5 tells us the probability that one branch of the branching process dies out

after k vertices have been created. The complete branching process has two branches,

which produce β(1)
n and β(2)

n vertices respectively. We have

[k � β(1)
n < ∞] ∧ [β(2)

n < ∞] ⇒ [k � Bn < ∞]

and

[k � Bn < ∞] ⇒ [k/2 � β(1)
n < ∞] ∨ [k/2 � β(2)

n < ∞].

Hence we get the lower bound

P[k � Bn < ∞]
(4.7)

� P[k � β(1)
n < ∞](1 − 2δn)

∼c3e
−c2kδ

2
n (1+o(1))k−1/2, (4.15)

and the upper bound

P[k � Bn < ∞] � 2P[k/2 � βn < ∞]

� 3c3e
− 1

2 c2kδ
2
n (1+o(1))k−1/2. (4.16)
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Let Cn be the random variable denoting the number of vertices in the component

containing a random edge in G∗
n. We will show that Cn and Bn behave very similarly.

Lemma 4.6. Let αn and γn be such that k = γnn
2/3 and δn = αnn

−1/3. Suppose that γn � |αn|.
Then there are constants c4, c5, c6, c7 such that, for large enough n,

P[Cn � k] � c4e
−c5kδ

2
n (1+o(1))k−1/2 + Iδn>04δn(1 + o(1)) (4.17)

and

P[Cn � k] � c6e
−c7kδ

2
n (1+o(1))k−1/2 + Iδn>04δn(1 + o(1)). (4.18)

Let k− = γ−
n n

2/3 and k+ = γ+
n n

2/3, where γ−
n � γ+

n � αn. Then there is a positive constant c8

such that, for large enough n,

P[k− < Cn < k+] � c8e
−c2α

2γ−(1+o(1))k
−1/2
− . (4.19)

Proof. There are two problems which can cause Bn and Cn to differ. The first is the

fact that in the random graph cycles can be formed, whereas this does not happen in

the ordinary branching process. The second problem is that in the branching process the

probability that a vertex has, say, i children remains the same throughout the process.

When exposing the component in the random graph, this is not true, since it depends

on how many vertices of degree i+ 1 we have exposed so far. We will show that both

of these factors have a negligible effect as long as the number of vertices exposed is not

too large.

We first consider the possibility of cycles being formed. Suppose that k vertices have

already been exposed in C. We first choose a half-edge w1 in a partially exposed vertex, and

then a half-edge w2 uniformly at random from all unexposed half-edges. The probability

that w2 is in a partially exposed vertex is then O
(
k
n

)
.

On the other hand, let Xm,i denote the number of vertices of degree i among the first m

vertices exposed. These m vertices are picked at random from the total of n vertices, with

every vertex being chosen with probability proportional to its degree. Since we consider

the case that m is asymptotically small compared to n, the distribution of Xm,i approaches

a binomial distribution Bin
(
m, iλi(n)

d

)
when n tends to infinity. Let bm be the degree of the

mth vertex. We obtain the upper bound

P[bm = i] =
niλi(n) − iXm,i

dn−
∑

j jXmj

� iλi(n)

d

1

1 − 1
dn

∑
j jXm,j

=
iλi(n)

d

(
1 + O

(
k

n

))
,

when m � k. The probability that the mth vertex exposed has degree i is therefore

(1 + o(1)) iλi(n)
d

when m is small. Hence,

E[Xm,i] = (1 + o(1))
miλi(n)

d
,
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while the standard deviation is roughly σm,i = miλi(n)
d

(
1 − iλi(n)

d

)
. Using Chernoff bounds,

we can show that there is a constant c, such that, with probability 1 − o(n−2), we have

|Xm,i − E[Xm,i]| � cσm,i log n. (4.20)

Hence, with probability 1 − o(n−1) (4.20) holds for all i = 1, . . . , ψ(n), where ψ(n) is the

maximum degree. We can therefore condition on (4.20) holding, for all i = 1, . . . , ψ(n) and

m = o(n).

Let Kn be the set of integers i with 1 � i � ψ(n) such that miλi(n)
d

� log2 n. By (4.20),

for every i ∈ Kn, Xm,i = (1 + o(1))E[Xm,i] = (1 + o(1))miλi(n)
d

, and for every i �∈ Kn, Xm,i �
c′ log n for some constant c′. We therefore have

∑
i

iXm,i =
∑
i∈Kn

(1 + o(1))
mi2λi(n)

d
+ O

(∑
i�∈Kn

log2 n

)

= (1 + o(1))
m

d

∑
i

i2λi(n) + O
(
ψ(n) log2 n

)

= (1 + o(1))
m

d
(Λ′′(1) + Λ′(1)).

Then we can also find a lower bound on the probability that the mth vertex has degree i:

P[bm = i|i ∈ Kn] =
niλi(n) − iXm,i

dn−
∑

j jXm,j

=
iλi(n)

d

1 − (1+o(1))mi
nd

1 − m
d2n

(Λ′′(1) + d)(1 + o(1))

=
iλi(n)

d

(
1 + O

(
k

n

))
, (4.21)

for 1 � m � k, whereas

P[bm = i|i �∈ Kn] =
niλi(n) − iXm,i

dn−
∑

j jXm,j

�
niλi(n) − miλi(n)

d
− c miλi(n)

d
log n

dn

� niλi(n) − c′ log2 n

dn

=
iλi(n)

d
− c′ log2 n

dn
.

We will denote the branching process defined in Section 3 by B. Thus we may say that

if we use the branching process B to approximate the component exposure process C, then

at every step there is a chance that we choose the ‘wrong’ degree. We therefore introduce

a modified branching process B as follows. In B an edge gets i children with probability

pi = (i+1)λi+1(n)
d

. If i ∈ Kn, then an edge in B gets i children with probability pi = pi(1 + εi),

where εi = εi(n) are error terms depending on n, such that |εi| � |δ|. If i �∈ Kn, then an

edge in B gets i children with probability pi = pi + εi, where again εi = εi(n) depends on n,

and |εi| � c′ log2 n
n

. Note that if i �∈ Kn, then the error term is not relative to pi. By choosing
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the functions εi appropriately, we can make sure that the process B becomes either an

upper bound or a lower bound of the exposure process C, and we will show that as long

as the stated bounds are satisfied, the behaviour of B does not differ much from the

behaviour of B. We then obtain the probability generating function for the number of

children of an edge in the modified branching process as

pn(z) =
∑
i

piz
i =

∑
i∈Kn

pi(1 + εi)z
i +

∑
i�∈Kn

(pi + εi)z
i

= pn(z) +
∑
i∈Kn

piεiz
i −

∑
i�∈Kn

εiz
i.

We are interested in the behaviour of pn(z) when z ∈ (1 − 2δ, 1 + 2δ). In this interval

zψ(n) = 1 + o(1) since ψ(n) = o(n1/4). Hence∣∣∣∣
∑
i∈Kn

piεiz
i

∣∣∣∣ = o(δ)

∣∣∣∣
∑
i∈Kn

piz
i

∣∣∣∣ = o(δ),

and ∣∣∣∣
∑
i�∈Kn

εiz
i

∣∣∣∣ � (1 + o(1))ψ(n)
c′ log n

dn
= o(n−3/4).

We can therefore write pn(z) = pn(z) + cn(z), where cn(z) is a function such that |cn(z)| =

o(δ) when z ∈ (1 − 2δ, 1 + 2δ). Likewise we can show that |
∑

i∈Kn
ipiεiz

i−1| = o(δn) and

|
∑

i�∈Kn
iεiz

i| = o(n−1/2), so that also |c′
n(z)| = o(δ). We let τn be defined such that pn(τn) −

τnp
′
n(τn) = 0, and let δn = 1 − τn. Let ζn = τn − τn. Then

0 = pn(τn) − τnp
′
n(τn)

=
(
pn(τn) + cn(τn)

)
− τn

(
p′
n(τn) + c′

n(τn)
)

= pn(τn + ζn) − (τn + ζn)p
′
n(τn + ζn) + o(δn)

= pn(τn) + ζnp
′
n(τn) + O(ζ2

n ) − (τn + ζn)(p
′
n(τn) + ζnp

′′
n(τn) + O(ζ2

n )) + o(δn)

= −ζnp′′
n(1) + O(ζ2

n ) + o(δn),

by Lemma 4.1. Hence ζn = o(δn), so δn ∼ δn. Let Bn be the random variable denoting

the number of vertices generated in B, and let qn(z) be the corresponding probability

generating function. Then qn(z) is given implicitly by qn(z) = zpn(qn(z)). According to

Theorem 4.3, the dominant singularity of qn(z) is ρn = τn
pn(τn)

. Lemma 4.4 states that

log ρn ∼ c2δ
2
n; we can similarly calculate that log ρn ∼ c2δ

2. Hence, by Theorem 4.3,

qk ∼ cρ−k
n k

−3/2 = ce−c2k log ρnk−3/2 = ce−c2kδ
2
n (1+o(1))k−3/2, (4.22)

where c is a positive constant. Furthermore, as in Lemma 4.2, the probability that B does

not die out is 0 if δn < 0, and if δn > 0, then P[Bn = ∞] ∼ 4δn ∼ 4δn.

Instead of approximating C by the branching process B, we will approximate it by B,

choosing the functions εi(n) appropriately. In C the probability that the next vertex chosen

has degree i depends on the previously exposed vertices, while in B, the probabilities are the

same all the time. In (4.21) we gave bounds for the deviations of the probabilities between

B and C. In the definition of B, we assumed that the deviations εi are asymptotically

smaller than δ, while in (4.21) the deviations were found to be O
(
k
n

)
. By assumption,
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k
n

= γnn
−1/3 � αnn

−1/3 = δn, so in B, the error terms εi can be chosen in such a way that

B becomes either a lower bound of C, or an upper bound. We can therefore derive (4.17)

in the same manner as (4.16), and (4.18) in the same manner as (4.15). As for (4.19), we

use (4.22) to obtain

P[k− < Cn < k+] =

k+∑
k=k−

P[Cn = k] ∼
k+

k−

ce−c2xδ
2(1+o(1))x−3/2dx

� 2ce−c2k−δ
2(1+o(1))k−

−1/2

= 2ce−c2α
2γ−(1+o(1))k

−1/2
− .

5. The phase transition

Using the lemmas of the previous section, we can now prove Theorem 1.2.

5.1. The subcritical case

We first consider case (1) of Theorem 1.2, that αn = δnn
1/3 → −∞. We want to show that

the largest component in Gn a.a.s. has o(n2/3) vertices.

Let k = cn2/3 for some constant c. Since clearly c � |αn|, (4.17) implies that, for large

enough n,

P[Cn � k] � c4√
c
e−cc5α

2
nn−1/3, (5.1)

where c4, c5 > 0. Let Xk be the number of vertices in components of order greater than k,

and let Ak be the event that there is a component of order at least k. Then, by (5.1) and

Markov’s inequality,

P[Ak] = P[Xk � k] � E[Xk]

k
∼ nP[Cn � k]

k
� c4

c3/2
e−cc5α

2
n → 0.

There is therefore a.a.s. no component in G∗
n with more than cn2/3 vertices, for every

positive constant c. This, together with Lemma 2.1, completes the proof.

5.2. The supercritical case

Now we consider the supercritical phase, when αn = δnn
1/3 � c1 log n. We call a component

large if it has � n2/3 vertices and small if it has o(n2/3) vertices. We will prove firstly that

a.a.s. every component is either large or small, secondly that there is a.a.s. at least one

large component, and thirdly that there is a.a.s. only one large component.

Lemma 5.1. Let ω(n) be a function which tends to infinity as n → ∞, but such that ω(n) =

o(log n). There is a constant c9, such that, if αn � c9 log n, then the probability that G∗
n

contains a component of order between k− = n2/3/ log n and k+ = n2/3ω(n) is O(n−1).

Proof. If v is a vertex, we let C(v) be the component containing v. Then, according to

(4.19),

P[k− � |C(v)| � k+] � c8e
−c2α

2
n/ log nk

−1/2
−

� c8n
−c2c

2
9n−1/3 log n.
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Let X be the number of vertices contained in components of order between k− and k+,

and let A be the event that there is at least one such component. Then, by Markov’s

inequality,

P[A] = P[X � k−] � E[X]

k−
=
nP[k− � |C(v)| � k+]

k−

� c8n
−c2c

2
9 log3/2 n.

Clearly c9 can be chosen so large that P[A] = O(n−1).

We assume that c1 in Theorem 1.2 satisfies c1 � c9. Thus, by Lemma 5.1 we know that

a.a.s. every component in G∗
n is either large or small. We will now show that there is a.a.s.

at least one large component in G∗
n. We will do this by considering a subgraph H of G∗

n,

which can also be viewed as a random graph with degree sequence D′
0, where D′

0 is some

asymptotic degree sequence.

Let us consider the configuration model Cn. We know that the perfect matching Pn can

be constructed greedily. We will construct it in the following way: for some m, we first

choose m pairs of half-edges randomly, and label them e1, . . . , em. Let L′
0 = Ln \

⋃m
i=1 ei be

the set of unmatched half-edges, and let D′
0 be the degree sequence of L′

0. Then we choose

a random perfect matching, P′
0, of L′

0, and let C′
0 be the random configuration consisting

of the set L′
0 of half-edges and the matching P′

0. Let H be the underlying multigraph of

C′
0. Then H is a subgraph of G∗

n.

Each of the pairs of half-edges ei, with 1 � i � m is chosen in the following way. We

first choose a half-edge uniformly at random from the set of yet unmatched half-edges in

vertices of degree at least 3. The second half-edge is chosen uniformly at random from

all unmatched half-edges. This is a valid way to generate the random matching Pn, since,

as we stated in Section 2, the first half-edge in every pair can be chosen in an arbitrary

manner, as long as the second half-edge is chosen uniformly at random. Moreover, we

will make sure that we always have m = o(n), and since, by assumption, λ∗
i > 0 for some

i � 3, the set of vertices of degree at least 3 will not be exhausted.

Recall that αn = δnn
1/3. We write αn = α(Dn), such that α is a function of the degree

sequence Dn. In the process explained in the previous paragraph we do not fix m

beforehand, but we choose the pairs e1, e2, . . . one by one and remove them from Ln.

Whenever an edge is removed from Ln in this manner, the value of Qn(z) decreases.

Indeed, by assumption, at least one of the end-vertices of ei, for any i, has degree 3 or

greater. In the case that the end-vertices have degree 1 and 3 respectively, the value of

Qn(1) decreases by 2
n
. Any other combination of degrees causes Qn(1) to decrease by a

greater amount.

We know from (1.6) (which follows from Lemma 4.1) that Qn(1) and δ are proportional.

Hence δ and α similarly decrease whenever a pair of half-edges is removed from Ln. It

is clear that removing sufficiently many pairs of half-edges will cause Qn(1), and thereby

α, to become negative. We will continue to remove pairs of half-edges until the degree

sequence D′ of the remaining set is such that α(D′) � log3/8 n. Since the maximum degree

is less than n1/4 by assumption, the value of α decreases by at most O(n−3/4) for every
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pair removed; hence we will have α′
0 := α(D′) ∼ log3/8 n. The graph H is then a random

multigraph with degree sequence D′
0.

Set γ− = log−9/10 n and γ+ = log2/5 n, and let k− = n2/3γ− and k+ = n2/3γ+. We will

show that H a.a.s. contains a component of order at least k−. This implies that G∗
n a.a.s.

contains a component of order at least k−, and Lemma 5.1 then implies that G∗
n a.a.s. has

a component of order asymptotically greater than n2/3.

We let C ′
0 be the random variable denoting the order of the component containing a

specified vertex of H . We let A′
k be the event that there is at least one component in H

of order at least k, and we let X ′
k be the number of vertices which are contained in such

components. Then, using (4.17), we get

P[C ′
0 � k+] � c4e

−c5γ+(α′
0)2(1+o(1))k

−1/2
+ + 4α′

0n
−1/3(1 + o(1)) ∼ 4α′

0n
−1/3.

Thus

P[Ak+
] = P[X ′

k+
� k+] � n

k+
P[C ′

0 � k+] � 4α′
0

γ+
= 4 log−1/40 n = o(1).

We can therefore condition on Ak+
, namely that H does not contain any components of

order k+ or greater.

By (4.18),

E[X ′
k−

] = nP[C ′
0 � k−]

� n
(
c6e

−c7γ−(α′
0)2(1+o(1))k−1/2 + 4α′

0n
−1/3(1 + o(1))

)
∼ n2/3

(
c6γ

−1/2
− e−c7(1+o(1)) log−0.15 n + 4 log3/8 n

)
∼ n2/3

(
c6 log9/20 n+ 4 log3/8 n

)
∼ c6n

2/3 log9/20 n.

Suppose that v is a vertex in a component of order at least k−. Since we condition on

Ak+
, the component containing v has at most k+ vertices. The expected number of vertices

w �= v, such that w is also contained in a component of order at least k−, is therefore

bounded by k+ + E[X ′
k−

]. Since k+ � E[X ′
k−

],

E[X ′
k−

(X ′
k−

− 1)] � E[X ′
k−

]
(
k+ + E[X ′

k−
]
)

= E[X ′
k−

]2(1 + o(1)),

so by Chebyshev’s inequality, a.a.s. X ′
k−

∼ E[X ′
k−

]. We conclude that H , and thereby G∗
n,

a.a.s. contains a component of order at least k−. Hence, according to Lemma 5.1, G∗
n a.a.s.

contains at least one large component.

It remains to prove that there is just one such component in G∗
n. We will do this by

deleting a certain number of edges in the same way as in the previous step, but now we fix

m = �n2/3 log n�. Furthermore, this time we will choose the edges e1, . . . , em uniformly at

random. We let as before L′
0 = L \

⋃m
i=1 ei, and P′

0 be a random perfect matching of L′
0.

For 1 � i � m, we let L′
i = L′

i−1 ∪ ei, and let D′
i be the degree sequence of L′

i. Furthermore

we let P′
i be the perfect matching of L′

i consisting of the pairs in P′
0 together with the

pairs e1, . . . , ei. We let Hi be the underlying multigraph of the configuration C′
i, which

consists of L′
i and P′

i. Then Hi can be considered a random graph with given degree

sequence D′
i, and G∗

n = Hm.
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By assumption αn = α(D′
m) � c1 log n. We will first show that α′

0 = α(D′
0) � αn, i.e.,

α′
0 = Θ(αn); α

′
0 and αn are of the same order of magnitude. Let λ′

i(n) be the proportion of

vertices in H0 having degree i. Let Qn(x) =
∑

i i(i− 2)λi(n)x
i and Q0(x) =

∑
i i(i− 2)λ′

i(n)x
i.

Recall that τn = 1 − δn, and that Qn(τn) = 0. We let τ′
0 be a number such that Q0(τ′

0) = 0,

and we let δ′
0 = 1 − τ′

0. We have to show that δ′
0 � δn.

We let D(x) = Q(x) − Q0(x) =
∑

i i(i− 2)(λi(n) − λ′
i(n))x

i. Suppose first that the differ-

ence between the degree sequence of Hm = G∗
n, and the degree sequence of H0 is that

precisely one vertex has degree d in H0, but degree d+ 1 in Hm, while all other vertices

have unchanged degree. (Ignore for a moment that this is impossible.) Then

∑
i

i(i− 2)(λi(n) − λ′
i(n))τ

i
n =

1

n
(−d(d− 2)τdn + (d+ 1)(d− 1)τd+1

n )

=
τdn
n

(2d− 1 + (1 − d2)δn).

Now we remember that the difference between Hm and H0 is more substantial, namely

that m edges have been added to H0 to obtain Hm. Let mi be the number of times any

vertex gets its degree increased from i to i+ 1 in this process. Then

D(τn) =
∑
i

i(i− 2)(λi(n) − λ′
i(n))τ

i
n

=
1

n

∑
i

(2i− 1 + (1 − i2)δn)miτ
i
n,

and 2m =
∑

i mi. Since m = n2/3 log n, τn → 1 and δn → 0, we see that D(τn) ∼ c10
m
n

=

c10n
−1/3 log n for a constant c10 > 0. Hence

Q0(τn) = Q(τn) − D(τn) = −c10n
−1/3 log n. (5.2)

Let ∆τ = τn − τ′
0. By Lemma 4.1,

Q0(τn) = Q0(τ′
0) + ∆τQ′

0(τ′
0) + ∆τ2Q′′

0(τ′
0) + O(∆τ3). (5.3)

Equations (5.2) and (5.3) imply that

∆τQ′
0(τ′

0) + O(∆τ2) = −c10n
−1/3 log n,

so ∆τ � −n−1/3 log n. Since the difference between τn and τ′
0 is in the order of n−1/3 log n,

we get that α′
0 ∼ (c1 − c10)αn. We assume that c1 is so large that c1 − c10 � c9, where c9 is

the constant in Lemma 5.1.

Let α′
i = α(D′

i). Since α′
i+1 � α′

i, we have α′
i � c9 log n for all i = 0, . . . , m. Thus, by

Theorem 5.1, the probability that there is a component with between n2/3/ log n and n2/3

in any of the graphs H0, . . . , Hm is bounded by n2/3−1 log n = o(1). It follows that every large

component in Hi for i = 1, . . . , m must contain some large component in Hi−1, and hence

every large component in Hm must contain at least one of the large components in H0.

Let C1, . . . , Cl be the large components in H0. We must prove that these components

a.a.s. are contained in one component in G∗
n. Recall that m edges were removed from G∗

n to

obtain H0. We will show that for every pair (Ci, Cj) of large components in H0, it is very

likely that one of the edges removed from G∗
n joins two vertices in Ci and Cj to each other.
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Let E = {e1, . . . , em}, and let M be the set of vertices in G∗
n which are incident to one

of the edges in E. Suppose that v is a vertex of degree i in G∗
n. The probability that ej is

incident to v is i
dn

. It follows that the expected number of vertices of degree i which are

incident to one of the edges in E is miλi(n)
d

. The expected number of edges in H0 which

are incident to a vertex in M is then
∑

i(i− 1)miλi(n)
d

= m
d

∑
i i(i− 1)λi(n). Because D, and

therefore also D0, is well-behaved, the sum tends to a constant, so the expected number

of edges in H0 incident to a vertex in M is c11m for some constant c11 > 0.

Now let e be any edge in H0, and suppose we expose the component containing e

as explained in Section 3. At any point in the exposure process the probability that

the next vertex is a vertex in M is c11m
dn

� n−1/3 log n. Let ω(n) → ∞ be such that

each of the components C1, . . . , Cl contains at least n2/3ω(n) vertices. The expected

number of vertices in M among the first n2/3ω(n) vertices exposed in any component

is Θ(n1/3ω(n) log n). Furthermore, the distribution of the number of such vertices tends

to a binomial distribution Bin(n2/3ω(n), c11

d
n−1/3 log n) as n → ∞, so we assert that for

any i = 1, . . . , l, with probability 1 − o(n−1), the number of vertices in M ∩ Ci is at least

c12n
1/3ω(n) log n for some constant c12 > 0.

There can be at most n1/3 large components in H0, so a.a.s. each of these components

has at least c12n
1/3ω(n) log n vertices from M. Consider two components Ci and Cj in H0

with 1 � i, j � l, and let v be a vertex in M ∩ Ci. The probability that one of the edges

in E has v as one endpoint and its other endpoint in Cj is
|M∩Cj |

|M| � c12n
1/3 log n

2n2/3 log n
� n−1/3.

The probability that none of the vertices in M ∩ Ci is adjacent to a vertex in M ∩ Cj is

therefore

(
1 − 1

n1/3

)c12n
1/3ω(n) log n

∼ e−c12ω(n) log n = o(n−1).

Since l � n1/3, the expected number of pairs of the components Ci, Cj with 1 � i, j � l,

which are not connected by one of the m edges, is then at most n2/3n−1 = o(1). Hence,

a.a.s. all the components have joined to form a single component. This, together with

Lemma 2.1, concludes the proof of Theorem 1.2.

6. Concluding remarks

Theorem 1.2 implies that the critical phase of Gn is similar to the critical phase in the

standard random graph model, G(n, p). The parameter δnn
1/3 in Theorem 1.2 plays the

same role for Gn as λ in (1.1) does for G(n, p). Indeed, the method we have used in

this paper also works for G(n, p). Suppose that p = c
n

= 1
n

+ ε
n
, where ε = ε(n) → 0 as

n → ∞. It is well known that the components can be modelled using a branching process,

where a vertex gets i children with probability pi = e−cci

i!
. The corresponding probability

generating function is p(x) =
∑
pix

i = ec(x−1). If we let q(x) be the probability generating

function for the number of vertices generated before the branching process dies out, we

get q(x) = xp(q(x)). We let τ and ρ be as in Theorem 4.3. Then τ = 1
c
, and ρ = 1

c
e1−c, so

log ρ = ε− log(1 + ε) = ε2/2 − ε3/3 + · · · .
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From (4.13) we get

δ2
n

2

(
1 +

Λ′′′
n (1)

Λ′
n(1)

)
+ O(δ3

n) = log ρn =
ε2

2
− ε3

3
+ · · · .

We set ε = λn−1/3 to make it comparable to (1.1). Then δn and λ satisfy

δnn
1/3 � εn1/3 = λ.

In part (b) of Theorem 1.2 we have a lower bound on δnn
1/3; however, we believe that

it holds whenever δnn
1/3 → ∞, as for the critical phase in G(n, p).

For further references on the component structure in random graphs with a given degree

sequence, see Chung and Lu [5], �Luczak [9] and Newman, Strogatz and Watts [13].

References

[1] Athreya, K. B. and Ney, P. E. (1972) Branching Processes, Vol. 196 of Die Grundlehren der

Mathematischen Wissenschaften, Springer, New York.

[2] Bender, E. A. and Canfield, E. R. (1978) The asymptotic number of labeled graphs with given

degree sequences. J. Combin. Theory Ser. A 24 296–307.

[3] Bollobás, B. (1984) The evolution of random graphs. Trans. Amer. Math. Soc. 286 257–274.

[4] Bollobás, B. (2001) Random Graphs, 2nd edn, Vol. 73 of Cambridge Studies in Advanced

Mathematics, Cambridge University Press, Cambridge.

[5] Chung, F. and Lu, L. (2002) Connected components in random graphs with given expected

degree sequences. Ann. Comb. 6 125–145.

[6] Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Magyar Tud. Akad. Mat.
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