22 research outputs found

    Symmetry Detection in Large Scale City Scans

    No full text
    In this report we present a novel method for detecting partial symmetries in very large point clouds of 3D city scans. Unlike previous work, which was limited to data sets of a few hundred megabytes maximum, our method scales to very large scenes. We map the detection problem to a nearestneighbor search in a low-dimensional feature space, followed by a cascade of tests for geometric clustering of potential matches. Our algorithm robustly handles noisy real-world scanner data, obtaining a recognition performance comparable to state-of-the-art methods. In practice, it scales linearly with the scene size and achieves a high absolute throughput, processing half a terabyte of raw scanner data over night on a dual socket commodity PC

    Accuracy of surface guided radiotherapy for patient setup positioning in cases of surface deformation

    Get PDF
    13301ç”Č珏5565ć·ćšćŁ«ïŒˆäżć„ć­ŠïŒ‰é‡‘æČąć€§ć­ŠćšćŁ«è«–æ–‡æœŹæ–‡Ful

    Variance-Minimizing Transport Plans for Inter-surface Mapping

    Get PDF
    International audienceWe introduce an effcient computational method for generating dense and low distortion maps between two arbitrary surfaces of same genus. Instead of relying on semantic correspondences or surface parameterization, we directly optimize a variance-minimizing transport plan between two input surfaces that defines an as-conformal-as-possible inter-surface map satisfying a user-prescribed bound on area distortion. The transport plan is computed via two alternating convex optimizations, and is shown to minimize a generalized Dirichlet energy of both the map and its inverse. Computational efficiency is achieved through a coarse-tone approach in diffusion geometry, with Sinkhorn iterations modified to enforce bounded area distortion. The resulting inter-surface mapping algorithm applies to arbitrary shapes robustly, with little to no user interaction

    Variance-Minimizing Transport Plans for Inter-surface Mapping

    Get PDF
    We introduce an efficient computational method for generating dense and low distortion maps between two arbitrary surfaces of same genus. Instead of relying on semantic correspondences or surface parameterization, we directly optimize a variance-minimizing transport plan between two input surfaces that defines an as-conformal-as-possible inter-surface map satisfying a user-prescribed bound on area distortion. The transport plan is computed via two alternating convex optimizations, and is shown to minimize a generalized Dirichlet energy of both the map and its inverse. Computational efficiency is achieved through a coarse-to-fine approach in diffusion geometry, with Sinkhorn iterations modified to enforce bounded area distortion. The resulting inter-surface mapping algorithm applies to arbitrary shapes robustly, with little to no user interaction

    Evaluation of the Catalyst system for patient positioning during breast cancer treatment

    Get PDF
    Bröstcancer Ă€r den vanligaste formen av cancer hos kvinnor. Fler Ă€n 7000 diagnostiseras med denna sjukdom varje Ă„r i Sverige. En del av behandlingen mot cancern Ă€r strĂ„lbehandling. För att strĂ„lbehandlingen ska ge goda effekter Ă€r det viktigt att det Ă€r den sjuka vĂ€vnaden som bestrĂ„las, och att den friska vĂ€vnaden förskonas frĂ„n strĂ„lningen i den mĂ„n det Ă€r möjligt. Detta uppnĂ„s genom noggranna strĂ„ldosplaner individuellt utformade för varje patient. StrĂ„lbehandling ges vanligtvis i 16 eller 25 fraktioner, det vill sĂ€ga att patienten kommer tillbaka dagligen till kliniken 16 eller 25 gĂ„nger för behandling. Det Ă€r viktigt att patienten ligger i samma position vid varje tillfĂ€lle för att strĂ„ldosen ska kunna levereras exakt till tumöromrĂ„det. I denna studie har ett nytt positioneringssystem utvĂ€rderats som heter ”The CatalystTM system” (©2011 C-RAD Positioning AB). PĂ„ SkĂ„nes Universitetssjukhus i Malmö placeras patienten under behandling liggandes i en stĂ€llning pĂ„ behandlingsbritsen. Armarna placeras i skenor ovanför huvudet och stĂ€llningen lutar 7,5⁰ bakom ryggen. Dagens rutiner gĂ„r till sĂ„ att under planeringsstadiet i behandlingskedjan har patienten fĂ„tt tre smĂ„ tatueringsprickar. Dessa anvĂ€nds under positioneringen ihop med laserstrĂ„lar som finns i behandlingsrummet. DĂ„ prickarna och laserstrĂ„larna sammanfaller ligger patienten i rĂ€tt lĂ€ge. NĂ€sta steg för att försĂ€kra sig om att patienten ligger i rĂ€tt position Ă€r att ta röntgenbilder pĂ„ patienten. Man korrigerar patientens position efter resultatet frĂ„n röntgenbilderna och sedan kan man starta strĂ„lbehandlingen. Röntgenbilder tas vanligtvis vid de tre första fraktionerna. DĂ€refter gör man en medelvĂ€rdeskorrektion av bordspositionen om det krĂ€vs för att fĂ„ patienten i det korrekta lĂ€get. Under behandlingsgĂ„ngen tas Ă€ven röntgenbild vid en senare fraktion för att försĂ€kra sig om att patienten fortfarande ligger i rĂ€tt lĂ€ge. The CatalystTM Ă€r ett positionerings och övervakningssystem som inte anvĂ€nder sig av röntgen för att kontrollera patientens position utan det hĂ€r systemet anvĂ€nder sig av optisk scanning av hudytan. Detta har en sjĂ€lvklar fördel dĂ„ det inte bidrar till nĂ„gon extra strĂ„ldos till patienten och kan dĂ€rmed anvĂ€ndas vid varje behandlingstillfĂ€lle. Systemet anvĂ€nder sig av en icke-rigid kroppsalgoritm som berĂ€knar hur patienten ska flyttas för att hamna i rĂ€tt position. De delar av kroppen som ligger i fel position lyses upp genom att rött eller gult ljus projiceras pĂ„ patienten, beroende pĂ„ Ă„t vilket hĂ„ll som flytten ska ske. DĂ„ en arm belyses med rött ljus kan sjuksköterskan enkelt positionera om armen för att fĂ„ den i rĂ€tt position. The CatalystTM har Ă€ven fördelen att den registrerar eventuella rörelser under bestrĂ„lningen. Skulle patienten flytta sig visar systemet detta direkt pĂ„ en datorskĂ€rm sĂ„ att sjuksköteskorna kan avbryta behandlingen och positionera om patienten. För att undersöka hur The CatalystTM fungerar i kliniken för att positionera patienter har tre studier utförts. Den första studien var en fantomstudie dĂ€r fantomet flyttades inom mĂ€tvolymen för att undersöka systemets noggrannhet och mĂ€tvolymens utstrĂ€ckning. Den andra studien utfördes med hjĂ€lp att det kliniska CBCT (Cone Beam CT) systemet som tar 3D bilder av skelettet och anvĂ€nder en automatisk benmatchningsfunktion för att ge patientens position. Fantomet i studien hade dĂ„ inre benstruktur, vilket var mer patientlikt. I studien undersöktes om CBCT systemets automatiska benmatchning och The CatalystTM ytmatchning gav samma positioneringsresultat. Den tredje studien var en patient studie som innefattade tretton patienter dĂ€r röntgenbilder och Catalyst bilder togs vid varje behandlingstillfĂ€lle för att undersöka hur vĂ€l systemen överrensstĂ€mmer. Resultaten frĂ„n de tre studier som utförts visar att noggrannheten pĂ„ systemet inte Ă€r inom en millimeter vilket Ă€r önskvĂ€rt. Systemet behöver vidare utveckling för att kunna sĂ€kert positionera patienter och The CatalystTM har potential för att lyckas med detta.Purpose: The CatalystTM system was tested and compared with an X-ray image verification system for patient positioning during breast cancer treatment. Included was to find the optimal reference image and the optimal cropping method for the reference image. Parameters that could lead to an optimization of the treatment routines were also evaluated. Method and Material: The study was divided into three parts, “Accuracy measurement of the scanning volume”, “The Catalyst system correspondence with CBCT verification images on a phantom” and “The Catalyst system correspondence with planar verification images on patients.” Accuracy measurements of the scanning volume were performed with a head shaped phantom which had skin equivalent characteristics. The phantom was positioned in a coordinate table and was moved in steps of 2 millimeters in lateral and longitudinal direction in four different planes to investigate the accuracy in the scanning volume. The CBCT study was performed with a pelvis phantom. The phantom was moved ten times and the deviation from the reference images in the CBCT system and the CatalystTM system were compared. The Catalyst system correspondence with planar verification images on patients included thirteen patients which at every treatment fraction were positioned with On-Board Imaging (OBI, Varian©), planar verification images (kV). The positioning results were also registered with the Catalyst system. Both systems used the same reference set-up from the CT scan and the positioning results were compared. The optimal cropping method for the reference image was also evaluated. Results: The results of the study “Accuracy measurement of the scanning volume” showed that the system has a limit at 7.5 cm above the isocenter and that the most accurate results were registered in the plane 5.0 centimeters above the isocenter. The error in the positioning result was 0-4.0 millimeters in the scanning volume. There was no detectable drift in the values in lateral, longitudinal or vertical direction. The CatalystTM system correspondence with CBCT verification images on a phantom resulted in a high accuracy in positioning in vertical and lateral direction with a correspondence of 0-2.0 millimeters. In the longitudinal direction the results differed between 4.0-6.0 millimeter and which was probably due to a flat structure of the phantom. The results from the patient positioning study varied depending on the patient. The optimal reference image was determined to be from the CT structure set. An optimal cropping method for the reference image was found and later used for the analysis of the patient positioning. Conclusions: The CatalystTM system shows accurate positioning result for the phantom studies. The limitation was due to flat or spherical surfaces where the algorithm had difficulties. The flat structure did not provide enough matching information for the algorithm and for the spherical shape the optimization method found a number of solutions. This implies that it is important that the reference image in a patient situation has some structure that the system can use for matching. In the patient positioning study the reference image for every patient were cropped in an optimal way, mainly to minimize the breathing motion. The results of the study indicated that the system does not correspond well with the planar verification images enough for all patients, possible due to that the verification image system matches due to bony structure and the Catalyst system matches due to the skin surface
    corecore