
HAL Id: hal-01519006
https://hal.inria.fr/hal-01519006

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variance-Minimizing Transport Plans for Inter-surface
Mapping

Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre Alliez, Mathieu
Desbrun

To cite this version:
Manish Mandad, David Cohen-Steiner, Leif Kobbelt, Pierre Alliez, Mathieu Desbrun. Variance-
Minimizing Transport Plans for Inter-surface Mapping. ACM Transactions on Graphics, Association
for Computing Machinery, 2017, 36, pp.14. �10.1145/3072959.3073671�. �hal-01519006�

https://hal.inria.fr/hal-01519006
https://hal.archives-ouvertes.fr


Variance-Minimizing Transport Plans for Inter-surface Mapping

MANISH MANDAD, RWTH Aachen University and Inria, Université Côte d’Azur
DAVID COHEN-STEINER, Inria, Université Côte d’Azur
LEIF KOBBELT, RWTH Aachen University
PIERRE ALLIEZ, Inria, Université Côte d’Azur
MATHIEU DESBRUN, Caltech and Inria, Université Côte d’Azur

We introduce an e�cient computational method for generating dense and

low distortion maps between two arbitrary surfaces of same genus. Instead

of relying on semantic correspondences or surface parameterization, we

directly optimize a variance-minimizing transport plan between two in-

put surfaces that de�nes an as-conformal-as-possible inter-surface map

satisfying a user-prescribed bound on area distortion. The transport plan

is computed via two alternating convex optimizations, and is shown to

minimize a generalized Dirichlet energy of both the map and its inverse.

Computational e�ciency is achieved through a coarse-to-�ne approach in

di�usion geometry, with Sinkhorn iterations modi�ed to enforce bounded

area distortion. The resulting inter-surface mapping algorithm applies to

arbitrary shapes robustly, with little to no user interaction.
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1 INTRODUCTION
Finding a map between two surfaces is a recurring task in geome-

try processing, required by a wide range of applications including

shape matching, template �tting, attribute and animation transfer,

shape completion, blending, morphing, and remeshing. It consists

in establishing a meaningful correspondence map between two in-

put surfaces, and has been referred to as inter-surface mapping

[Schreiner et al. 2004], cross-parameterization [Kraevoy and She�er

2004], consistent parameterization [Asirvatham et al. 2005], and

shape alignment in the graphics literature.

If the two surfaces are isometric, e�cient algorithms exist to

automatically �nd a locally isometric map between these shapes.

When the two surfaces belong to the same speci�c class of shapes,

maps based on semantic correspondences (where semantic features

in one shape are associated to the corresponding features in the

other shape) can also be constructed [van Kaick et al. 2011]; recently,

approaches that learn what a user considers to be good correspon-

dences have even been proposed [Boscaini et al. 2016]. However, in
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Fig. 1. Inter-surface mapping. Our approach generates a dense, low-
distortion correspondence map between non-isometric surfaces through a
geometrically-derived transport map minimizing local variances of associ-
ated neighborhoods. Only two user-defined constraints were prescribed in
these models, at the tip of diametrically opposed limbs. Colors are used to
indicate correspondences between all these models.

most practical cases where shapes di�er signi�cantly, there is no uni-

versal consensus on what de�nes the best correspondence map. In

this more challenging case of arbitrary inputs, one typically invokes

a geometric prior instead, such as conformality or area-preservation,

to narrow down the type of suitable maps to seek.

In this paper we propose a computational approach for generat-

ing inter-surface maps that are bijective and have some degree of

continuity, i.e., small neighborhoods should map to bounded neigh-

borhoods. Our method involves the optimization of a transport

map between the two surfaces, which de�nes an as-conformal-as-

possible point-to-point map with bounded area distortion. These

resulting geometric properties make our inter-surface maps partic-

ularly useful to subsequent geometry processing.

1.1 Previous Work
Previous geometric approaches can be classi�ed by the type of

mapping (point-to-point vs. soft), its properties (bijective, locally

injective), its measure of distortion (isometric, conformal) and the

optimization strategy employed to �nd the mappings. We review

the most relevant approaches next.

Embedding spaces. When dealing with near isometric maps, a

practical way to simplify matching is to embed the input manifolds

into some target space in such a way that corresponding points of

di�erent isometric shapes are mapped to nearby points in the target

space. A popular way of building such embeddings is to use spec-

tral geometry [Bronstein et al. 2006; Gallot et al. 1994; Shtern and

Kimmel 2015; Vestner et al. 2017]. Another approach in this family

of methods use a common template mesh as embedding space. The

base domain is often chosen to be a coarse mesh obtained [Schreiner

et al. 2004] through mesh decimation , or using overlapping domains

[Kraevoy and She�er 2004] bounded by consistent paths connecting
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feature points . The mapping is then constructed by optimizing a

mutual tessellation of the two surfaces. While this approach can han-

dle non-isometric transformations, decreasing the global non-linear

distortion through vertex-by-vertex updates of the map is often very

slow. Instead, our approach directly optimizes a transport plan over

the two surfaces, bypassing the need for embedding spaces.

Parameterization. Surface mappings can be computed via mesh

parameterization as well. Recent approaches o�er to construct

bounded distortion maps [Lipman 2012], angle-preserving maps

with as uniform as possible conformal factors [A�alo et al. 2013], us-

ing cone manifolds [Myles and Zorin 2013] or orbifolds [Aigerman

and Lipman 2015], or even propose to relax the bijective condition

of the parameterization to local injectivity [Aigerman et al. 2014].

One main limitation of these parameterization-based approaches is

that the map distortion is not directly measured between the two

input surfaces, but through a common base domain, which leads

to suboptimal inter-surface maps. Mapping to a common domain

also often requires designing a cut-graph which increases distor-

tion as well (see [Aigerman et al. 2015] for a recent improvement).

In contrast, our approach directly optimizes a surface-to-surface

map without resorting to an intermediate domain. Moreover, while

A�alo et al. [2013] sought conformal maps with no (or bounded)

area distortion, we look instead for area-preserving (or bounded

area distortion) maps that are as conformal as possible.

Soft maps and optimal transport. While point-to-point mapping

between surfaces has been favored in the past, soft maps [Solomon

et al. 2012] and functional maps [Ovsjanikov et al. 2012] (where

functions or distributions are mapped between surfaces) have been

shown relevant to the analysis of correspondences through lin-

ear algebra tools. Using a mass transport formulation, Solomon et

al. [2012] generate transport maps that are continuous, faithful to

geometric descriptors and soft. Continuity of such maps means that

nearby regions on one surface should map to nearby mass distribu-

tions on the other surface, where “nearby” is to be understood with

respect to the geodesic earth mover’s distance. In addition, softness

of the map is e�ciently optimized by L2 maximization of the spread-

ing of the probabilities in the mapping matrix describing the mass

transport plan. The manner in which a soft map transports one dis-

tribution to another can also help control map continuity [Solomon

et al. 2013]. Corman et al. [2015] �nd inter-surface mappings by inte-

grating vector �elds so as to minimize a soft map based energy that

favors isometry. Note that softness of transport maps can also be

used as a means to accelerate the computation of optimal transport

plans: Cuturi devised an entropic regularization of transport which

reduces optimal transport computational times by several orders

of magnitude, at the price of smoothed-out transport plans [Cuturi

2013; Solomon et al. 2015]. Frogner et al. [2015] further extended

smoothed transport to unnormalized measures, a concept also re-

ferred to as relaxed or unbalanced transport [Chizat et al. 2015, 2016].

In sharp contrast, our approach avoids soft maps altogether, and

entropic regularization is used sparingly and for numerical stability

only; computational scalability is, instead, gained by optimizing the

transport plan in a coarse to �ne fashion in di�usion space (i.e.,

based on a small fraction of eigenvectors of the Laplace operator).

Gromov-Wasserstein distances. Mémoli [2011] pioneered the use

of the Gromov-Wasserstein distance for deriving a metric approach

to the shape matching problem. Solomon et al. [2016] computed cor-

respondences through an entropy regularized Gromov-Wasserstein

objective function, using the Softassign algorithm [Rangarajan et al.

1999]. Their objective function tries to pair points with similar geo-

desic distances on the two shapes. However, the solver involved in

this approach loops through compute-intensive iterations of cubic

complexity in the number of points to be matched, and a matrix

of pairwise geodesic distances must be stored, rendering the con-

struction of a dense map intractable. In addition, the resulting maps

in the Gromov-Wasserstein approach can have one-to-many cor-

respondences (see Fig. 20). While this property may be valuable

in speci�c applications, it does not provide the type of one-to-one

mappings that geometry processing tools typically requires. We

deviate from their approach by formulating a very di�erent notion

of distortion, related to the symmetric Dirichlet energy of transport

maps, that naturally induces point-to-point maps. Moreover, our

mapping algorithm has nearly linear complexity, thus allowing the

construction of inter-surface maps over two orders of magnitude

faster in practice than these existing approaches.

1.2 Contributions
In this work we introduce an approach for �nding inter-surface

maps based on a mass transport formulation that minimizes the

variance of the images of local neighborhoods. Variance-minimizing

transport plans, which we show to be minimizers of the symmetric

Dirichlet energy of maps in the continuous limit, inherently favor

conformality and induce continuity and sharpness of the resulting

map while enforcing bounded area distortion. Although this new

formulation becomes non-convex and hence substantially more chal-

lenging to minimize, we reformulate it as a biconvex minimization

problem. A coarse-to-�ne approach based on a hierarchy built in

di�usion geometry is then devised to e�ciently optimize the map

through alternating minimizations and reduce the risk of getting

trapped in local minima. We demonstrate our robust and scalable

algorithm for inter-surface mapping on a series of non-isometric

models (see, e.g., Fig. 1).

2 APPROACH
Our approach stems from the simple idea that given two pointsets

X= {xi } and Y= {yj } sampling two input surfaces, we should aim at

constructing a map between X and Y that associates neighborhoods

from one pointset with neighborhoods in the other pointset, and

vice-versa. We formulate this inter-surface mapping as an optimal

mass transport problem between the two surfaces that minimizes

the variance of the image of each neighborhood.

2.1 Setup
In order to formulate our map optimization problem, we introduce

a few key concepts that we will leverage throughout our exposition.

Surfaces as distributions. Our approach considers each pointset

as a discrete mass distribution. More speci�cally, we discretize the

normalized area measures of the two surfaces as weighted sums

of Dirac measures centered at input points, i.e., µ =
∑
mi δxi and
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ν =
∑
nj δyj , where the masses mi and nj are normalized so that

each surface has unit total mass, i.e.,

∑
imi =

∑
j nj =1. The mass of

each point is assigned based on the estimated local Voronoi area of

the surface it covers to account for non-uniform sampling.

Maps as transport plans. Given two distributions µ and ν , a trans-

port plan π between them is by de�nition a matrix of size |X|× |Y|
whose marginals equal µ and ν . Each entry πi j represents the

amount of mass transported from xi ∈ X to yj ∈ Y. A transport

plan π has two associated transfer operators πX and πY de�ned as

πX (δxi ) =
1∑
j πi j

∑
j
πi j δyj , πY (δyj ) =

1∑
i πi j

∑
i
πi j δxi .

Note that the denominators are respectively equal to mi and nj .
These two linear operators describe how mass distributions on X
are mapped to mass distributions on Y with the same total mass, and

vice-versa. Therefore, they contain essentially the same information

as the transport plan.

Weighting functions. For every point x on a surface, we associate

an isotropic weighting functionWx centered at x (de�ned as either

a heat kernel based function in Sec. 3.2 or a Gaussian function in

Sec. 4.2) for two purposes: �rst, its �nite support de�nes a notion

of local neighborhood; second, weighting functions can be used as

local test functions to measure the variance of an inter-surface map,

as we explain next.

2.2 Variance-minimizing Transport Plans
Our approach consists in computing the transport plan π between

µ and ν that minimizes the following variance-based transport cost:

E (π ) =

∫
X

var πX

(
Wx µ

mass(Wx µ )

)
dµ (x ) +∫

Y
var πY

(
Wyν

mass(Wyν )

)
dν (y).

(1)

That is, this cost evaluates the integral of the variance of the im-

age, by the transfer operator and its inverse, of the area measure

modulated by local weighting functions (see inset below: (left) orig-

inal measure, then (middle) modulated by weighting functions, and

(right) its corresponding measure through the plan).

· · · · · ·X

Wxµµ πX
Y

xx
· · · · · · · · · · · ·

Properties. The reason for targeting such a variance-minimizing

plan is two-fold. First, penalizing the variance of images favors trans-

port plans corresponding to actual point-to-point maps rather than

soft, di�used maps: any point mass that is mapped to a spread-out

distribution incurs a signi�cant cost. Second, variance-minimizing

maps tend to be bijective, since we also account for the inverse

map in the cost evaluation. Bi-continuity is also expected of the

minimizers of our cost as we penalize variances of images of small

neighborhoods de�ned by the support of our weighting functions.

Moreover, we will show that our variance-based formulation of the

transport cost is amenable to e�cient plan optimization.

Discrete symmetric Dirichlet energy. The cost function E (π ) of a

plan π can be understood a discrete approximation of the symmetric

Dirichlet energy of the map and its inverse: it coincides with the

Dirichlet energy for in�nitesimal weighting functions with isotropic

covariance matrices tending to zero. More speci�cally, let f : S 7→ S ′

be a di�eomorphism between two surfaces. Choose the weighting

function at x ∈ S to be a Gaussian distribution with covariance

σ 2I , where σ is a small positive number. Let v be a random vector

drawn from this distribution. Then the integrand of E at x is by

de�nition the variance of f (v ). For small σ , we may further approx-

imate locally the two manifolds by their tangent spaces. Under this

approximation f (v ) is a Gaussian with covariance σ 2 (Df ) (Df )>,

hence var( f (v )) = 2σ 2 | |Df | |2F . As a consequence, the total cost is

proportional to the sum of the Dirichlet energy of f and the Dirich-

let energy of its inverse. Note that the same conclusion holds for

non Gaussian weighting functions, as long as they have isotropic

covariances with total variance independent of x , and tending to 0.

While generalization of the Dirichlet energy to transport plans have

been proposed in the literature (see, e.g., [Solomon et al. 2013]), we

are not aware of any existing formulation that also penalizes soft

maps, a property that is essential for our purposes as it implies that

our optimal plans can be expected to be close to conformal if no

other constraints are imposed.

2.3 Optimizing Transport Plans
While the formulation of transport cost given above induces good

geometric properties for the optimal map, it involves a non-convex

functional which may seem di�cult to minimize e�ciently and

robustly. We can, however, introduce auxiliary variables within the

variance terms so that �nding a variance-minimizing map amounts

to solving a biconvex problem, which we achieve through alternating
convex minimization.

Reformulation with auxiliary variables. Given a point x and a

measure µ=
∑
µi δxi , we de�ne the variance of µ with respect to x

as:

var(µ,x ) =
∑
i µi d (xi ,x )

2, (2)

where distancesd (·, ·) are computed in a (possibly high-dimensional)

Euclidean embedding of the surface X that µ samples, such that the

minimum of this variance is found through a simple linear average

Fig. 2. Mapping via variance minimization. Le�: Two input pointsets
forming a line and a curve with a loop respectively (rainbow and grey
colormaps depict their geodesic connectivity). Middle le�: initial optimal
transport map using the 2-Wasserstein distance (correspondences in thin
lines). Middle right: our variance-minimizing map a�er alternating mini-
mization iterations using ambient, Euclidean distances. Right: result a�er
minimization using geodesic (i.e., intrinsic) distances instead.
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of positions in this embedding. Note that using geodesic distances in

the de�nition of the variance would be computationally intractable

beyond the case of curves, while using R3 distances would be poorly

adapted as it only provides information on the extrinsic structure of

the surface; we will thus use a “di�usion” embedding (see Sec. 3.1)

which is fully intrinsic, but as simple to evaluate as the R3 distance—

and short distances in this embedding will be good approximations

of geodesic distances on X, which enforces that our approximation

will be accurate for �ne enough sampling. As we will see later, these

embedding can further be used in a multiscale way, which will lead

to better optima and increased e�ciency as well. With this notion

of variance w.r.t. a point location, we can now introduce a set of

point locations ηxi and ηyj , one for each point xi and yj on the two

surfaces. These auxiliary variables, which we call centers for reasons

that will become clear soon, allow us to rewrite our transport cost

between X and Y as a function of both the transport plan π and the

set of all centers η:

C (π ,η) =
∑
i
mi var

[
πX

(
Wxi µ∑

k mkWxi (xk )

)
,ηxi

]
+

∑
j
nj var

[
πY

(
Wyjν∑

k nkWyj (yk )

)
,ηyj

]
.

(3)

Note that minimizing this cost functional with respect to η assigns

each center ηxi (resp., ηyj ) to the (weighted) center of mass of the

image of the normalized weighting functions Wxi (resp. Wyj ) by

the transport plan π . For such values of η, the cost functional is

precisely equal to the energy de�ned in Eq. (1).

Minimization through alternating convex problems. This augmented

cost functional C (π ,η) is now amenable to an alternating minimiza-

tion similar to Expectation-Maximization (EM): for a �xed transport

plan π , minimizing C (π , .) is e�ciently achieved by relocating the

centers to the barycenters of the images of the weighting functions

by π (see Sec. 3.2); for �xed centers, minimizing C (.,η) requires

the computation of an optimal transport plan under the usual mass

preservation constraints. Alternately minimizing the cost C over

πi j and η as described in Alg. 1 is a robust and e�cient way to

treat the original non-linear problem since both minimization prob-

lems are convex. Fig. 2 shows the transport plan after alternating

minimization iterations for an example between two curves, where

we use a Gaussian weighting function as our local test function

to measure variance. Note that the number of iterations needed to

properly “unfold” one curve onto the other depends on the width of

this function: if the weighting function used as a test function is too

narrow, the variance is only measured locally and many iterations

are needed as Fig. 3 shows. This observation calls for a coarse to

�ne treatment where alternating minimizations are performed at

multiple scales to improve e�ciency, as we detail later.

Additional control over the mapping. The cost we de�ned in Eq. (3)

measures the regularity of a transport plan via its local variance.

However, user control over the �nal mapping is often desirable: the

user may want to prescribe a few correspondences manually. If xi
must map to yj , we simply constrain the center ηxi to be yj and

ηyj to be xi . Additionally, one can add to the transport cost a small

Algorithm 1 Map optimization through alternating minimization

1: function Alternating Minimization

2: repeat
3: η ← minC (π , �) // relocate centers to local barycenters
4: π ← minC (�,η) // solve optimal transport problem

5: until ∆C/C < 0.001

6: return π . variance-minimizing transport plan

10 20 30 40
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Fig. 3. Convergence of alternating minimizations. This plot indicates
the number of iterations to reach convergence for the curve-to-curve map
in Fig. 2, against the weighting function’s width (indicated as the number
of neighbors xi such thatWx (xi )> 0.5) used to measure variance.

amount of the standard 2-Wasserstein distance between the surfaces

to help the solver disambiguate symmetries, see Sec. 5.

3 NUMERICAL TOOLS
Our geometric mapping algorithm relies on the frequent evaluation

of distances and barycenters on surfaces, as well as the repeated

evaluations of optimal transport plans. Before delving into the de-

tails of our algorithm, we discuss a few numerical tools we will rely

on heavily; in particular, the use of di�usion geometry and Sinkhorn

iterations will help make our approach both robust and e�cient.

3.1 Di�usion Geometry
The concept of di�usion geometry introduced in [Coifman et al. 2005;

Nadler et al. 2005] proposes to embed a Riemannian manifold into a

“di�usion space” whose coordinates are derived from the eigenvec-

tors and eigenvalues of the celebrated Laplace-Beltrami operator. In

our context, this intrinsic di�usion operator ∆ is approximated on

each pointset and we denote its M smallest eigenvalues by {λk } and

its corresponding eigenfunctions by {ϕk } with ∆ϕk = λkϕk . Then a

point x ∈X is projected into (truncated) di�usion space as x̂ through:

x
Φt
−→ x̂ = Φt (x ) =

*......
,

e−λ1t/2ϕ1 (x )

e−λ2t/2ϕ2 (x )
...

e−λM t/2ϕM (x )

+//////
-

, (4)

where t controls the di�usion time scale. For two points x1 and x2,

the corresponding heat kernel Kt (x1,x2) is expressed as:

Kt (x1,x2) = Φt (x1)
>Φt (x2), (5)

while the di�usion distance between these points is computed as:

d
di�

(x1,x2) = ‖Φt (x1) − Φt (x2)‖, (6)

or d2
di�

(x1,x2) = Kt (x1,x1)+Kt (x2,x2)−2Kt (x1,x2) equivalently.

For small t , di�usion distances can be shown to approximate local
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geodesic distances very well, while increasing t has a smoothing

e�ect by diminishing the contribution of high frequency eigenfunc-

tions [Coifman et al. 2005]. In order to keep the computational cost

low, we select only the �rst M smallest eigenvalues of the Laplace-

Beltrami operator (M =100 in practice, unless indicated otherwise).

3.2 Leveraging Di�usion Geometry
One of the key points of our approach is the use of di�usion geome-

try to approximate a number of important geometric notions.

Di�usion centers. The geodesic barycenter of a weighted neigh-

borhood de�ned on a surface is in general not expressible in closed

form and may not even be unique if the neighborhood is large. A

crucial reason for using di�usion distance instead is that we can

compute weighted di�usion barycenters in closed form as simple
weighted averages of points in di�usion space as discussed in Sec. 2.3.

This property brings signi�cant speedup since converting a point

to di�usion space is done e�ciently via Eq. (4). Moreover, because

of their intrinsic nature, di�usion coordinates are much preferable

to Euclidean coordinates in R3 as they are more robust to averaging

of distant points. These di�usion centers will thus be used in lieu of

the true geodesic centers.

Weighting Functions. If distances and variances are computed in

di�usion space, a consistent choice for the weighting functionWx is

to rely upon the heat kernel in Eq. (5) in order to de�ne an approxi-

mate geodesic neighborhood. While this choice is nicely isotropic

for small di�usion times t , its support becomes o�-centered for large

values of t (see Fig. 4). We use instead the weighting function:

Wx (xi ) =
2Kt (x ,xi )

Kt (x ,x ) + Kt (xi ,xi )
, (7)

which remains localized and centered for any di�usion time while

still satisfying Wx (x ) = 1. In addition, we truncate the weighting

function below ε=0.5 (Fig. 4) in order to further localize its associ-

ated geodesic neighborhood, which will reduce computational times

required to evaluate geodesic variances.

Projection to tangent planes. As part of our algorithm, local projec-

tions to tangent planes will be necessary in Section 4.4 to check map

consistency. While this is easily achieved for a �ne sampling of the

surface in Euclidean space, the use of di�usion geometry requires

the same operation to be performed directly in di�usion space. To

�nd the two tangent vectors forming the di�usion tangent plane at a

point x on the surface, we proceed as follows. We �rst assemble the

matrix of size M×3 for which the k-th row is ∇ϕk (x ). Then, for two

approximate tangent vectors u and v in Euclidean 3D space (e.g.,

computed based on two nearest neighbors of x), we multiply this

matrix by each of these vectors to get the di�usion tangent vectors

û and v̂ , that we further orthonormalize. Any point ẑ in di�usion

space can now be directly projected onto the 2D di�usion tangent

plane at x through (ẑ>û, ẑ>v̂ ). Note that this simple projection to

the di�usion tangent plane through inner products provides a con-

sistent de�nition of the notion of linear approximation of the surface

even for coarse sampling, adding signi�cant robustness: de�ning a

tangent space in Euclidean space for a coarse sampling of a surface

would be much less reliable.

Fig. 4. Choice of weighting functions. From le� to right: Kt (x,xi),
Kt (x,xi)/

√
Kt (x,x )Kt (xi ,xi) and 2Kt (x,xi)/(Kt (x,x )+Kt (xi ,xi)) for x in-

dicated as the purple vertex. Its neighborhood, i.e., vertices xi for which
Wx (xi )> ε, is shown with green spheres proportional to function values.

3.3 Sinkhorn Iterations
Since our approach relies on repeated optimizations of transport

plans, an e�cient solver for optimal transport problems is manda-

tory. In order to avoid having recourse to Linear Programming, re-

cent work [Benamou et al. 2015; Cuturi 2013] proposed an entropic

regularization of the optimal transport problem which minimizes

the Kullback-Leibler (KL) divergence:

min

{
KL(π |Kγ )

def.

=

"
π

[
ln

π

Kγ
− 1

]
dxdy

}
, (8)

where γ controls the amount of regularization and Kγ denotes the

kernel associated to the cost function. This regularized optimal

transport map can be e�ciently computed using Sinkhorn’s matrix

row/column normalization algorithm which is several orders of

magnitude faster than solving a linear program.

Sinkhorn algorithm. Following [Benamou et al. 2015; Solomon

et al. 2015], given a matrix H discretizing the kernel Kγ , the trans-

port plan minimizing Eq. (8) between two datasets X and Y is of the

form π =DmDvHDwDn, for diagonal matrices Dv and Dw de�ned

by vectors v,w that satisfy:




DvHDwn = 1 |X | ,
DwH>Dvm = 1 |Y | ,

(9)

where H is of size |X| × |Y|, m and n represent the mass (normalized

Voronoi area) vectors of X and Y, and 1k is the vector of ones of

size k . Notice that the properties π1 |Y | =m and π>1 |X | = n are

enforced by Eq. (9). We �nd (v,w) via Sinkhorn iterations [Sinkhorn

1964] as detailed in Alg. 2, where � and ⊗ denote entrywise division

and multiplication, respectively. Convergence is assumed when the

change in KL divergence is less than 0.1%.

Algorithm 2 Sinkhorn iterations to solve for optimal transport

1: function Sinkhorn

2: v,w← 1
3: while !converged do
4: v← 1 |X | � H (n ⊗ w)

5: w← 1 |Y | � H>(m ⊗ v)

6: return π =DmDvHDwDn . Transport plan
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Fig. 5. Mapping between isometric poses. Result of our algorithm be-
tween three di�erent dog poses; the reference pose is on the le�, and its
strip-coloring is displayed on the other two shapes based on resulting maps.

Working in log space. The original Sinkhorn approach assembles

the kernel matrix H through its elements Hi j =exp(−coef(πi j )/γ ),
where coef(πi j ) refers to the coe�cient of πi j in the cost function

(3). The regularization coe�cient γ used to compute the optimal

transport is recommended to be set such that max{coef

(
πi j

)
}/γ <

200 [Cuturi 2013] in practice, to prevent numerical blowups due to

limited �oating-point dynamic range. However, this choice of coef-

�cient usually creates a di�use transport plan, con�icting with our

objective to construct variance-minimizing plans. In our approach,

we sidestep this numerical limitation by storing the coe�cients of

the kernel matrix in log scale and compute the Sinkhorn iterations

in log scale directly (see also the concurrent work of [Schmitzer

2016] for a similar approach). This implies that we now store Hi j =

−coef(πi j )/γ , and perform the inner products a>b in Steps 4-6 of

Alg. 2 (involving columns or rows of H) by �rst computing the

maximum element Z =maxi {a[i] + b[i]}, and evaluating

a>bBZ + log
∑
j
exp(a[j]+b[j] − Z ).

Working in log scale and subtracting the maximum element drasti-

cally reduces the negative e�ects of a limited �oating-point dynamic

range, allowing us to safely set toγ =max{coef

(
πi j

)
}/10−4, a 50-fold

decrease in regularization. In order to further improve e�ciency,

we also use the previous values of v and w instead of initializing

them to 1 in each successive relaxation iterations.

3.4 Mass-Relaxed Sinkhorn Iterations
When dealing with a very non-isometric pair of shapes, enforcing

strict mass preservation leads to mappings with high anisotropic

di�erentials. This anisotropy may become signi�cant enough locally

to render the optimal map ill-suited for further geometry processing.

Relaxing the mass preservation constraint helps remove this issue,

while providing a simple way to bound area distortion.

Adapting Sinkhorn iterations. A way to relax the mass preserva-

tion constraint in the framework of entropy-regularized optimal

transport is to solve the following optimization problem:

min

π ∈Π
KL(π |Kγ )

where Π denotes the set of matrices satisfying:

πi j ≥ 0, αimi ≤
∑
j πi j ≤ βimi ,∑

i, j πi j = 1, α ′jnj ≤
∑
i πi j ≤ β

′
jnj ,

where 0≤αk≤ 1≤ βk and 0≤α ′k≤ 1≤ β
′
k are the prescribed lower

and upper bounds on the allowed mass distortion on each surface.

We write the convex set of allowed solutions as the intersection

of two convex sets, namely the set Π1 of matrices satisfying the

�rst, second and third conditions above, and the set Π2 of matrices

satisfying the �rst, second and fourth conditions. Optimizing over

their intersection can be done using Dykstra’s algorithm adapted

to KL divergence in [Bauschke and Lewis 1998; Benamou et al.

2015]. This algorithm only requires projections of distributions on

each convex set (in the sense of KL divergence), which we derive

in App. A. It turns out that the KL projections on Π1 and Π2 boil

down to row and column rescaling respectively; because of these

particularly simple forms, the auxiliary variables used in the original

Dykstra’s algorithm do not play any role, and the overall algorithm

reduces to iterated KL projections on Π1 and Π2. Also, since only

row and column rescaling is used, we may represent the transport

plan π at each iteration as a product of matrices associated to vectors

v and w as in the usual Sinkhorn algorithm. Pseudocode for the

algorithm is given in Alg. 3, and related functions are in Alg. 4.

Algorithm 3 Mass-Relaxed Sinkhorn iterations

1: functionMass_Relaxed_Sinkhorn

2: while !converged do
3: lb← α � H(n ⊗ w) . lower bound

4: ub← β � H(n ⊗ w) . upper bound

5: r ← solution to Global_Mass_v(lb, ub)
6: v← Update_Vector_Global_Mass(r , lb, ub)
7: lb← α ′ � H> (m ⊗ v)
8: ub← β ′ � H> (m ⊗ v)
9: r ← solution to Global_Mass_w(lb, ub)

10: w← Update_Vector_Global_Mass(r , lb, ub)
11: return π =DmDvHDwDn . Relaxed transport plan

Algorithm 4 Relaxed Sinkhorn subroutines

1: function x =Update_Vector_Global_Mass(r , lb, ub)

2: for all i do
3: if lb[i] ≤ r ≤ ub[i] then x[i]← r
4: else if ub[i] < r then x[i]← ub[i]
5: elsex[i]← lb[i]

6: function r = Global_Mass_v(lb, ub)

7: x(r ) ←Update_Vector_Global_Mass(r , lb, ub)
8: r ← solution to m>DxHDwn = 1

9: function r = Global_Mass_w(lb, ub)

10: x(r ) ←Update_Vector_Global_Mass(r , lb, ub)
11: r ← solution to m>DvHDxn = 1

Note that each KL projection requires solving an equation to

compute parameter r , which must be chosen such that the resulting

transport plan has global mass equal to 1. Fortunately, the global

mass is piecewise linear and non decreasing as a function of r , with

a number of nodes equal to twice the number of points in each

dataset. Hence, solving for r can be done by simply sorting these

nodes. In the rare case that no solution exists, we set r to a large

magnitude, with the appropriate sign.
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Three-fold Alternating Minimizations. When bounded area distor-

tion is allowed, our alternating minimization algorithm described

in Sec. 2.3 cannot be directly extended to the case where we relax

mass preservation: the denominator in our de�nition of transfer

operators makes the transport plan optimization step more di�cult,

and seemingly not reducible to a convex problem. To solve this issue,

we introduce two additional variables m′i and n′j , conceptually cor-

responding to respectively

∑
j πi j and

∑
i πi j . Rather than enforcing

strict equality, we allow slack by setting the following constraints:




C−1m′i ≤
∑
j πi j ≤ Cm′i ,

C−1n′j ≤
∑
i πi j ≤ Cn′j .

(10)

for some constant C close to 1 (set to 1.1 in our experiments). We

also impose that D−1mi ≤m
′
i ≤Dmi and D−1nj ≤n

′
j ≤Dnj , where

D is a user-chosen bound on the allowed mass distortion. We then

modify the transfer operators to:

π ′X (δxi ) =
1

m′i

∑
j
πi j δyj , π

′
Y (δyj ) =

1

n′j

∑
i
πi j δxi .

and optimize the functional C′(π ,η) obtained from C (π ,η) in Eq. (3)

by just replacing πX by π ′X and πY by π ′Y.

We then proceed by alternately optimizing over the three sets

of variables π , (m′,n′), and η. To solve for πi j , we use the relaxed

Sinkhorn iterations described above. Solving for m′ and n′ requires

the optimization of a positive linear combination of inverses of their

coe�cients over a hypercube. This convex optimization problem

is solved in O (n logn) time using an algorithm similar to the one

used above to enforce global mass preservation. Finally, the update

of η remains a simple weighted average as before.

4 OPTIMAL MAP SOLVER
Equipped with the algorithmic and numerical components we de-

scribed above, we can now formulate an e�cient and scalable solver

for our inter-surface mapping approach.

4.1 Coarse-to-Fine Approach
As demonstrated by the convergence plot in Fig. 3 of the inter-

curve map shown in Fig. 2, computational times for our variance-

minimizing transport plan based approach may depend heavily on

the size of neighborhoods we consider. While large neighborhoods

make our alternating minimizations converge faster, the number of

variables |X|+|Y| for two surfaces is quite large, inducing a high com-

putational cost despite our use of fast transport plan solvers. Instead,

we note that �nding proper correspondences between arbitrary sur-

faces lends itself rather naturally to a coarse-to-�ne strategy: it is

quite simple to �nd a rough map between two simpli�ed versions of

the surfaces as the number of samples involved is low; then building

a more precise map from this rough approximation becomes simpler

and less prone to being stuck in a local minimum. Therefore, we

operate our transport optimization on a hierarchy of approxima-

tions of the two surfaces. By starting the map optimization on a

coarse sampling of the surfaces (and thus, a small number of vari-

ables) and progressively increasing resolution to re�ne the map, we

signi�cantly reduce the total computation time required to �nd a

variance-minimizing map. As discussed in Sec. 3.2, using di�usion

Algorithm 5 Overall Coarse-to-Fine Algorithm

1: function Overall Algorithm

2: Build_Hierarchy() // �rst di�usion, then Euclidean levels

3: π ← Initialization(S0) // solve for coarsest map

4: for all S0,S1 . . .S` do // traverse hierarchy

5: π ← Alternating Minimization(Si ,π )
6: π ← Fix_Flips_And_Twists(Si ,π )

7: return π . Mapping between X and Y

geometry for low sampling of surfaces is also particularly conve-

nient and reliable as it leverages spectral approximations of the �ne,

original surfaces. This means that any instance of the positions x , y,

ηx and ηy is replaced by its equivalent in di�usion space, i.e., x̂ , ŷ, η̂x
or η̂y as detailed in Sec. 3.1. When a transport plan has been found at

the �nest level of our hierarchy, we then switch to a pure Euclidean

stage where now the sampling is �ne enough to continue re�ning

the map using more traditional computations of tangent planes and

barycenters. Throughout this hierarchical process, we also check

that the map is locally well behaved to avoid degeneracies. In this

section, we mostly describe the di�usion stage, but brie�y mention

how to adapt this process to the (simpler) Euclidean stage in Sec. 4.5.

Pseudocode for our coarse-to-�ne strategy is given in Alg. 5.

4.2 Constructing Hierarchy in Di�usion Space
We begin with the construction of a hierarchical sampling where

the cardinality of a neighborhood, de�ned via a kernel-derived

weighting functionWx via Nx = {xi ∈X :Wx (xi )≥ ε } (as mentioned

in Sec. 3.2) remains constant as we go to �ner levels in the hierarchy

so as to limit computational complexity.

We leverage the smoothing properties of the time scale t in di�u-

sion geometry (see Sec. 3.1) to construct a hierarchy of dyadic levels,

one for each time scale t` = 2
−`t0. Starting from a large di�usion

time scale t0 = ln 10/λ2 [Sun et al. 2009], we build a subsampling

S0 of the input dataset via farthest point insertion; i.e., we add one

point at a time from the original pointset such that it is the farthest

from the currently selected subset. We stop adding points to this

level once the farthest point p just added satis�esWx (p)>τ for the

nearest neighboring point x currently in S0 for a value τ satisfying

1>τ >ε (we take τ =0.9 in our experiments), since it indicates that

we found a dense enough sampling for that level. This approach

ensures that the area contributing to the neighborhood of any point

x in the level (namely, the set of points xi satisfying ε <Wx (xi )<τ )

is covered by at most a constant number of Voronoi cells, leading

Fig. 6. Di�usion distance estimates on thin parts. The black dots depict
the final sampling during the last, finest di�usion stage. Le�: with 100
eigenvectors, sampling is insu�icient to get satisfactory precision on thin
parts (dog’s feet, tail, ears). This may translate into twists of the mapping
(middle). Right: using 300 eigenvectors significantly improves precision.
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to a constant neighborhood cardinality. We then proceed with the

construction of the next level using the same furthest point inser-

tion strategy. As the time scale decreases, levels S` become more

dense until eventually, no additional points can be inserted: since

only a limited number of eigenvectors are used to compute di�u-

sion distances, our weighting functions will stop being “discerning”

past a certain scale (see Fig. 6). Further levels are then computed

using Euclidean distances instead, at which point local distances

are almost equal to geodesic distances.

4.3 Sparsified Sinkhorn Variables
At the coarsest level of the hierarchy, we can a�ord to solve the full

optimal transportation problem as we have considerably reduced

the number of samples. However, this number steadily increases as

we proceed to �ner levels. In order to maintain a reasonable compu-

tational cost at higher resolutions, we limit the number of variables

in the Sinkhorn iterations as follows. Consider the transport plan

found so far; since our functional favors homeomorphisms, we can

expect that the support of the transport plan is sparse since each

point is mapped to only a small number of points as a consequence

of variance minimization. Now, we consider a slightly enlarged sup-

port containing all pairs (x ′,y′) such that there exists a pair (x ,y)
in the current support with x ′ ∈Nx and y′ ∈Ny . For the next round

of Sinkhorn iterations, we limit our transport plan to this enlarged

support, which limits the number of variables to instantiate (Fig. 7).

Note that this process is repeated within each level of the hierarchy

several times during our alternating minimization steps, so the sup-

port can gradually move to an optimal location as the centers are

relocated—thus eliminating the artifacts that a naive reduction of

variables in the transport plan could induce. Once the map stops

evolving, we move to the next hierarchy level.

Locality. We leverage the locality of the transport map we are solv-

ing for to further accelerate the computation involved in Sinkhorn

iterations. At a given level ` of the hierarchy, a naive implementa-

tion of Sinkhorn iterations would use a matrix H of size |S` | × |S` |,

and each iteration would have a complexity of |S` |
2
. Instead, we

exploit our hierarchical framework and the local instantiation of

variables used by Sinkhorn iterations by storing H as a sparse matrix

that records only the instantiated variables. All other matrix coe�-

cients are set to 10max{coef

(
πi j

)
} to strongly penalize transport.

Sinkhorn iterations are then computed e�ciently by �rst precom-

puting

∑
i m ⊗ v[i] (resp.,

∑
j n ⊗ w[j]) in Alg. 2, then adjusting

accordingly the value of H> (m ⊗ v) computed using the sparse

matrix H. As we kept the cardinality of neighborhoods constant

during the construction of the hierarchy, both storage size and com-

putational complexity involved in the optimal transport solver are

X Y
· · · · · · · · · · · ·

x

Wx ≥ ε
Nx ∪NπX(Nx)πX

Fig. 7. Local variable instantiation. For a point x , we instantiate variables
only in the neighborhood of the mapping of its neighborhood. Localizing
samples it can be mapped to dramatically reduces the search space.
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Fig. 8. Cost reduction per level. Decrease in total transport cost (Eq. (3),
normalized per level) a�er every alternating minimization iteration for the
example in Fig. 5. Blue indicates di�usion stage (10 levels) and red Euclidean
stage (6 levels). Dashed lines represent a change of hierarchy level.

linear in the number of samples. Fig. 8 plots the total transport cost

throughout iterations while solving for an optimal map. Note that

we display the transport cost normalized per level since compar-

ing cost across levels is not meaningful: sample count, di�usion

time and neighborhoods have changed. Moreover, while each level

leads to a seemingly small decrease in energy, it has a signi�cant

cumulative impact across the hierarchy.

4.4 Preventing Map Flips and Twists through Ironing
While our energy was designed to induce well-behaved maps, arti-

facts can appear during the coarse-to-�ne optimization. In particular,

a few, localized discontinuities of the map may appear in the form

of twists (180
◦

rotations of the map) and/or �ips (mirrored versions

of the map), see Fig. 9: they are typically due to thin protrusions

and/or low sampling, leading to an inadequate global map during

the iterations. While more eigenvectors (Fig. 6) or more iterations

with larger weighting functions at a �ner scale may resolve a local

�aw in the map, it would come at a very high computational cost.

We thus track potential map �aws preemptively at the end of each

level of the hierarchy to �x the map early if needed. Noting that the

local presence of a twist or a �ip will engender a sudden change of

normal directions in mapped neighborhoods, we check orientation

consistency of the local map around each point x ∈ X as follows. We

�rst project the immediate neighborhood of x̂ on its tangent plane

(computed in di�usion space, see Sec. 3.2) and build, in this 2D space,

a triangulation of the convex hull of this projected neighborhood.

This triangulation is then used as reference to verify the consistency

of the orientation of its map by now projecting the neighborhood of

η̂x on Y on its own tangent plane. If any mismatch in orientation is

Fig. 9. Flips and twists. An ideal map (le�); a mirrored map creating flip
(middle); and 180 degree rotation of the map creating a twisted map. In
practice, we found that twists rarely occur in our maps and are highly
unstable as compared to flips.
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Fig. 10. Fixing flips and twists. Starting from a suboptimal map having
a discontinuity, ironing proceeds through front propagation to remove
artifacts. For each strip, blue indicates visited parts while non-visited parts
are in pink. In case of multiple fronts, each front is considered independently.

found, we mark this point as inadequate. This process conservatively

identi�es the regions where the map is inconsistent and divides our

data into separate patches delineated with badly oriented regions

between them. We then systematically correct the problem areas by

what is best described as an “ironing” process: we proceed with an

update of the centers where we arti�cially increase the weights of

neighborhoods where the map is good; that is, we use an asymmetric

weighting function through:

W ∗x (xi ) =



Wx (xi ), xi ∈ visited,

ωWx (xi ), otherwise,

whereω is set to 0.5 in all our experiments. This e�ectively overpow-

ers any twist or �ip present, and brings the solution out of the local

minimum in which it was. More speci�cally, starting from the patch

with maximum area on X with a correctly oriented map, we build

a strip around a front (i.e., the delineation between already visited

and non-visited points) by uniformly and geodesically thickening it.

The corresponding strip is built on Y by geodesically thickening the

image of the front on X proportional to the mass of the visited and

non-visited parts. We then solve for a variance minimizing transport

plan satisfying Eq. (1) restricted to these two strips. Once the centers

η̂ stabilize, the front is moved outward and the process is repeated

until the regions marked as inadequate have been visited, eventu-

ally removing �ips/twists. This ironing process is very e�cient at

detecting and removing artifacts of the map and its inverse even if

we intentionally �ip the map as a stress test, see Fig. 10.

4.5 Final Euclidean Levels
When we reach the �nal level of the di�usion stage, we have a fairly

dense correspondence map between the two surfaces. We, however,

continue with our hierarchical solver—now using the Euclidean

embedding of the surfaces directly. We create �ner levels in the

hierarchy by reverting to a plain, unnormalized Gaussian function

as our weighting function:

Wx (xi ) = exp

(
−(x − xi )

2/(2σ 2)
)
, (11)

where σ is initialized using the average radius ravg of the neigh-

borhoods in the last di�usion stage such that ε = exp(−r2
avg
/2σ 2).

To avoid any ill-e�ects when σ reaches the sampling resolution of

the input data, we always have a lower bound on the cardinality

of the neighborhood. Furthermore, for each new Euclidean hierar-

chy level `, σ is directly updated to σ/2. We then proceed to the

repeated optimizations of the transport plan at each level as before,

but now every point x and y are considered in Euclidean space

directly, and the centers are computed as linear averages of these

Euclidean points (which provide, at this scale, a good approxima-

tion of geodesic barycenters). It is important to point out that the

Euclidean hierarchy levels do improve results quite signi�cantly:

using di�usion geometry with a limited number of eigenvectors

basically ignores surface details corresponding to high frequencies.

As Fig. 11 shows on a map between a sphere and a skull, details are

properly adjusted once all the Euclidean levels have been treated,

resulting in a sharp and variance-minimizing map as expected.

Fig. 11. Hierarchicalmap optimization.A sphere mesh (65kV) is mapped
onto the input skull mesh (35kV) (le�) by relocating the sphere vertices onto
the skull using η, across 3 Euclidean steps of the hierarchical solve (di�usion
steps are not depicted as the corresponding η’s live in di�usion space).

5 EXPERIMENTS
We implemented our algorithm in C++, using the Spectra library

[Qiu et al. 2016] to compute the eigenvectors of the Laplace opera-

tor, the Eigen library for linear algebra operations, CGAL [2016] for

mesh data structures, the Intel Threading Building Blocks library

for parallel computing and the CUDA library for GPU parallel im-

plementation of the Sinkhorn iterations. Unless otherwise indicated,

we used the �rst M = 100 eigenvectors of the Laplace operator to

create di�usion coordinates. For visual evaluation of the maps we

use one color per vertex and linear color interpolation per triangle.

Each vertex color is set based on a smooth 3D function, sometimes

modulated by a 3D axis-aligned checkerboard for enhanced clarity.

In this case we further re�ne the reference mesh via mutual tessel-

lation with a strip along the grid edges to improve color sharpness

(called strip coloring hereafter).

Initialization. When the input models are properly rigidly aligned

in space (up to a translation), minimizing only the Wasserstein-2

transport distance is su�cient to initialize η for the �rst level of

the di�usion hierarchy. When the input models are not aligned or

very di�erent, we initialize our optimization with η=0 and adding

two to four user-de�ned point constraints is typically su�cient to

obtain meaningful maps in these cases.

Sensitivity to parameters. While our exposition mentioned a num-

ber of parameters that the implementation depends on, their actual

values only a�ect e�ciency. For instance, our use of di�usion times
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being powers of two may look arbitrary: one could pick bigger incre-

ments between di�usion times which would lead to a smaller num-

ber of di�usion levels (as the number of levels is automatically found

when one cannot add more samples), or smaller increments which

would increase the number of levels in di�usion stage. However, the

�rst case may trigger more alternating minimization iterations at

the beginning of a new level as too sudden of a change in di�usion

may induce a large change of the map; the second case may reduce

the number of iterations, but results in more iterations overall as

the number of levels is larger. Similarly, di�erent values of ε and τ
could be used in the di�usion stage as well. However, decreasing ε
or increasing τ has an exponential impact on the cardinality of the

neighborhoods. Our choice of 0.5 and 0.9 respectively has proven

robust in all our examples as it roughly enforces the presence of

3-ring neighborhoods for each sample at each level. The parameter

M as shown in Fig. 6, a�ects the quality of sampling in the di�usion

stages. Picking only the �rst 100 eigenvectors as we do by default

may not be appropriate for shapes with very thin features: it could

numerically force an excessive amount of map “ironing” otherwise

in the Euclidean stages of the hierarchy (as the features appear late),

which an increase of M to 300 would prevent quite nicely.

Timings. Computing the eigenvectors using Spectra as a prepro-

cessing step takes up to 2.5 seconds on a mesh with 5k vertices and

around 9 seconds on mesh with 100k vertices for 100 eigenvectors.

De�ning k to be the average neighborhood cardinality and n the

total number of samples, the computation cost of each Sinkhorn iter-

ation (including building/storing H) is O (ck2n), where c represents

the transport plan “spread” (average number of points to which a

point is mapped) that depends on γ . Furthermore, we parallelize

our computations; consequently, our approach requires 2 to 5 mins

for small (20kV) meshes, and up to 15 mins for 100kV. Note that

without hierarchy and local variable instantiation, each Sinkhorn

iteration would have a time and space complexity of O (n2), with

an additional O (ckn2) time for building H. Despite its overall linear

Fig. 12. Mapping hands. Top le�: a source right hand is mapped to a target
le� hand based on two user-defined point-to-point correspondences. Top
right: the map is depicted through a color strip. Bo�om le�: target mapped
onto source mesh. Bo�om right: source mapped onto target mesh.

Fig. 13. Dinos. While the limbs, tails and heads of these two dinos greatly
di�er in proportion, our algorithm automatically finds a smooth and intu-
itive area-preserving map between the two, without any user interaction.

complexity, our approach is compute intensive due to three nested

loops: the traversal of the hierarchy, the convergence of the centers

of mass and the Sinkhorn iterations.

Inter-surface mapping examples. As our approach can �nd a map

between arbitrary surfaces, we mostly focus on demonstrating our

results on non-isometric pairs of shapes. However, the reader is

invited to parse through a number of examples of near-isometric

maps in Supplemental Material, where we show that our technique

compares favorably to previous approaches on the simpler inter-

surface mapping case.

Fig. 1 shows a baby mapped to a variety of non-isometric shapes.

In this example, the user only provided two point-to-point corre-

spondences (for the tip of the left hand/paw and the tip of the right

big toe). The rest of the map, displayed through corresponding

vertex colors, was found automatically through our coarse-to-�ne

optimization via alternating minimizations. A mass relaxation of

1.25 was allowed to avoid extreme stretching of the map.

Fig. 12 illustrates the mapping between two human hands. The

hands di�er in types (left vs. right) and are non-isometric. In addi-

tion, one hand extends to the wrist. Only two user-speci�ed points

are used as constraints: one to guide thumb to thumb and the other

on the palm to disambiguate between front and back; the mini-

mization algorithm then automatically �nds the expected mapping.

We further illustrate the mapping through cross-remeshing, i.e., by

relocating the mesh vertices of the �rst mesh onto the center of

the images (via the optimal mass transport plan) of each vertex

neighborhood on the other model (and vice versa).

Fig. 13 depicts a mapping between two obviously non-isometric

dinosaur models, with no area relaxation. Even if the shapes di�er

greatly (in particular, on the tail, limbs, and head), we can automat-

ically �nd a smooth map in between them without requiring any

user-prescribed correspondences.
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Fig. 14 depicts a mapping between two highly non-isometric

models, a man and a gorilla, with a maximum area relaxation factor

set to 2 (i.e., area distortion is allowed to vary between 0.5 to 2).

Four constraints were used (two hands and two feet). The resulting

map is natural despite large di�erences in limb sizes. Note that if we

further increase area relaxation to improve the map, our algorithm

starts experiencing slow convergence.

Fig. 14. Mapping man onto gorilla. An area distortion (up to a factor 2)
is used, along with 4 constraints (one at the extremity of each limb) to map
these two very di�erent shapes.

Area preservation vs. conformality. Fig.15 demonstrates the be-

havior of our approach when the area relaxation factors vary. We

compute a map between a canonical torus and a swollen torus using

three di�erent relaxation factors (from left to right : 1, 2 and 4). As

expected the part mapping to the swollen region gets more mass

and vice-versa. When using no relaxation, the area is exactly pre-

served, hence triangles from the thin part of the torus get stretched

due to tangential transport. Conversely, triangles are compressed

in the opposite direction on the swollen part of the torus. When

area distortion is allowed, triangles remain mostly undeformed and

conformality is much improved. Note that the amount of relaxation

at each location is found automatically by our algorithm based on

m′i and n′j . The user only needs to input the global mass relaxation

limit (referred as D in Sec. 3.4). Also note that although the mass

distribution is locally non smooth, the resulting map is smooth

nonetheless since our transport stencils are a few rings wide.

Robustness. Fig. 16 depicts a mapping between two poses of a

kid. While on one pose the arm merges with his chest, the resulting

map is only slightly distorted. Through mapping a sphere onto

three genus-1 surfaces, Fig. 17 demonstrates the robustness of our

approach to topological noise and depicts the mappings when the

topology di�ers. We modeled (1) a sphere with a small handle, (2)

a sphere with a larger handle and (3) a canonical torus to test our

approach. As expected the resulting maps are discontinuous but

discontinuities are only present locally. No mass relaxation was

used in these examples.

Evaluation. We evaluate the performance of our approach on

three standard benchmark data sets: models from TOSCA [Bronstein

et al. 2008], SCAPE [Anguelov et al. 2004] and SHREC’07 [Giorgi

et al. 2007]. Fig.18 plots the percentage of correct correspondences

against the geodesic error, averaged over all models. The units of

the plots are identical to the ones used in BIM [Kim et al. 2011] to

facilitate comparison. On near-isometric models from TOSCA and

SCAPE our approach recovers the correct isometry in all cases and

performs comparably to previous work. On SHREC models, BIM out-

performs our approach (although not signi�cantly), but our results

further improve as we allow for more area relaxation: obviously, an

area preserving map necessarily induces high distortion leading to

bad semantic correspondences on such data. On these models we

only constrained two (usually diagonally opposite) feature points.

We, however, note that the curves typically shown for the SHREC

models should be taken with a grain of salt: they solely measure

mapping quality based on semantic feature points manually selected

by a human. This is not telling much about the map: since a map

is only useful in further processing task if it is smooth and valid

everywhere, measuring performance based on a �nite number of

semantic points is not very informative, and provided here only for

comparison purposes. In fact, we show in Fig. 19 that even for iso-

metric shapes, BIM does not provide a useful map as obvious �aws

on the ears and folds on shoulders would prevent its use in practical

applications. Comparatively our maps (not driven by semantics but

by local geometric criteria) are always smooth and non-degenerate.

Fig. 15. Area preservation vs. conformality. When mass is relaxed, the
transported mass

∑
j πi j changes while the original mass mi remains iden-

tical. The slackness C helps to gradually adjust the amount of local mass-
relaxation, globally bounded using the parameter D . Top: colors indicate lo-
cal relaxed transported massm′i /mi (blue=small, red=large). Top center: col-
ors indicate area change per triangle (blue=shrunk, red=dilated). Bo�om cen-
ter: colors indicate quasi-conformal distortion per triangle (green=conformal,
magenta=sheared). Larger relaxation factors allow be�er conformality. Bot-
tom: closeups on the triangle meshes to highlight improved conformality.
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Fig. 16. Mapping with local contact. While the baby’s arm merges with
his chest on the second pose, we find a good map with only four user-
selected constraints (one for each limb extremity).

Fig. 21 depicts a sample of the various SHREC models we tested and

the mappings we obtained, with and without area relaxation.

Comparisons. We ran experiments to better compare our ap-

proach to BIM. It relies heavily on its initial establishment of point-

to-point feature correspondences: if these correspondences fail

(which happens increasingly often when shapes become non-isometric

and with a wide range of feature sizes), the resulting map is non-

sensical. When BIM �nds good initial correspondences, their use

of blended conformal maps results in visually nice maps. However,

closer inspection shows severe limitations: if one relocates the ver-

tices of the source mesh onto the target mesh via their output map,

the resulting mapped mesh exhibits several artifacts as shown in

Fig.19. These artifacts often make BIM maps, already limited to

genus-0 surfaces, unable to help with further geometry processing

operations. Our result on the same example, found without any

user-speci�ed constraints, de�nes a smooth and valid map every-

where. On most of the other examples we show in this paper, BIM

(or the more recent non-rigid registration method of [Chen and

Koltun 2015], which can only handle near-isometric models) fails to

provide a usable map. More generally, even if �nding sparse corre-

spondences can be achieved by some existing methods, extending

these correspondences to a continuous bijection while ensuring

low distortion is no small feat (see an e�ort in this direction for

functional correspondences in [Rodolà et al. 2015]). Instead, our

approach strives to compute a dense and smooth map through a

coarse to �ne variational approach.

The closest approach to ours is arguably the Gromov-Wasserstein

(GW) approach recently proposed by Solomon et al [2016]: they

also derive a geometry-driven map through optimization as we do.

Fig. 17. Mapping for di�erent genus. Middle le�: a sphere with a pro-
truding handle is mapped to a sphere (le�). The map is discontinuous, but
only locally. Middle right: with a bigger handle. Right: a regular torus is
mapped to the sphere; the discontinuity is no longer local, but the map is
continuous over half of the sphere.
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Fig. 18. Evaluation on benchmark datasets. We plot the percentage of
correct correspondences against geodesic error, averaged over all model
pairs, for various datasets. Our curves for SHREC’07 show three di�erent
bounds on allowed mass distortion.

Because they consider both long range and short range geodesic

distances in their formulation, one could be led to believe that their

method is less myopic than ours which “only” minimizes the Dirich-

let energy of the map through variance minimization of increasingly

small neighborhoods—albeit, in a coarse to �ne fashion. However, it

should be pointed out that the GW approach only �nds correspon-

dences between a small number of points (typically a few thousands

in their experiments): our attempt on a denser mesh (e.g., Fig. 19

with 70k vertices) as needed for a minimally-dense map in geometry

processing was already intractable given their O (n2) memory re-

quirements and O (n3) computational complexity. In sharp contrast,

both our space and time complexity are near linear in the number

of samples; we were thus able to generate examples in this paper

using meshes with 20k to 200k vertices. Another drawback of their

methodology is that one-to-many maps can be generated as output

Fig. 19. Comparison with BIM. The dog model is mapped to another iso-
metric pose with no user-specified constraints. Grey background: results
obtained with blended intrinsic maps [Kim et al. 2011]; even the map be-
tween two isometric models is, in fact, poor—particularly on the ears and
the shoulders. We also depict the meshes relocated via their respective maps.
(See Supplemental Material for meshes.)

ACM Transactions on Graphics, Vol. 36, No. 4, Article 39. Publication date: July 2017.



Variance-Minimizing Transport Plans for Inter-surface Mapping • 39:13

Fig. 20. One-to-many vs. one-to-one maps. Using the example of
[Solomon et al. 2016] mapping a graph (le�) to a surface, their approach
finds correspondences to disconnected regions (center, colored disks to
colored regions), while our algorithm (right) enforces locality.

(see Fig. 20), which does not meet the typical objective in geometry

processing to generate sharp point-to-point maps.

Limitations. The numerics of our approach works best for uni-

form isotropic meshes since σ used for weighting functionW is set

proportionally to the vertex density to ensure that the neighborhood

cardinality remains nearly constant. As a consequence, we perform

recursive longest edge bisection as a preprocessing stage to obtain

a more isotropic vertex distribution so as to ensure robustness. Ad-

ditionally, we are also limited in the mass relaxation we can allow:

relaxing the area preservation constraints through unbalanced mass

transport increases the number of variables, which may slow down

convergence for ratios exceeding a factor 5. In addition, if the mass

is relaxed to the extent that a neighborhood maps to a single point,

our algorithm will no longer be able to favor conformality locally.

An obvious solution is to increase the neighborhood (by adjusting

σ ), but this comes again at the cost of increased computation times.

Finally, while our hierarchy with power-of-two di�usion time scales

have worked reliably on all the examples we tried, a better under-

standing of the way di�usion geometry behaves over the surface

may allow for a better choice of the hierarchy, which could improve

our runtimes signi�cantly.

6 CONCLUSION
Recent progress in improving the e�ciency of optimal transport

solvers provides an opportunity to derive inter-surface mapping

through direct energy minimization. Our paper proposes a �rst vari-

ational model of the sort, where transport plans are optimized to

be locally sharp so as to yield homeomorphisms. We showed that

our approach �nds a least-stretched map with exact area preserva-

tion or bounded area distortion, and demonstrated its robustness

and performance on a range of challenging pairs of models, with

di�erent and/or non-trivial topology.

One weakness of our approach is that convergence may be slower

on models with a wide range of feature sizes. One direction for future

work is to use Newton iterations within the nested loops to acceler-

ate convergence of the centroids. We also would like to explore the

enduring challenge of partial matching which currently remains a

largely unsolved problem. Further relaxing area constraints seems

Fig. 21. Maps from SHREC’07. We depict mappings between a variety of
SHREC models from di�erent categories.

to be a promising tool in this perspective. Finally, exploring other

geometric priors or bounds is an interesting research direction.
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A KL PROJECTIONS
We derive the KL projection of a matrix ρ on Π1, assuming the

entries of ρ are positive. The gradient of the KL divergence to ρ at

π is given by logπ � ρ. By the optimality conditions, the projection

π∗ can be written as:

logπ∗i j/ρi j = λ + λi + ξi j ,

where λ comes from the total mass constraint, λi from the row mass

constraints, and ξi j from the nonnegativity condition. Parameter

λi is zero when the mass bound is not attained, non negative if the

lower mass bound is attained, and non positive if the upper mass

bound is attained. Parameter ξi j is zero when π∗i j is positive, and

non negative otherwise. Since π∗i j is positive by construction, all the

ξi j are null. Let now ϕi =e
λeλi and ϕ = eλ . Using these variables,

the optimality conditions read:




ϕi = ϕ if

∑
j ρi jϕi ∈ (αimi , βimi )

ϕi ≤ ϕ if

∑
j ρi jϕi = βimi

ϕi ≥ ϕ if

∑
j ρi jϕi = αimi

So ϕi is a function of ϕ: ϕi = fi (ϕ), where fi is the closest projec-

tion on the interval [αimi/
∑
j ρi j , βimi/

∑
j ρi j ], which is a non-

decreasing piecewise linear function with two nodes. In order to

determine the correct value for ϕ, it su�ces to solve the equation∑
i j ρi j fi (ϕ)=1, so that the global mass constraint is satis�ed. Tak-

ing into account the change of variables due to the area factors m
and n yields the algorithm described in Section 3.4.
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