25,825 research outputs found

    Components of the item selection algorithm in computerized adaptive testing

    Get PDF
    Computerized adaptive testing (CAT) greatly improves measurement efficiency in high-stakes testing operations through the selection and administration of test items with the difficulty level that is most relevant to each individual test taker. This paper explains the 3 components of a conventional CAT item selection algorithm: test content balancing, the item selection criterion, and item exposure control. Several noteworthy methodologies underlie each component. The test script method and constrained CAT method are used for test content balancing. Item selection criteria include the maximized Fisher information criterion, the b-matching method, the a-stratification method, the weighted likelihood information criterion, the efficiency balanced information criterion, and the Kullback-Leibler information criterion. The randomesque method, the Sympson-Hetter method, the unconditional and conditional multinomial methods, and the fade-away method are used for item exposure control. Several holistic approaches to CAT use automated test assembly methods, such as the shadow test approach and the weighted deviation model. Item usage and exposure count vary depending on the item selection criterion and exposure control method. Finally, other important factors to consider when determining an appropriate CAT design are the computer resources requirement, the size of item pools, and the test length. The logic of CAT is now being adopted in the field of adaptive learning, which integrates the learning aspect and the (formative) assessment aspect of education into a continuous, individualized learning experience. Therefore, the algorithms and technologies described in this review may be able to help medical health educators and high-stakes test developers to adopt CAT more actively and efficiently

    Introduction to the LIVECAT web-based computerized adaptive testing platform

    Get PDF
    This study introduces LIVECAT, a web-based computerized adaptive testing platform. This platform provides many functions, including writing item content, managing an item bank, creating and administering a test, reporting test results, and providing information about a test and examinees. The LIVECAT provides examination administrators with an easy and flexible environment for composing and managing examinations. It is available at http://www.thecatkorea.com/. Several tools were used to program LIVECAT, as follows: operating system, Amazon Linux; web server, nginx 1.18; WAS, Apache Tomcat 8.5; database, Amazon RDMS—Maria DB; and languages, JAVA8, HTML5/CSS, Javascript, and jQuery. The LIVECAT platform can be used to implement several item response theory (IRT) models such as the Rasch and 1-, 2-, 3-parameter logistic models. The administrator can choose a specific model of test construction in LIVECAT. Multimedia data such as images, audio files, and movies can be uploaded to items in LIVECAT. Two scoring methods (maximum likelihood estimation and expected a posteriori) are available in LIVECAT and the maximum Fisher information item selection method is applied to every IRT model in LIVECAT. The LIVECAT platform showed equal or better performance compared with a conventional test platform. The LIVECAT platform enables users without psychometric expertise to easily implement and perform computerized adaptive testing at their institutions. The most recent LIVECAT version only provides a dichotomous item response model and the basic components of CAT. Shortly, LIVECAT will include advanced functions, such as polytomous item response models, weighted likelihood estimation method, and content balancing method

    Nonlinear sequential designs for logistic item response theory models with applications to computerized adaptive tests

    Full text link
    Computerized adaptive testing is becoming increasingly popular due to advancement of modern computer technology. It differs from the conventional standardized testing in that the selection of test items is tailored to individual examinee's ability level. Arising from this selection strategy is a nonlinear sequential design problem. We study, in this paper, the sequential design problem in the context of the logistic item response theory models. We show that the adaptive design obtained by maximizing the item information leads to a consistent and asymptotically normal ability estimator in the case of the Rasch model. Modifications to the maximum information approach are proposed for the two- and three-parameter logistic models. Similar asymptotic properties are established for the modified designs and the resulting estimator. Examples are also given in the case of the two-parameter logistic model to show that without such modifications, the maximum likelihood estimator of the ability parameter may not be consistent.Comment: Published in at http://dx.doi.org/10.1214/08-AOS614 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Development and Simulation Testing of a Computerized Adaptive Measure of Communicative Functioning in Aphasia

    Get PDF
    Computerized adaptive testing (CAT), based on the mathematical framework of item response theory (IRT), has increasingly been implemented in patient reported outcome measures over the past decade (Fries, Bruce, & Cella, 2005). Given a calibrated item pool fit by an appropriate IRT measurement model, a CAT can produce reliable ability estimates more efficiently than traditional paper-and-pencil tests by administering items that are most informative given the examinee’s estimated ability level (Wainer, 2000). As conventional measures employed in the measurement of aphasia were developed under traditional measurement theory, many of these measures are long and inefficient, and are consequently unsuitable for regular clinical care. In addition, these conventional measures often fail to meet the needs of many community-dwelling stroke survivors whose impairments falls outside the range reliably measured by these tests (Doyle et al. 2012). IRT-based and in particular CAT patient reported outcome measures offer the possibility of substantial improvements in measurement technology for persons with aphasia

    Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications

    Get PDF
    Computerized adaptive testing (CAT) is a powerful technique to help improve measurement precision and reduce the total number of items required in educational, psychological, and medical tests. In CATs, tailored test forms are progressively constructed by capitalizing on information available from responses to previous items. CAT applications primarily have relied on unidimensional item response theory (IRT) to help select which items should be administered during the session. However, multidimensional CATs may be constructed to improve measurement precision and further reduce the number of items required to measure multiple traits simultaneously. A small selection of CAT simulation packages exist for the R environment; namely, catR (Magis and Raîche 2012), catIrt (Nydick 2014), and MAT (Choi and King 2014). However, the ability to generate graphical user interfaces for administering CATs in realtime has not been implemented in R to date, support for multidimensional CATs have been limited to the multidimensional three-parameter logistic model, and CAT designs were required to contain IRT models from the same modeling family. This article describes a new R package for implementing unidimensional and multidimensional CATs using a wide variety of IRT models, which can be unique for each respective test item, and demonstrates how graphical user interfaces and Monte Carlo simulation designs can be constructed with the mirtCAT package
    • …
    corecore