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 Computerized Adaptive Testing (CAT) has increased in the last few decades, due 

in part to the increased use and availability of personal computers, but also partly due to 

the benefits of CATs.  CATs provide increased measurement precision of ability 

estimates while decreasing the demand on examinees with shorter tests.  This is 

accomplished by tailoring the test to each examinee and selecting items that are not too 

difficult or too easy based on the examinees’ interim ability estimate and responses to 

previous items.  These benefits come at the cost of the flexibility to move through the test 

as an examinee would with a Paper and Pencil (P & P) test.  The algorithms used in 

CATs for item selection and ability estimation require restrictions to response review and 

revision; however, a large portion of examinees desire options for review and revision of 

responses (Vispoel, Clough, Bleiler, Hendrickson, and Ihrig, 2002).  Previous research 

has examined response review and revision in CATs with limited review and revision 

options and are limited to after all items had been administered.  The development of the 

Item Pocket (IP) method (Han, 2013) has allowed for response review and revision 
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during the test, relaxing the restrictions, while maintaining an acceptable level of 

measurement precision.  This is achieved by creating an item pocket in which items are 

placed, which are excluded from use in the interim ability estimation and the item 

selection procedures.  The initial simulation study was conducted by Han (2013) who 

investigated the use of the IP method using a dichotomously-scored fixed length test.  

The findings indicated that the IP method does not substantially decrease measurement 

precision and bias in the ability estimates were within acceptable ranges for operational 

tests. 

 This simulation study extended the IP method to a CAT using polytomously-

scored items using the Generalized Partial Credit model with exposure control and 

content balancing.  The IP method was implemented in tests with three IP sizes (2, 3, and 

4), two termination criteria (fixed and variable), two test lengths (15 and 20), and two 

item completion conditions (forced to answer and ignored) for items remaining in the IP 

at the end of the test.  Additionally, four traditional CAT conditions, without 

implementing the IP method, were included in the design.  Results found that the longer, 

20 item IP method conditions using the forced answer method had higher measurement 

precision, with higher mean correlations between known and estimated theta, lower mean 

bias and RMSE, and measurement precision increased as IP size increased.  The two item 

completion conditions (forced to answer and ignored) resulted in similar measurement 

precision.  The variable length IP conditions resulted in comparable measurement 

precision as the corresponding fixed length IP conditions. The implications of the 

findings and the limitations with suggestions for future research are also discussed. 
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Chapter I: Introduction 

 In the past few decades, with the increase of personal computers in daily life, 

computerized adaptive testing (CAT) has become pervasive.  CAT has allowed for more accurate 

measurement of ability with shorter more efficient tests by tailoring the test to individual 

examinees.  To accomplish this examinee-tailored test, if the examinee answered the first 

administered question right, the next administered question would be a little harder. If instead the 

first administered question was answered incorrectly, the next administered question would be a 

little easier.  The difficulty of each subsequent administered item is based on the responses to 

previous items.  This produces shorter more efficient tests because examinees are not given items 

that are too easy or too hard for them to answer.  For these reasons, CATs are appealing to 

educators.  However, examinees are restricted from moving through a CAT as they would with a 

paper-and-pencil test (P & P) in which they could skip items they were unsure of or review and 

revise answers.  This restriction is necessary in CAT due to the algorithms used to estimate 

examinee ability which requires ability re-estimation after each question is answered. 

 A large portion of tests that students are exposed to in everyday life are of the P & P 

variety.  Throughout school, from first grade through college, students are taught to skip and 

mark questions they are unsure of to return to later, if time allows.  Additionally, it is suggested 

that they go back over the entire test when completed in order to check for careless mistakes.  

This is not allowed with CATs that adapt at the item level, due to the ability estimation 

procedures used.  It is possible that due to these restrictions, measurement error is increased.  

Examinees may randomly choose an answer in order to move forward in the test because they 

believe that it may take too long to answer it and they are unsure of how much time they need to 
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complete the test.  This type of random guessing does not add anything but measurement error to 

the examinee’s ability estimate.  Additionally, careless mistakes, such as selecting A when B was 

meant or moving a decimal place, cannot be corrected.  Again, these mistakes would increase the 

measurement error and begs the question of what the test is measuring: the intended knowledge 

of the academic content area or test taking ability.  In spite of these concerns, limited research on 

CATs that allow for review and response revision have been conducted.  A large reason for the 

lack of research in this area is the concern for increasing the opportunity to cheat.  Wainer (1993) 

has suggested that allowing response revision could open the door for cheating if examinees are 

knowledgeable about the CAT algorithms used.  Regardless of these concerns, some researchers 

see the possible benefits of review and revision as outweighing the possibility of cheating.      

 Early research on CATs that allowed review and revision of items utilized licensure and 

certification assessments where a minimum level of competency was needed, resulting in a 

pass/fail decision.  Lunz, Bergstrom, and Wright (1992) investigated the effect of review and 

revision on the efficiency of the CAT and the resulting ability estimates of the examinees with a 

sample of college students randomly assigned to conditions.  Lunz, et al. (1992) created a CAT 

item bank from P & P forms of a medical technology certification examination.  The length of 

the CAT varied with completion of at least 50 items and a maximum of 240 items, covering six 

content areas according to the pre-existing P & P test specification.  The test length varied, with 

at least 50 items completed and a maximum of 240 items.  The test would stop after the 

examinee’s ability was above or below the pass/fail point by more than 1.3 times the standard 

error of measurement.  Two review conditions were examined wherein examinees were allowed 

to review their responses or were not allowed to review their responses.  The distinction between 

the two conditions is that the review condition allowed for revision of answers after all of the 
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items had been answered.  The results indicated that after review and revision, the decrease in the 

efficiency of the CAT was minimal (1 %), within a standard error of measurement.  The decision 

accuracy, pass or fail, was also comparable to the no review condition.     

 Stone and Lunz (1994) extended the previous study by Lunz et al. (1992) with a more 

comprehensive examination of the impact of response review and revision on the psychometric 

properties of two different CAT licensure tests using two different examinee populations for 

each test in a live testing situation.  The test stopped after 50 items if the examinee’s ability 

estimate was outside of the 95% confidence interval around the pass/fail point.  If the ability 

estimate was within the confidence interval after 50 items, another 50 items would be completed.  

After 100 items, if the examinee’s ability estimate was still included within the confidence 

interval, the pass/fail decision would be based on the current location in reference to the pass/fail 

point.  This study, similar to the previous study by Lunz et al. (1992), allowed review and 

revision only after all of the items had been completed.  The results indicated that allowing 

review and response changes after the initial CAT was completed minimally biased ability 

estimates.  Decision accuracy after review and revision for both tests was 94% and 95% for Test 

1 and Test 2, respectively. That is, only 6% of the examinees taking Test 1 changed their 

pass/fail decision by revision of their answers and only 5% of the examinees taking Test 2 

changed their pass/fail decision following a revision of their answers.  These examinees who 

were able to change the pass/fail decision were within one standard error of the pass/fail cut 

point.  Examinees this close to the cut point, confidence in the pass/fail decision is minimal, at 

best, whether review and revision is allowed or not.   

Based on these optimistic results, Stocking (1997) expanded on Lunz, et al. (1992) and 

Stone and Lunz’s (1994) line of research with a simulation study including a more thorough 
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investigation of restricted review and revision options, with conditions replicating the 1994 

findings.  Stocking (1997) developed and investigated three restricted review models with 

limited success.  These models included blocks of items, or sets of items grouped together.  The 

conditions varied the number of items contained in a block and the number of blocks within each 

test.  The least restrictive condition contained more items per block, with fewer blocks, which 

resulted in biased ability estimates.  In contrast, the more restrictive conditions, which contained 

fewer items per block with more blocks of items per test, resulted in minimally biased ability 

estimates.   

Vispoel, Hendrickson, and Bleiler (2000) extended this line of research in a live testing 

situation to investigate examinees attitudes about opportunities to review and change responses.  

Results supported Stocking’s (1997) findings of limited bias in ability estimates when review 

and response changes were limited to small blocks of items.  Examinees attitudes indicated that 

the majority of examinees desired an opportunity to review and revise answers, regardless of 

whether they utilized the option (Vispoel, Hendrickson, & Bleiler, 2000). 

Vispoel, Clough, Bleiler, Hendrickson, and Ihrig (2002) investigated in a live testing 

situation, whether examinees can positively bias their ability estimates in CATs that allow 

review and response revision.  The authors were concerned that examines could bias their ability 

estimates if they understood the CAT algorithm used by evaluating the difficulties of two 

consecutive items.  If an item was answered incorrectly, the next item would be easier and the 

answer to the previous item should be changed.  Likewise, if the next item was more difficult, 

then it could be assumed that the previous item was answered correctly.  Vispoel, et al. (2002) 

evaluated the examinees’ ability to distinguish differences in difficulties between items in a live 

testing situation with two conditions, one where the strategy was taught and used and another 
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where no strategy was taught.  The results indicated that examinees in the strategy condition did 

not improve their score compared to the examinees in the no strategy condition. Moreover, the 

examinees in the review condition actually reduced their test scores due to errors when 

determining the difficulty between two consecutive items.      

Until 2013, the research addressing the restriction of response review and change was 

limited to the previously described variations of restricted review and response revisions.  All of 

the variations restricted response review and revision to after the CAT was completed; however, 

the number of blocks of items and number of items per block allowed for review and revision 

was varied.  Similarly, all of the previous studies administered items that were scored 

dichotomously (either correct or incorrect) and utilized the simplest Item Response Theory (IRT) 

model, the 1-Parameter Logistic Model (1-PL).    

Han (2013) developed the item pocket (IP) method to address these restrictions in a more 

flexible manner than previous research.  This new method provides a pocket for placing items to 

skip and return to later.  Any item placed in this pocket is not used to estimate the interim ability 

level until the item is removed from the pocket by finalizing an answer.  The IP method has been 

shown to provide more accurate estimates of ability with less bias as compared to Stocking’s 

(1997) results.  Currently, this is the only known method to allow for response review and 

revision during a CAT, rather than after all of the items have been answered.  However, this 

method has only been examined under a few simulated conditions.  Han (2013) applied the IP 

method to a dichotomous CAT, similar to the previous research.  Operational tests are often 

comprised of both items that are scored dichotomously and items that have more than two score 

categories, or referred to as polytomous items.  These items require a constructed response and 

can be scored in a partial credit fashion.  Han’s (2013) IP method resulted in ability estimates 
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within an acceptable range of accurate measurement when items are scored dichotomously, 

producing a more flexible procedure that allows for response review and revision.   Before the 

extension to mixed format CATs (CATs with both dichotomous and polytomous items), the 

performance of the IP procedure under the polytomous case needs to be investigated.   

Based on Han’s (2013) optimistic results this dissertation research extends the IP method 

to a polytomous IRT model, the Generalized Partial Credit model (Muraki 1992), that is 

appropriate for partial scoring.  The study investigated three IP size conditions: (1) two items, (2) 

three items, and (3) four items.  The IP method was implemented on both a fixed length and a 

variable length test.  Test length was varied with test length of 15 and 20.  Content balancing 

allows for multiple content areas to be covered in one test and item exposure control ensures that 

not all examinees receive the same items.  Content balancing was not utilized in Han’s (2013) 

study but was implemented in all conditions in the current study, thereby more closely 

approximating operational tests.  Additionally, two item completion conditions for items that are 

left in the pocket at the end of the test, (1) forced answer and (2) ignored, were included in the 

study.  The current study is a fully crossed factorial design (3 x 2 x 2 x 2), resulting in 24 

conditions with 1,000 simulees and 500 replications per condition.  Additionally, four baseline 

conventional CATs without implementing the item pocket were used as a comparison in 

evaluating the performance of the item pocket method, resulting in a total of 28 conditions.  

The simulees’ responses were generated from a normal distribution using IRTGEN 

(Whittaker, Fitzpatrick, Williams, & Dodd 2003).  The item pool used is based on a national 

testing program and contains 157 items from three content areas with possible score points of 2, 

3, and 4.  Maximum Likelihood Estimation (MLE) was used to estimate simulees’ ability with 

the use of variable step size adjustment when the ability estimate cannot be estimated.  
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Evaluation of the IP method applied to a CAT using the GPCM compared all conditions to each 

other and to the a traditional baseline CAT, with exposure control and content balancing but 

without an item pocket.  Four main research questions were addressed in this dissertation 

research: 1)  What is the impact of the IP method on precision of measurement across the range 

of ability levels when applied to a CAT using the GPCM with content balancing and exposure 

control procedures? 2)  What is the impact on precision of measurement under the two 

termination criteria (i.e., fixed and variable length)? 3)  What is the impact of the two item 

completion conditions (forced answer or ignored) on precision of measurement? 4) What impact 

does implementing the IP method have on test efficiency in the variable length conditions?  The 

results of the simulated CAT using the IP method were analyzed in terms of item pocket usage, 

the overall precision of measurement in the final theta estimates, and test efficiency.  The 

findings of this study will illustrate the applicability of this new method to a broader variety of 

CATs. 

The following sections summarize the psychometric theory behind CAT and 

assumptions, as well as detailed descriptions of common models used in research and practice.  

Next, the components of CATs and relevant research on the performance of procedures are 

reviewed.  The last section summarizes the research to date on CATs that allow for response 

review and revision, as well as describes the current simulation study.   
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Chapter 2: Literature Review 

 The present study extends a new method for Computerized Adaptive Testing (CAT), 

which allows for item review and revision, to tests that contain items that have multiple possible 

score points.  These types of items can receive partial credit scoring.  It is important to 

understand the models used in CAT and the components of CATs that are commonly used to 

understand the need and benefits of this new method. 

 This chapter begins with an introduction and review of Item Response Theory (IRT) and 

models.  These models are used in CAT and without them, adaptive testing would not be 

possible.  Following the IRT review, the components of CAT are reviewed as well as various 

procedures and algorithms that are commonly used in CAT.  

Item Response Theory 

 Item Response Theory (IRT) was developed as an objective way of measuring latent 

traits, such as depression or math ability that cannot be directly measured.  In Classical Test 

Theory, the item statistics are dependent on the group that took those items and scores are 

dependent on the test taken.  IRT, originally called Latent Trait Theory, disentangles person 

parameters from item or test parameters.  This is achieved by meeting much stronger 

assumptions than required by Classical Test Theory. 

IRT Assumptions   

There are three basic assumptions common to many IRT models: unidimensionality, local 

independence, and the correct specified functional form.  For most IRT models, it is assumed 



 

9 

 

that there is only one underlying latent trait being measured, one dimension or 

unidimensionality, for which one ability estimate (θ) will be calculated for each examinee.     

The second assumption, local independence, follows if the dimensionality assumption is 

met.  There are two forms of local independence, weak and strong.  The weak form of local 

independence holds when the item responses for a particular theta (θ), or ability level, are 

uncorrelated.  The strong form of local independence holds when the item responses, conditional 

on theta, are statistically independent, meaning that there is no relationship among items, linear 

or non-linear.  This is achieved when the probability of a correct response on one item is not 

influenced by the probability of a correct response on another item while controlling for theta 

(Embertson & Reise, 2000).   

The third assumption of IRT is that the functional form must be correctly specified.  The 

functional form is the mathematical relationship between the probability of a correct response 

and theta, represented by an Item Characteristic Curve (ICC).  These ICCs depict the change in 

the probability of a correct response as it relates to changes in ability level (θ) (Embertson & 

Reise, 2000).  The shape of the ICCs, for dichotomous models, is a function of the item 

parameters, such as difficulty, discrimination, and pseudo-guessing in the specified model.  The 

shape, location on the theta scale, and the lower asymptote of the ICCs depict the item 

parameters specified in the model.          

Dichotomous IRT Models 

There are numerous IRT models, which are classified by the way the item is scored.  For 

dichotomous models, the predicted probability of a response, conditional on ability level (θ), is 



 

10 

 

based on two possible responses, correct (1) or incorrect (0).  The three most commonly used 

dichotomous IRT models are described below.    

One-Parameter Logistic Model 

The first and simplest dichotomous IRT model is the 1-Parameter Logistic model (1PL), 

also referred to as the Rasch model (Rasch, 1960).  It is called the 1PL model because only one 

item parameter is included, the difficulty (b) parameter.  The probability (Pi) of a correct 

response (ui = 1) to an item i by an examinee with a given theta (θ) is defined as: 

  
 

 
1

1

i

i

b

i i b

e
P u

e









 


 , (1) 

where the natural antilog of the difference between the examinees’ ability level (θ) and the item’s 

difficulty (b) is divided by one plus the natural antilog of the difference between theta and the 

item’s difficulty.  This equation represents the odds of success given the examinee’s ability level 

and the item’s difficulty divided by one plus the odds of success.  When this probability is 

plotted against ability level, it generally produces an S-shaped logistic curve.  In the 1PL model, 

items only differ in terms of difficulty, so all ICCs should have the same slope and a lower 

asymptote of 0, but differ in location on the difficulty scale.  Figure 1 displays ICCs for 3 items 

that differ in difficulty only. 
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Figure 1. Item Characteristic Curves for a 1PL model.  

The difficulty parameter (b) is depicted by the location of the point of inflection on the theta 

scale.  The point of inflection is the point on the ICC where the rate of change is the highest, 

which corresponds to a 0.5 probability of a correct response.  The line on the figure above at 0.5 

probability of a correct response corresponds to the point of inflection for the three items’ ICCs.  

Following the line down from the point of inflection corresponds to each item’s difficulty (b) for 

items 1, 2, and 3 of b = -1, b = 0, and b = 1, respectively.  The difficulty parameter is on the same 

scale as theta, which typically ranges from -4 to +4 with negative values indicating easier items 

and positive values indicating more difficult items.   

Two-Parameter Logistic Model  

The 2-Parameter Logistic model (2PL; Birnbaum, 1958), as the name implies, includes 

two item parameters: difficulty (b) and discrimination (a).  Again, the probability (Pi) of a correct 

response (ui=1) to an item i by an examinee with a given theta (θ) is defined as: 
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where the discrimination parameter (a) is proportional to the slope at the point of inflection 

where the probability of a correct response is 0.5.  The a parameter is a multiplier to the 

difference between the current theta level for an examinee and the difficulty of the item.  The 

multiplicative effect of the item’s discrimination on the difference between the ability level and 

item difficulty has a stronger impact on the probability of a correct response when discrimination 

is high (Embertson & Reise, 2000).  When the ICCs for a 2PL model are plotted, now the curves 

differ in terms of location on the ability scale and slope of the curves; however, the lower 

asymptotes should still originate at 0.  Figure 2 displays ICCs for a 2PL model, where items 

differ in difficulty and discrimination.  

 

Figure 2. Item Characteristic Curves for 2PL model.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

b
ab

ili
ty

Theta

Item 1

Item 2

Item 3

Item 4



 

13 

 

Generally, dichotomously (0/1) scored items will have an S-shaped ICC, however, the slope of 

the S depicts the discrimination parameter (a) or the rate of change in the probability of success 

at the point of inflection for a given ability level.  The multiplicative effect of the difference 

between examinee’s ability level and item difficulty can be seen, with the more discriminating 

items having steeper slopes at the point of inflection, indicating a greater impact on the 

probability of success for these items.  Item 1 in Figure 2 has the lowest discrimination with a = 

0.5, as can be seen with the most gradual slope at the point of inflection.  Items 2 and 4 have 

identical slopes (a = 1) and item 3 has the highest discrimination value (a = 3), which 

corresponds to the steepest slope of the four items in Figure 2.  

Three-Parameter Logistic Model 

 The 3-Parameter Logistic model (3PL; Birnbaum, 1968) extends the 2PL by adding a 

pseudo-chance parameter (c) to account for possible correct guessing on an item.  However, the 

value for this parameter is generally less than what would be expected by random guessing.  The 

probability (Pi) of a correct response (ui=1) to an item i, conditional on ability level (θ), is 

defined as: 

    
 
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 , (3) 

where ci is the pseudo-guessing parameter and is defined as the lower asymptote.  The point of 

inflection is no longer at 0.5 probability. It is found by (1 + ci)/2, which adjusts the point of 

inflection to account for the increase in the lower asymptote.  The ICCs for a 3PL model can 
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now differ in location on the ability scale, slope of the curve, and lower asymptote. Figure 3 

displays ICCs for items calibrated with a 3PL model. 

 

Figure 3. Item Characteristic Curves for 3PL model.  

The lower asymptote of the ICC is the intersection point of the curve with the Y-axis, which 

impacts the point of inflection.  When the intersection point is zero, as is seen above for the item 

marked with a triangle, the point of inflection is unchanged, represented by the dashed line in 

Figure 3.  When the point of inflection is zero, there is a 0.5 probability of a correct response and 

the pseudo-guessing (c) parameter is equal to 0.  When the lower asymptote is above zero, the c 

parameter is no longer zero, and the point of inflection is shifted up.  This is represented in 

Figure 3 for the items represented by the square and the circle, which have c parameter values of 

0.05 and 0.25, respectively.  This change in the lower asymptote indicates that at the lower 

ability levels (θ), the probability of a correct response is above zero due to guessing.  This more 
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complex model includes a greater number of parameters, with the possible consequence of non-

convergence due to the estimation of the pseudo-guessing parameter (Embretson & Reise, 2000). 

Polytomous IRT Models 

 Items that have more than two categories are appropriate for polytomous IRT models. 

The last 30 years have seen the development of many new polytomous IRT models.  This family 

of models is composed of three major types of models classified by the procedure for calculating 

the probability of a response in a particular category.  Dodd, de Ayala, and Koch (1995) 

surveyed the most common models used in CAT research, specifically the Difference Models 

and the Divide-By-Total Models.  The third type of model, left-side added divide-by-total, is a 

nominal class of models that provides an undecided category for estimating a parameter for truly 

undecided participants (Dodd, de Ayala, & Koch, 1995).  The third type of model has not been 

used in CAT research, so it is not discussed below.  Three commonly used models that are 

appropriate for partial credit scoring are discussed in detail below. The summary of some of the 

more common models is not intended to be exhaustive. As such, readers are referred to 

additional references for information about models not discussed due to their inapplicability to 

the proposed research. 

Difference Models 

 Difference models, as the name alludes, calculates probabilities for responses in a 

particular category by subtracting the probability of responding in adjacent categories, 

conditional on theta.  These models require a two-step process for the calculation of 

probabilities: the first of which calculates the probability of a response in category x or higher for 

each category, P* functions, and the second step is the subtraction of adjacent category’s P* 
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functions, conditional on theta.  A common difference model appropriate for partial credit 

scoring is the Graded Response Model (Samejima, 1969).  This model is appropriate for items 

that have multiple categories that are ordered in terms of correct steps to a solution (Dodd, de 

Ayala, & Koch, 1995).  Another common difference model is Muraki’s (1990) Rating Scale 

Model, however, the current study’s focus is partial credit scoring of constructed responses to 

math problems, where application of the Rating Scale Model would not be appropriate and 

therefore not discussed further (see Muraki, 1990). 

Graded Response Model 

Samejima’s (1969) Graded Response Model (GRM) was envisioned to handle partial 

credit scoring of items, where the higher categories indicate more correct steps toward a solution.  

The item’s categories are ordered into mi + 1 categories, where each category score for item i is a 

successive integer.  The first stage, which calculates the probability of a particular category score 

or above, conditioned on theta (θ), for each possible category score, the P* functions, are defined 

as: 
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 , (4) 

where ai is the discrimination power for item i and bix is the boundary for a particular category 

score for item i.  Each item includes a discrimination parameter, as well as, mi category 

boundaries between mi + 1 categories.  The second stage takes the difference between adjacent 

P* functions to obtain the probability of a response in a particular category, found with this 

equation: 
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      * *
1ix ix ixP P P    ,  (5) 

where the lowest possible category score function (P0
*) is equal to 1.0 and the highest category 

score (P*
x+1) is equal to 0.  Plotting the P* functions produces operating characteristic curves for 

each category, which determines the location of each of the category boundaries, depicted in 

Figure 4. 

 

Figure 4. Operating Characteristic Curve for a 5 Category Item Under GRM.  

Each of the P* functions determine the location on the ability level scale at the point of inflection 

where the examinee has a 0.5 probability of responding above the threshold, or category 

boundary.  Plotting the probability for each possible category score against theta produces 

Operating Characteristic Curves (OCC), with the point of inflection located at the point where 

there is a 0.5 probability of responding in a given category.  Figure 5 displays a category 

response curve (CRC) for a five category item calibrated with the GRM. 
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Figure 5. Category Response Curve using the GRM. 

In the CRC shown above, the category thresholds obtained from Figure 4 are indicated by the 

black lines.  This represents the location on the ability level scale where the examinee has a 0.5 

probability of responding in the adjacent category.  When items have only two categories, the 

GRM simplifies to the 2PL model. 

Divide-by-Total Models 

Contrary to difference models that calculate probabilities indirectly through the two step 

process, divide-by-total models find probabilities directly.  As one would assume from the name, 

divide-by-total models find the probability of a particular category response for an item, 

conditioned on the examinee’s theta, by dividing the exponential of the response category of 

interest by the sum of all categories’ exponentials for the item.  Another contrast to the 

difference models, the divide-by-total models do not require the difficulty, b-parameters, of each 

step to the solution to be ordered, meaning step 2 could be easier than step 1.  The most general 
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of the divide-by-total models is the Nominal Response Model (Bock, 1972).  Bock (1972) 

developed this model for use with multiple choice items where distractors are not easily ordered 

in terms of correctness, which is not an appropriate model to use for partial credit scoring (see 

Bock, 1972).  The Successive Intervals Model (Rost, 1988) and Andrich’s Rating Scale Model 

(Andrich, 1978) were developed for use with Likert measures, where responses are on an ordered 

continuum indicating the degree of agreement with a statement. Again, these models are not 

appropriate for partial credit scoring, so will not be discussed further (see Rost, 1988; Andrich, 

1978).  There are two divide-by-total models appropriate for partial credit scoring: the 

Generalized Partial Credit Model and the Partial Credit Model, which will be described in detail 

below.       

Generalized Partial Credit Model 

When the response categories can be ordered, as in partial credit scoring, Muraki’s 

(1992) Generalized Partial Credit Model (GPCM) can be used.  The probability of a response in 

a particular category (x) for an item (i), where there are mi + 1 categories, conditioned on the 

examinee’s ability level (θ), is defined as: 
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where ai is the item discrimination parameter and bik is the category boundary called the step 

difficulty parameter for each of the k categories for an item.  Figure 6 displays the CRC for an 

item with 4 categories calibrated using the GPCM.   
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Figure 6. Category Response Curve using the GPCM. 

The location of the category boundaries, step difficulties (bik), indicated by the lines are at the 

intersection of two adjacent category response curves.  Each item is allowed to have differing 

discrimination parameters and the step difficulties do not have to be ordered, which is seen in 

Figure 6.  The second step difficulty is higher than the third, referred to as a reversal (Dodd & 

Koch, 1987), with the third step difficulty shown in orange.  However, the steps to complete the 

problem must be completed in order.  When items are scored dichotomously, the GPCM 

simplifies to the 2PL model.  Additionally, if all the item discrimination parameters are equal to 

1, the GPCM simplifies to the Partial Credit Model (Masters, 1982). 

Partial Credit Model 

Masters (1982) developed the Partial Credit Model (PCM), which is appropriate for items 

that have an ordered set of steps to correctly complete the problem which can be scored in a 

partial credit fashion.  Again, like the GPCM, the steps must be completed in order but the step 
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difficulties need not necessarily be in order of difficulty, unlike the GRM where the threshold 

difficulties are in order of difficulty.  The probability of a particular response (x) in one of mi + 1 

categories for an item i, conditioned on the examinee’s ability (θ), is defined as: 
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where, bik is the point of intersection of probability curves from one category to an adjacent 

category for mi categories for an item (i), is defined as the step difficulty parameter.  When the 

discrimination (a) parameters are equal to 1, the GPCM simplifies to the PCM.  Additionally, 

when there are only two categories, the PCM simplifies to the Rasch (1PL) model.    

Item and Test Information 

Every item, whether dichotomous or polytomous, produces varying amounts of 

psychometric information, referred to as Fisher’s information.  Fisher’s information indicates the 

precision of measurement of an item across the range of ability (θ).  Fisher’s Item Information 

(Birnbaum, 1968) for a dichotomously scored item i, for a given θ, is defined as: 
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where P(θ) is the conditional probability of a correct response to item i given theta, Q(θ) is the 

conditional probability of an incorrect response to item i or 1- P(θ), and P’(θ)2 is the first 

derivative squared or the slope squared.  When items have more than two response categories, 
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information is calculated with Samejima (1969) general formula for polytomously scored items, 

with the item information function defined as: 
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where Pix (θ) is the probability of response in category x for item i conditional on theta, and P’
ix is 

the first derivative.  ICCs are the conditional probabilities of a correct response given theta for 

dichotomous items plotted across the range of theta whereas CRCs are the conditional 

probabilities of a response in a particular category given theta for polytomous items plotted 

across the range of theta.  Likewise, the information provided by each item, at all points on the 

ability continuum, can be plotted across the range of theta, producing an item information 

function as depicted in Figure 7 below. 

 

Figure 7. Item Information Function. 
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 An item information function will peak at the ability level (θ) for which the item most 

precisely measures.  The magnitude of the peak for dichotomous items is determined by the 

discrimination (a) parameter.  Items with higher discrimination values provide more information 

for a smaller range of ability levels, producing peaked information functions as seen in Figure 7 

(Embretson & Reise, 2000).  Lower discrimination values provide less information, or less 

precise measurement, over a wider range of ability levels, producing flatter item information 

functions.  However, for polytomous items, under the PCM, the magnitude of the peak is related 

to the order of the step difficulties.  Specifically, items that have reversals, as shown in Figure 6, 

have been shown to produce more peaked item information functions when using the PCM 

(Dodd & Koch, 1987).  The magnitude of the peak of the information function when using the 

GPCM is driven by the discrimination parameter, producing more peaked functions when this 

parameter is over 1.0. 

 An important feature of item information functions is that information functions of items 

that have been calibrated onto a common scale are additive (Samejima, 1969).  The sum of the 

information functions of the items comprising a test produces test information, which is defined 

as: 

    
1

n

i
i

TI I 


  , (10) 

where Ii (θ) is the information provided for a given theta (θ) by item i for n number of items.  The 

information provided by a test can be plotted across the range of ability levels producing a test 

information function, with the peak occurring at the ability level that is most precisely measured 

by the test (Embretson & Reise, 2000). 
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The information provided by a test for a given ability level (θ) is directly related to the 

precision of measurement at that ability level.  Precision of measurement is summarized by the 

standard error for a given (θ) and is defined as: 

  
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  , (11) 

where the standard error of theta estimate is SE(θ).  The relationship between test information for 

a given theta, TI(θ), and the standard error associated with that ability level is inverse. That is, as 

information for a given theta value increases, the standard error of the theta estimate will 

decrease and vice versa.   

Computerized Adaptive Testing 

 Paper & Pencil (P & P) tests are generally designed to measure the average person and, 

therefore, are composed of many items that are of average difficulty.  To achieve accurate 

measurement, many questions are asked, of which many are too easy or too hard depending on 

the examinee’s ability level.  Adaptive tests construct the test so that it is tailored to each 

examinee’s ability level, thereby not wasting the examinee’s time with questions that are too 

easy or too hard.  Commonly, CATs start with an item of average difficulty; however, if 

information about the examinee ability distribution is available, the starting theta (θ) can be 

based on this prior information.  Situations where prior information is not available, starting the 

test at an average ability level, θ = 0, is a reasonable place.  Then, based on the response, correct 

or incorrect, another item is given that is either harder or easier, respectively.  This adaption 

allows for much shorter tests with much higher precision of measurement, particularly at extreme 

ability levels (θ).  CAT accomplishes this with an algorithm consisting of four basic components: 
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the item pool, an item selection procedure, an ability estimation method, and a stopping rule 

(Reckase, 1989). 

Item Pool 

P & P tests construct different forms of a test based on the premise that they are parallel 

forms.  The items that are selected are from some larger pool of possible items based on a table 

of specifications, or test “blue print,” specifying the number of items, content areas covered, and 

difficulty of the items.  CAT creates parallel forms of a test, however, the forms are not 

constructed in advance.  An item pool is used to select items for examinees specified for their 

ability.  Due to the individualized nature of item selection, the pool needs to be sufficiently large 

to accommodate the full range of ability (θ) levels.  Commonly, large pools are used consisting 

of hundreds to thousands of items when items are scored dichotomously and exposure control 

and content balancing procedures are used (Way, 1998).   

Each polytomously scored item spans a range of ability levels (θ), therefore, accurate 

measurement can be achieved with item pools as small as 30 items when exposure control and 

content balancing are not used (Dodd & de Ayala, 1994).  When constraints, such as exposure 

control and content balancing, are required, as is the case for high stakes testing programs, a 

much larger pool is necessary (McClarty, Sperling, & Dodd, 2006).  It has been suggested that 

the size of the item pool be based on the length of the test.  These items need to be spread across 

the full range of ability with a similar number of items in the pool at the extreme ability levels (θ) 

so that precise measurement can be achieved at the extreme theta values.  Due to the additive 

feature of item information, an item pool can be constructed so that the test information function 

maximizes information at the points on the ability continuum the test is designed to measure 
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most accurately (Dodd, Koch, & de Ayala, 1993). Although bigger is better, size is not the only 

consideration for an item pool.  The items need to be quality items in order for quality 

measurement.  The parameters specified by the IRT model used to calibrate the items should be 

within adequate ranges.  Specifically, if the 2PL model is used, then the item pool should contain 

many highly discriminating items in the range of theta the test was designed to measure.  Once 

an item pool of desirable size and characteristics is acquired, the next component of the CAT 

algorithm is an item selection procedure. 

Item Selection Procedures 

In general, the item selection procedure for CAT is based on the most current ability 

estimate obtained using the responses to the previous items.  One method is the maximum 

information method that selects items, conditional on theta, that maximize information or 

measure the given ability level most precisely (Thissen & Mislevy, 2000).  Maximum Fisher 

item information (MFI; Lord, 1980) is a commonly used item selection method for both 

dichotomous and polytomous CATs due to the ease of implementation.  Fisher’s information, as 

previously defined in the IRT section, selects the item that measures the given ability level most 

accurately. In other words, it maximizes the information at a given theta.  In the unconstrained 

form, after each item is answered, the interim ability is estimated and the next item selected is 

the one that provides the most information for that ability level. 

Many Bayesian item selection procedures have been developed. The first Bayesian item 

selection procedure was Owen’s Bayesian (Owen, 1975).  This procedure selects items that 

minimize the expected posterior variance of the theta estimate.  The item that minimizes the 

variance of this posterior distribution will be selected for administration.  van der Linden (1998) 
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proposed a variety of Bayesian item selection procedures, including maximum expected 

information (MEI) and maximum expected posterior weighted information (MEPWI). With 

these procedures, the expected posterior probability distribution is used to average over the 

predicted responses for the next item in order to select the item that maximizes the expected 

information for a given ability level (Choi & Swartz, 2009).  Penfield (2006) compared the 

performance of MEI and maximum posterior weighted information (MPWI; van der Linden, 

1998), where the information function is weighted by the posterior distribution, to MFI.  The 

results indicated that the Bayesian procedures produced slightly more efficient estimates 

compared to MFI.  Although many Bayesian procedures exist, they are computationally intensive 

and produce similar results as the simpler MFI procedure (Choi & Swartz, 2009). Accordingly, 

the MFI procedure is the most commonly used item selection procedure in CAT and will be used 

in the proposed study. For more information concerning Bayesian item selection procedures, 

please see: Owen, R. J. (1975); Pastor, D. A., Dodd, B. G., and Chang. H. –H. (2002); Penfield, 

R. D. (2006); and van der Linden, W. J. (1998). 

There are several considerations before the selection of the most informative item can be 

made.  If item selection is based solely on maximum information, the first few items selected 

could be the same items for many examinees.  Furthermore, if examinees have many items in 

common those items could quickly become over exposed, or compromised.  Constraints on the 

item selection procedure are needed to limit the exposure of items.  Additionally, when multiple 

content areas are covered in a CAT, content area constraints can be implemented to ensure the 

specified proportion of items from each content area are administered, which is referred to as 

content balancing.  The items selected should be the most informative given content and 

exposure constraints.  There are several procedures for exposure control, which are classified 
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into 4 general types: randomization procedures, conditional selection procedures, item 

stratification procedures, and combinational procedures (Way, 1998).  

Randomization Procedures 

Polytomously scored items provide more information per item and across a wider range 

of ability levels compared to dichotomous items (Dodd et al., 1995), which has an impact on 

exposure control procedures that were originally developed for dichotomous items.  

Randomization procedures select an item at random from a set of similarly informative items for 

a particular theta level.  Two of the most common randomization procedures used in CAT 

research with dichotomous IRT models are the Within .10 logits (Lunz & Stahl, 1998) and the 

Randomesque procedure (Kingsbury & Zara, 1989). 

Lunz and Stahl’s (1998) within .10 logits, cited in Boyd (2004), selects all items with 

difficulty parameters (b) that are within .10 logits around the current θ estimate and randomly 

selects one item.  This procedure, developed with the Rasch model, selects a set of items based 

on matching the items’ bs to the most current estimate of theta, rather than selection based on 

item information, and continues throughout the length of the test.  The Modified Within .10 

logits (Davis & Dodd, 2003) selects a set of possible items from which the randomly selected 

item is chosen.  With this procedure, the most informative item that is .10 logits below θ, the 

most informative item that is .10 logits above θ, and the most informative item at the current θ 

are selected to comprise the set of items from which one item is randomly selected.  This 

modification was done for the polytomous item extension due to the lack of a single difficulty 

parameter. 
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Kingsbury and Zara’s (1989) Randomesque procedure selects a set of items based on 

information.  The most informative 5 or 10 items for the current theta estimate are selected, of 

which one is randomly selected for the dichotomous case.  This procedure continues for the 

entire length of the test in order to decrease test overlap, which is the number of items examinees 

of similar ability have in common (Kingsbury & Zara, 1989).  Davis (2004) modified the 

Randomesque procedure for the polytomous case to select a set of the most informative 3 or 6 

items for the current theta estimate, of which one is randomly selected to be administered. 

Conditional Procedures 

Conditional item selection is conditioned on a criteria, such as usage, and a parameter is 

estimated to control the probability of selection.  The most commonly used conditional selection 

procedure is the Sympson-Hetter strategy (Sympson & Hetter, 1985).  This is an iterative 

procedure where the exposure parameter K is calculated across a series of simulations, with K 

equaling the probability of the item being administered given that the item was selected.  When 

the value of K is high for a particular item, this indicates that this item has not been administered 

very often and, thus, has a higher probability of being administered if selected.  When the value 

of K is low for a particular item, this indicates that the item has been selected and administered 

often and, thus, would have a much lower probability of administration given that it was 

selected.  This procedure works well at controlling the exposure rate of items; however, it is very 

labor intensive in that the iterative simulations have to be conducted a priori to estimate the 

exposure parameter (K). 
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Item Stratification Procedures 

Item stratification procedures stratify the item pool according to a statistical property, 

such as item discrimination (a), and then select an item from a particular strata.  The first of these 

stratification procedures to be developed was the a-stratified procedure (Chang & Ying, 1999).  

This procedure was developed to regulate the use of highly discriminating items.  When 

maximum information is used to select items, the highly discriminating items will quickly 

become over-exposed.  Chang and Ying’s (1999) procedure regulates the use of these highly 

informative items by stratifying the pool by the item discrimination parameter (a).  The items are 

classified into strata with low a values, medium values of a, and high a values. Additionally, the 

test is classified into multiple stages: beginning, middle, and end.  Chang and Ying (1999) 

argued that the highly discriminating items are unnecessarily used at the beginning of a test when 

the interim ability estimate can vary widely.  Their solution was to select items from the lower 

discriminating strata at the beginning of the test and as the test proceeds, items are selected from 

the more discriminating strata.  This leaves the highly informative items (from the high a strata) 

for the end of the test when the ability estimate is not varying widely; therefore, the highly 

informative items will be used more productively.  After the proposition of the a-stratified 

procedure, many variations followed, such as the a-stratified with freezing (Parshall, Harmes, & 

Kromrey, 2000), the a-stratified with b-blocking (Chang, Qian, & Ying, 2007), multi-

dimensional stratification (Lee, Ip, & Fuh, 2002), and the 0-1 stratification strategy (Chang & 

van der Linden, 2003), just to name a few. 

Combination Procedures 

The last general type of exposure control procedure is the combination procedure, so 

named due to the combining of randomization and conditional procedures.  The first of these 
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combinational strategies is the Progressive-Restricted (PR) procedure developed by Revuelta and 

Ponsoda (1998).  This strategy weights the items based on the items’ position (S) in the test and 

the information (I) provided by that item, calculated with the following equation: 

  1i iW S R SI   , (12) 

where Wi is the weight for item i, S is the serial position which is the number of items 

administered divided by the total number of items on the test, I is the information for item i, and 

Ri is a random number drawn from a uniform distribution.  As can be seen, a larger weight is 

given to the random number at the beginning of the test. As the test continues, the larger weight 

is given to the item’s information, allowing maximum information to have a greater impact 

toward the end of the test.  A major drawback is that this procedure can only be used with fixed 

length tests or tests with a pre-specified number of items.  McClarty, Sperling, and Dodd (2006) 

developed the Progressive-Restrictive – Standard Error (PR-SE) procedure to extend the 

application of Revuelta and Ponsoda’s (1998) procedure to variable length tests.  To accomplish 

this, the serial position (S) is replaced by a ratio of the current SE over the desired SE.  This 

achieves the desired outcome of a larger weight assigned to the random number when the SE is 

far from the target SE, such as at the beginning of the test. Also, this procedure places more 

weight on the item information toward the end of the test when the SE is closer to the target. 

 Research comparing the performance of exposure control procedures assess effectiveness 

in terms of frequency of use, use of item pool, examinee test overlap, and precision of 

measurement.  Revuelta and Ponsoda’s (1998) PR procedure was compared to McClarty et al.’s 

PR-SE (2006) procedure using Masters (1982) Partial Credit Model.  The results indicated that 

both procedures performed similarly, with the PR-SE increasing item pool utilization (McClarty 
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et al., 2006).  Davis (2004) assessed a variety of methods using the GPCM.  This comprehensive 

study compared the precision of measurement, exposure rate, and difficulty or ease of 

implementation for the modified within .10 logits, Randomesque, Sypmson-Hetter, conditional 

Sypmson-Hetter, a-Stratified, and enhanced a-Stratified procedures.  The enhanced a-Stratified 

and the a-Stratified performed the worst in terms of measurement precision, exposure rate, and 

implementation (Davis, 2004).  The Sypmson-Hetter and the conditional Sypmson-Hetter 

procedures achieved the lowest exposure rates; however, this was at the cost of efficiency to 

implement, item overlap, and pool utilization (Davis, 2004).  The Randomesque and modified 

within .10 logits with 6 item groups were found to be the easiest to implement, while effectively 

controlling exposure rates (Davis, 2004).  Overall, the research indicated that the Rrandomesque 

or modified within .10 logits with 6 item groups performed the best in terms of pool utilization, 

exposure rate, test overlap, and ease of implementation.  

Content Balancing 

Tests that cover multiple content areas require a procedure to ensure that items from each 

of the content areas are administered according to a pre-specified percentage or test specification 

(Boyd, Dodd, & Choi, 2010), referred to as content balancing.  There are a variety of strategies 

for content balancing, however, the most commonly used procedure is Kingsbury and Zara’s 

(1989) content constrained CAT (C-CAT).  With this procedure, the desired proportions of each 

content area are first pre-specified. After each item is administered, the proportions of each 

content area are calculated and compared to the pre-specified proportions.  The item with the 

most information in the content area with the largest discrepancy will be selected to be 

administered next, given any constraints due to exposure control procedures.  Previous research 
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has shown that this procedure successfully administers specified proportions of items per content 

area (Boyd, 2004; Davis, 2004; McClarty et al., 2006).  

Trait Estimation 

Estimation of ability (θ) is calculated using either maximum likelihood or Bayesian 

methods, with advantages and disadvantages for both.  Maximum likelihood estimation (MLE) 

determines the most likely location of theta by multiplying the probabilities of the individual 

responses in the response string.  A major drawback to this estimation method is that in order to 

calculate the likelihood distribution of θ, a response in both categories (correct and incorrect) for 

dichotomous items or a response in two different categories if one response is in either of the 

extreme categories for polytomous items, is required.  After a response in both categories is 

observed in the response string, the maximum likelihood estimate of θ, L(θ), is the mode of the 

distribution.   

Until this response string is observed, the decision has to be made as to how the initial 

ability estimate (θ) should change, which is referred to as step size.  Variable step size 

determines the change in θ based on the range of the items’ difficulties within the item pool 

when content balancing is not used.  When content balancing is used, the change in θ is based on 

the range of the items’ difficulties within each content area. This is done to ensure that there is an 

item within the content area to administer at the θ level.  To illustrate in the dichotomous case, if 

the first response is correct, the next item selected to be administered will be the most 

informative for an ability (θ) level corresponding to a difficulty (bi) value that is half the distance 

to the most extreme difficulty (bi) value.  For example, if the initial ability estimate was θ=0, the 

first item was answered correctly and the most extreme difficulty is bi=3.0, the initial ability 
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(θ=0) estimate would increase to θ=1.5.  The next item selected would be the most informative 

for this ability (θ=1.5) level.  If the first question was answered incorrectly and the most extreme 

difficulty is bi= -3.0, the initial ability (θ=0) estimate would decrease to θ= -1.5, with the next 

item selected providing maximum information for this ability level.   

In the polytomous case, if the first response was in one of the higher categories, then the 

initial ability (θ) estimate would be increased to a value that corresponds to half the distance to 

the highest step difficulty (bik) value within the content category.  Likewise, if the response was 

in one of the lower categories, then the initial ability (θ) estimate would be decreased to half the 

distance to the lowest step difficulty (bik) value within the content category.  The next item 

selected would provide the most information at the new interim ability (θ) estimate.  This step 

size procedure continues until a correct and incorrect response in the dichotomous case, or a 

response in two different categories if one is in either of the extreme categories in the 

polytomous case, is observed in the response string.   

Previous research with polytomous CATs (Koch & Dodd, 1989; Dodd et al., 1995) 

demonstrated that the variable step size procedure outperforms the fixed step size procedure, 

where the change in the initial ability (θ) estimate is a fixed amount.  The inability to estimate 

ability for those examinees that answer all items right or all wrong for dichotomous items, or 

answer all items in the highest category or all in the lowest category for polytomous items can 

have a major impact on examinees with abilities in the extreme ranges of theta.  For this reason, 

many use Bayesian methods, which use a prior or known population ability distribution to 

estimate the probable location of theta. 
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The Bayes modal estimation procedure uses a prior distribution to determine the most 

likely location of theta in the posterior distribution.  The estimate of theta is the mode of the 

posterior distribution, as implied by the name.  The mean, instead of the mode, of the posterior 

distribution is used in Expected a Posteriori (EAP) estimation (Bock & Mislevy, 1982), which is 

the most commonly used in CAT.  The prior distribution used, if incorrect, can have an impact 

on estimation, with a larger impact on shorter tests than longer tests (Mislevy & Stocking, 1989).  

Previous research with the GPCM has demonstrated that EAP performs similarly to MLE in 

terms of accuracy of theta estimates when an appropriate prior was used under conditions with 

similar test length as well as in terms of root mean squared errors under conditions with 20 or 

more quadrature points used (Chen, Hou, & Dodd, 1998).  

Stopping Rule 

The stopping rule, also referred to as the termination criteria, is classified into two 

general types based on the type of test they produce, fixed and variable length (Thissen & 

Mislevy, 2000). The termination criteria for a fixed-length (FL) test is administration of items 

until the examinee has been administered a pre-determined number of items.  This termination 

criteria is simple to implement and has the advantage that every examinee completes the same 

number of items.  The drawback is that the precision of measurement will differ across 

examinees with different ability levels depending heavily on the distribution of items in the pool 

or the test information function.      

Variable-length (VL) tests terminate when a specified precision of measurement (i.e., 

standard error, SE) is reached.  This results in examinees completing different number of items 

when the SE drops below a specified level of precision, usually SE < 0.3 or 0.2.   Examinees are 
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measured with equal precision, although the length of the test will differ by examinee.  A 

variation of the standard error stopping rule is the minimum information stopping rule, which 

terminates the test when the items left in the pool to be administered provide such little 

information (less than a minimum pre-specified amount), that administering more items would 

be futile.  Research using the PCM previously found that the SE termination criteria outperforms 

the minimum information criteria (Dodd, Koch, & De Ayala, 1993).  

Combination procedures merge variable length termination criteria with fixed length 

criteria. Specifically, the test would terminate when a specified SE is reached or a fixed number 

of items are administered, whichever occurs first.  This combination stopping rule capitalizes on 

the benefit of equal precision of measurement with the VL criteria, as well as the benefit of 

efficiency with the FL criteria, stopping the test after a certain number of items so that the test 

terminates when a precise measurement cannot be achieved.   

Adaptive Tests that Allow for Response Review and Revision 

   All procedures and IRT models discussed thus far adapt at the item level. That is, an 

item is presented, the examinee responds to that item, an ability (θ) is estimated based on the 

response, and the next item is selected based on the most current ability estimate.  Consequently, 

the examinee cannot go back and review answers to previous items or change answers to those 

items.  The ability to review previous items and change answers has been shown to decrease 

anxiety during testing, as well as decrease typographical errors (Lunz, Bergstrom, & Wright, 

1992; Stone & Lunz, 1994; Stocking, 1997).  High anxiety increases examinee errors during 

exams, inhibiting an accurate measurement of their ability.  The development of adaptive tests 

has increased test efficiency with shorter tests while increasing measurement precision; however, 
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this limits examinee flexibility to review and change answers.  Wainer (1993) has suggested that 

allowing examinees to review and change answers will decrease the efficiency of the test, as well 

as open the door to possible manipulative test taking strategies to bias ability estimates that could 

be employed, assuming that examinees understand the ability estimation algorithm.   

Previous research, which will be described in detail subsequently, has addressed most of 

these concerns about the impact that response review and revision may have on a CAT that 

adapts at the item level.  Lunz, Bergstrom, and Wright (1992) investigated the impact of 

response review and revision on test efficiency with licensing and certification exams.  Stone and 

Lunz (1994) expanded this line of research by examining the impact on the ability estimates, test 

information and precision, as well as decision accuracy with two different examinee populations 

using two certification tests.  Three models were proposed by Stocking (1997) that allow for 

response review and revision to varying size blocks, or sets, of items.  Vispoel, Hendrickson, and 

Bleiler (2000) assessed the impact of review and revision on the psychometric properties of a 

vocabulary test in a live testing situation, and assessed examinees’ attitudes on review options.  

Additionally, Vispoel, Clough, Bleiler, Hendrickson, and Ihrig (2002) investigated examinees’ 

ability to distinguish differences in item difficulty in order to bias ability estimates.  A new 

method proposed by Han (2013) addresses the item review and revision issue without restricting 

revision to after the test is complete.  In addition to examining test efficiency and bias, Han 

(2013) also examined the opportunity to bias ability estimates as suggested by Wainer (1993). 

Review and Revision on Licensure and Certification Exams 

Early research on the impact of response review and revision utilized licensure and 

certification exams.  Although these types of exams share the same objective as other 
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educational assessments, to assess the individual’s knowledge on a subject and provide an ability 

estimate, licensure and certification exams are particularly focused on assessing whether or not 

an individual possesses a minimum competency in the subject area.  This minimum competency 

is commonly assessed by an individual’s ability estimate relative to a pass/fail point on the 

ability continuum.   

Lunz, Bergstrom, and Wright (1992) were interested in investigating whether allowing 

review and revision of responses would substantially decrease the efficiency of the CAT.  The 

efficiency of the CAT was based on the amount of information each item administered provided 

and the number of items needed to reach a pass/fail decision with a specified level of confidence.  

The item bank used was constructed from a P & P medical technology certification exam that 

was field tested on students in medical technology programs across the nation.  The items from 

this P & P test were then calibrated using the 1 PL model.  Items that did not fit well were not 

included in the item bank, creating an item bank of 726 items.  The CAT started the test with an 

item of average difficulty and each subsequent item was randomly selected from the remaining 

items in the bank that fell within 0.10 logits of the examinee’s interim ability level.  The stopping 

rule used was based on a level of confidence, in that the test would stop once the ability estimate 

was 1.3 times the standard error of measurement above or below the pass/fail cut point.  The 

pass/fail cut point for the exam used was placed at 0.15 logits.   

Examinees were randomly assigned to two conditions, one that allowed review and 

revision of answers (n=220) and a no review condition (n=492).  In the review condition, 

examinees were instructed that after they had completed the exam, they would be allowed to 

review and revise all of the items, but each item had to be answered when it was first presented.  

Once the stopping rule was satisfied, the examinees in the review condition were allowed to 
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review all items, which were presented in the original order with the selected answer highlighted.  

The examinees in the no review condition were instructed that they had to answer each item as it 

was presented and that they would have only one opportunity to answer each item.  No time 

constraints were enforced in either condition; therefore, the review condition had unlimited time 

for review and revision.  Additionally, for each examinee in the review condition, two records 

were maintained, one before review and one after review. 

The results indicated that the examinees in the review condition had a slightly higher 

mean ability (0.24) after review compared to the mean ability of the examinees in the no review 

condition (0.16).  This mean difference in ability between the examinees in the two conditions 

was statistically significant (t (710) = -2.08, p < 0.04).  The average number of items 

administered in the review condition was 96, with an average of 2 items revised.  Of the 220 

examinees allowed revision, 85 did not revise any items. Of the 135 that revised responses, the 

maximum number of items revised by one examinee was 16.  Among the examinees that revised 

responses, 30 lowered their ability estimates by revision, 71 improved their estimates, and 34 of 

the examinees did not change their ability estimates after revision.   

Due to review, the efficiency of the test decreased by 1%, on average.  The number of 

additional items needed to recover the information lost during revision depended on the number 

of items revised.  However, for 108 of the 135 examinees that revised at least one item, they 

would not require administration of any additional items.  Of the remaining 27 examinees that 

revised more items during review, 2-14 additional items would need to be administered to 

recover the information lost during review.  The impact on the pass/fail decision after review was 

minimal.  Only 3 examinees changed the pass/fail decision after review and these examinees’ 

ability estimates before and after review were within one standard error of measurement of the 
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pass/fail cut point.  Examinees whose ability estimates fall very close to the pass/fail cut point 

have the lowest confidence in the pass/fail decision regardless of whether review is allowed or 

not.  Lunz, Bergstrom, and Wright (1992) concluded that the significant difference in mean 

ability between the two equivalent groups was due to the review group’s ability to correct 

careless or typographical errors. The majority of the pass/fail decisions did not change and the 

efficiency that was lost was not substantial enough to support the restriction of review. 

Stone and Lunz (1994) extended this line of research by investigating the impact of 

review and revision by expanding the subjects to two different examinee populations taking two 

different certification exams.  This would allow for any differences in use of review by the 

different examinee populations and different patterns specific to the test to become apparent.  

Test precision in terms of information and decision confidence were examined, as well as 

changes in the pass/fail decision before and after review.  Although two different medical 

technology certification exams were used, review and revision was allowed in both and limited 

to after the examinee had answered all items. 

The study design and methods used were similar to those used by Lunz, Berstrom, and 

Wright (1992), with the exception of a control group and the addition of another test and 

examinee population.  All examinees took a CAT consisting of a minimum of 50 items and a 

maximum of 100 items.  Two hundred and eight examinees were assigned to take Test 1 and 168 

examinees were assigned to take Test 2.  Again, all the items for both tests were calibrated using 

the 1 PL model.  Test 1 had an item bank consisting of 664 items and Test 2’s item bank was 

substantially smaller with only 183 items.  The stopping rule was increased compared to the 

previous study, with the test terminating when the examinee’s ability estimate was 1.65 times the 

standard error of measurement, rather than 1.3, above or below the pass/fail cut point.  Two 
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records were maintained for all examinees, one before review and one after review.  Based on 

the records, before review examinees were categorized into low, medium, and high ability levels.  

The low ability group consisted of examinees with ability estimates more than one SEM below 

the pass/fail cut point.  The medium ability group consisted of those examinees with ability 

estimates within one SEM above and below the pass/fail cut point.  The high ability group 

consisted of the examinees with ability estimates more than one SEM above the pass/fail cut 

point.  The examinees were also categorized into those that passed and those that failed for both 

tests before and after review. 

The results indicated that the mean ability estimates and standard deviations for both tests 

increased after review.  The average ability estimate for Test 1 increased from .61 to .66 and Test 

2’s average ability estimate increased from 1.53 to 1.59 after review.  The SEM for Test 1 did 

not change after review, although Test 2’s SEM increased slightly from .27 to .28 after review.  

The information lost due to review, for both tests, could be recovered by the administration of 

one additional item.  Two distinct patterns appeared in pass/fail decisions.  Examinees who 

passed the test before review increased their estimates after review and moved farther above the 

pass/fail point, thereby increasing the confidence in the pass decision.  Examinees who initially 

failed the test before review increased their estimates after review and moved closer to the 

pass/fail point, thereby decreasing the confidence in the fail decision.  The confidence in the 

pass/fail decision did not change for those examinees in the high and low ability groups.  As 

expected, it was those examinees close to the pass/fail point where confidence in the pass/fail 

decision is low.  The pattern of revising answers appeared to be random instead of systematic as 

Wainer (1993) had suggested.  Approximately half of the responses were changed from incorrect 

to correct, which occasionally resulted in a gain in the ability estimate.  However, these gains 



 

42 

 

were sometimes canceled out by changing a correct response to incorrect.  Stone and Lunz 

(1994) concluded, as did Lunz et al. (1992), that the impact of review on the measurement error, 

ability estimates, and efficiency of the CAT was minimal and did not support the restriction of 

review.         

Stocking Models 

Stocking (1997) conducted a simulation study in which three models were proposed and 

evaluated.  The three models that Stocking (1997) proposed provide examinees differing review 

and revision options, as well as assess the conditional standard error of measurement (CSEM) 

and the conditional bias across the conditions investigated.  All of the CATs simulated used 

MLE to estimate theta, MFI for item selection, and a fixed length termination criteria.  All the 

conditions simulated examined the worst case scenario of manipulative test taking strategy, or 

cheating, where it is assumed that any changed answer is changed from incorrect to correct.  

Additionally, the first few items are answered incorrectly to create the easiest possible test, 

which likely is not the case in reality.  This is referred to as the Wainer Strategy. 

The first model (Model 1), simulated examinees were allowed to change answers to a 

pre-specified number of items after the last item had been answered.  Stocking (1997) simulated 

examinee responses for a 28 item CAT consisting of four conditions with differing number of 

items allowed for revision: 2 items, 7 items, 14 items, and 28 items.  The condition that allowed 

for two responses to be changed preformed similarly to the conventional 28 item CAT that did 

not allow for revised responses, with similar CSEM, although the conditional bias for the higher 

abilities resulted in a gain of about 2 score points.  Nonetheless, all other conditions resulted in 
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large CSEMs and much larger positive conditional bias equivalent to gaining 60 score points for 

the higher ability levels (Stocking, 1997).   

The second model investigated (Model 2) allowed examinees to review and revise any 

number of items within separately timed sections, to which Stocking (1997) referred to as “Block 

Review.”  The content of the items within a block would differ across simulated examinees, but 

the number of items contained in each block would be constant across simulated examinees.  The 

four conditions for this set of simulations consisted of a CAT: with seven sections of four items, 

four sections of seven items, two sections of 14 items, or all 28 items in one section.  All 

conditions showed to reduce the CSEM and the positive conditional bias. Specifically, the 

conditions containing more sections with fewer items per section had CSEM similar to the 

traditional 28 item CAT with no revisions (Stocking, 1997).  Additionally, the positive 

conditional bias was substantially decreased in the condition with two sections of 14 items each, 

which resulted in conditional bias equating to an increase of 20 score points.  Likewise, the 

conditions with four sections containing seven items each and seven sections containing four 

items each both reduced the conditional bias to less than 10 score points (Stocking, 1997). 

For the third model (Model 3), simulated examinees could revise answers to items that 

pertained to a common stimulus.  The sets of items, or blocks, were now comprised of items that 

related to the same stimulus, unlike Model 2 where the content of the blocks of items was 

heterogeneous.  However, items not tied to a stimulus (discrete items) could not be revised.  

Again, four conditions were investigated each using a different item pool: a CAT consisting of 

28 items selected from an item pool containing two blocks with four items each; a CAT with 30 

items selected from an item pool containing three blocks with eight items each; a CAT with 35 

items selected from an item pool containing six blocks with 26 items each; and a CAT with 31 
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items selected from an item pool with seven blocks containing 31 items (Stocking, 1997).  All 

conditions had similar CSEM and conditional bias compared to the traditional, no revision CAT. 

Still, this model was limiting in the sense that discrete items could not be revised and items 

within a set could not be skipped.  All of the models Stocking (1997) investigated had some form 

of restricted review options; however, skipping items to return to later was strictly not allowed.  

Results indicated that only the most restrictive conditions achieved CSEMs and conditional 

biases within acceptable ranges, as well as robustness to the Wainer Strategy. 

Review and Revision on CAT Vocabulary Tests 

Results from previous studies that suggested a minimal loss in efficiency and 

measurement accuracy with review and revision lead Vispoel, Hendrickson, and Bleiler (2000) 

to examine response review and revision on vocabulary CAT tests, as well as examinees’ desire 

for review options.  Although a majority of Stockings’ (1997) models resulted in biased ability 

estimates, the study was a simulation in which the human element is eliminated and the worst 

case scenario of cheating was simulated.  Vispoel et al. (2000) designed a live testing study to 

examine some of the restricted review options Stocking (1997) used in order to gain a better 

understanding of review behavior among real examinees. 

A convenience sample of 242 participants from the University of Iowa Introductory 

Educational Psychology and statistics courses volunteered for the study.  Each student completed 

a test anxiety inventory, a fixed length 40-item vocabulary skills CAT, and a questionnaire 

including demographic information and attitudinal questions about tests.  The vocabulary test 

was constructed from an item pool of 609 items.  The participants were randomly assigned to 

four conditions: full review of all items at the end of the test, no review, and two forms of block 
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review.  The block review conditions allowed for review of items within a block or set after 

completion of the block of items and the CAT was designed to adapt both within and between 

blocks.  The block review conditions were eight blocks of five items or four blocks with ten 

items.  Skipping items was not allowed, but items could be marked for later review. Still, once an 

examinee moved to a new block, the previous blocks could not be reviewed or revised.  The 

items were calibrated using a modified 3 PL model that freely estimated the difficulty and 

discrimination parameters but fixed the pseudo-guessing parameter at 0.15.  Item selection was 

based on maximum information, with no exposure or content constraints.  Bayesian EAP 

estimation was used to estimate examinee ability based on previous research (Vispoel et al., 

1999), suggesting that EAP is less susceptible to  score distortion due to the Wainer strategy seen 

in the worst case scenario of Stocking’s (1997) study in which ML estimation was used. 

The results indicated, as did previous research, that 47.5% of examinees in the review 

conditions changed answers to at least one item, with more answers changed from wrong to 

right.  However, the percentage of items revised only comprised 2.31% of the overall items 

administered.  The majority of examinees in the review conditions that revised answers improved 

their ability estimates after review and revision, although measurement precision changed very 

little after review with a precision ratio of .991.  A positive relationship was found between block 

size, number of items marked for review, number of answers revised, and time spent on 

reviewing answers, with the latter three increasing when block size increased.  Approximately 

96% and 95% of the examinees indicated that answer review and question marking options are 

desirable in CATs, respectively.  Additionally, examinees reported that marking answers for later 

review as their most commonly used test taking strategy.  Again, no evidence of the Wainer 

strategy was supported by the results and Vispoel et al. (2000) concluded that allowing limited 
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review options would increase ability estimate validity with minimal impact on measurement 

precision and test efficiency. 

Since Wainer (1993) suggested that examinees could devise a strategy to bias ability 

estimates if response review and revision was allowed, most studies on review options have 

examined the plausibility of this strategy and found it not plausible.  Vispoel, Clough, Bleiler, 

Hendrickson, and Ihrig (2002) took a closer look at examinees’ ability to distinguish differences 

in item difficulties.  Vispoel et al. (2002) taught the participants two different strategies, the 

Kingsbury and the Generalized Kingsbury strategy, to explore the possible bias in ability 

estimates due to these manipulative strategies.  Kingsbury (1996) described the Kingsbury 

strategy in a paper presented at the National Council on Measurement in Education annual 

meeting.  This strategy is based on knowledge of the item selection algorithm in which an item 

answered correctly will result in a harder item subsequently administered and, likewise, an item 

answered incorrectly will result in an easier item subsequently administered.  The examinee 

would mark an item for review if they were unsure of their answer if the next item presented was 

easier, indicating that the response to the previous question was incorrect.  However, this 

strategy assumes that examinees can distinguish item difficulties in pairs of items and that 

examinees only utilize this strategy when they are unsure of their answer.  The Generalized 

Kingsbury strategy, discussed in Wise, Finney, Enders, Freeman, and Severance (1999), 

eliminates the second assumption that examinees only use the strategy when they are unsure of 

their answer, but rather use it for every item. 

Vispoel et al. (2002) expanded upon the design of Vispoel et al. (2000) with the addition 

of the two testing strategies using the same vocabulary test and two review conditions.  The 

vocabulary tests utilized the same item pool, item selection, and ability estimation procedures as 
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Vispoel et al. (2000).  The participants were randomly assigned to one of the seven conditions: 

no strategy/no review (NR), no strategy and review of all 40 items after completion of all items 

(R40) , no strategy and review of eight blocks of five items after completion of the block (R5), 

Kingsbury strategy and review of all 40 item after completion of all items (K40), Kingsbury 

strategy and review of eight blocks of five items (K5), Generalized Kingsbury strategy and 

review of all 40 items (GK40), and Generalized Kingsbury strategy with review of eight blocks 

of five items (GK5).  The no review and the two no strategy conditions served as baseline and 

replication conditions to compare to Vispoel et al. (2000).  The participants assigned to the 

strategy conditions were taught the two testing strategies and given an opportunity to practice 

applying them before starting the vocabulary tests.   

Vispoel et al. (2002) examined the consistency of the item selection procedure in 

adhering to correct answers leading to a harder item and incorrect answers leading to an easier 

item algorithm, due to the testing strategies basis in this algorithm.  Because maximum 

information was used as the item selection procedure, it was expected that the second half of the 

CATs would depart more from the algorithm due to less discriminating items remaining in the 

item pool for selection.  The results, measured by the proportion of items following the 

algorithm, supported this expectation with consistency to the strict correct-harder item, incorrect-

easier item algorithm found in 88% of the first 20 items across the whole sample and a drop in 

consistency to 73% in the last 20 items.  Examinees’ ability to distinguish differences in item 

difficulty was slightly greater than chance at an average of 0.61, consistent with results from 

Wise et al. (1999).  The item pool used in Vispoel et al. (2002) contained fewer items with 

absolute b-values greater than 0.5 logits apart, only 13% of the items in the pool had absolute b-

values greater than 0.5 logits apart.  For those items with absolute b-values greater than 0.5 logits 
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apart, the success of examinees to distinguish the differences in difficulty only increased to 0.67 

from 0.61, on average, which was lower than 0.73 as found in Wise et al. (1999).  Vispoel et al. 

(2002) proposed that this decrease in success for distinguishing differences in pairs of items is 

due to differences in the distribution of item pools used in the two studies.  

As was expected, testing time increased for the review conditions compared to the no 

review conditions, with an 11% increase for the R5 condition and 20% increase for the R40 

condition.  Additionally, the testing strategy conditions saw a bigger increase in testing time with 

the GK40 resulting in the largest increase in testing time (a 52% increase) to complete and 

review all items.  The results concerning the ability estimates support previous findings in that 

item review slightly improves ability estimates with a mean increase in the review conditions of 

0.03.  Interestingly, the two testing strategies, Kingsbury and Generalized Kingsbury, both 

decreased mean ability estimates after review with a mean of -0.04 and -0.07, respectively.  This 

result was not particularly expected and provides evidence that the use of these strategies will 

hurt examinees estimates rather than inflate the estimates as Kingsbury (1996) and Wise et al. 

(1999) originally proposed.  In the review conditions, the answer changing behavior followed 

previous patterns, with more answers changed from wrong to right.  However, this pattern 

reversed with the strategy conditions, with more answers changed from right to wrong. 

These results provide evidence that the two test strategies studied would likely not 

provide examinees any advantage. Rather, test taking strategies would hurt examinees’ ability 

estimates.  The lack of examinees’ ability to distinguish differences in difficulties between pairs 

of items in combination with the item selection algorithm’s inconsistency, especially in the 

second half of the test, produces a potentially detrimental strategy.  It should also be noted that 

this study did not use any exposure control or content balancing procedures, which would likely 
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increase the item selection algorithm’s inconsistency, leading to a greater detriment to 

examinees’ ability estimates.  Further, the increased testing time required to implement these 

strategies would be prohibitive under high stakes testing situations. 

Item Pocket Method 

Han (2013) developed a new method, called the item pocket (IP) method, to allow for 

greater flexibility on the examinees part to review, revise, and skip items in a CAT that adapts at 

the item level.  Han (2013) argues that although Stocking’s Model 2 performed well in terms of 

conditional bias and the CSEMs when there were more separately timed sections containing 

fewer items, it did not allow examinees to skip items, which could have an impact on test 

efficiency.  Although examinees can revise answers within a section, they must answer each 

question first, and could resort to randomly selecting an answer in order to move forward will 

inevitably decrease the efficiency of the CAT because examinees’ random responses are used to 

select subsequent items, which may not reflect their true ability.  Han (2013) also argues that 

small separately timed sections may not be realistic for an operational testing program, which the 

IP method addresses. 

The IP method, proposed by Han (2013), creates a “pocket” in which examinees can 

place items at any time during the test.  The items placed in the pocket are not used in the item 

selection algorithm, so restrictions implemented in Stocking’s (1997) Model 1 and 2 and in the 

work done by Vispoel et al. (2000 & 2002) are no longer necessary.  The items in the pocket can 

be reviewed at any time during the test and once a final answer is confirmed, the item is removed 

from the pocket.  This method allows examinees to revise all items, if time limits allow, which 
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provides greater flexibility to move through the test without jeopardizing the efficiency of the 

CAT algorithms. 

Han (2013) assessed this new method in terms of CSEM and conditional bias, with 

simulated examinee responses to a fixed length, 40 item CAT.  The simulation study design 

included items from an operational CAT item pool calibrated with the 3PL model, using MFI as 

the item selection criteria with the Sympson-Hetter (1985) exposure control procedure and MLE 

to estimate ability.  Four IP size conditions were investigated, including zero items (a baseline, 

conventional CAT), two items, four items, and six items.  Additionally, any items left in the 

pocket would be counted as incorrect under the IP design.  Nonetheless, the simulation study had 

no time restrictions, meaning that no items were left in the pocket, which Han (2013) admits 

does not reflect realistic testing conditions. 

Due to the simulated nature of the study, items were selected to be placed in the pocket 

based on the discrepancy between the examinee’s known ability (θ) level and the item’s 

difficulty.  This discrepancy between the examinee’s known ability and the item difficulty was 

used to simulate which items the examinees would find difficult.  Only items that had a difficulty 

higher than the examinee’s known ability would be selected for placement in the item pocket.  If 

the item’s difficulty (b) was half a theta unit higher than the examinee’s known ability, then the 

item was deemed challenging and placed in the pocket 70% of the time.  If this discrepancy was 

less than 0.5, then the item was deemed challenging 50% of the time and placed in the pocket.   

In situations where the pocket was full and the current item is to be placed in the pocket, 

the simulated examinee would compare the items in the pocket to determine the easiest item to 

remove so that the current item can be placed in the pocket.  To determine the easiest item, all 
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pairs of items in the pocket are compared. Those items with discrepancies greater than 0.5 logits 

higher than the examinee’s known ability, the easiest item was simulated as being selected 70% 

of the time.  If the discrepancy was between the examinee’s known ability and 0.49 logits higher 

than the ability, the easiest item was simulated to be selected 50% of the time.  Once the easiest 

item in the pocket was identified, that item was compared to the current item, with discrepancies 

greater than 0.5 logits higher than the known ability simulated as being selected 70% of the time.  

Again, when the discrepancy is between the known ability and 0.49 logits higher, the easiest item 

would be simulated being selected 50% of the time.  Once the item that is to be answered is 

selected, either the item removed from the pocket or the current item based on the above 

described comparisons, the item is administered.      

Han (2013) selected these percentages of determining placement in the pocket and 

selection of the easiest item within the pocket  based on research by Wise et al. (1999) and 

Vispoel et al. (2002) on examinee test taking strategies when the examinees have an opportunity 

to review and change answers.  Vispoel et. al. (2002) found that examinees are not accurate in 

determining the most difficult item when comparing pairs of items, with accuracy increasing as 

the difference in difficulty between the two items increases.  In an attempt to more closely 

simulate examinee testing behavior, these percentages introduce error in determining the items 

that are placed in the pocket and selecting the easiest item in pairs of items.  The computer can 

select the easiest item every time, however, Vispoel et al. (2002) demonstrated that examinees 

are not very successful in determining item difficulty.   

Results indicated improved robustness to positive conditional bias, as seen with 

Stocking’s (1997) Model 1 (with only two revised items) and Model 2 with four or more 

separately timed sections.  Specifically, comparing the conditional bias of the θ estimates within 



 

52 

 

the range of -2 to +2 for IP size 2, 4, and 6 to the baseline condition showed either no change for 

the two and four IP size conditions, and slight positive bias for the lower ability estimates and 

slight negative bias for the higher ability estimates with an IP size of six (Han, 2013).  The 

CSEM showed a slight increase in the θ estimates of less than 0.10 across the theta range of -2.5 

to +2.5 for all of the item pocket sizes.   

The possible use of manipulative test taking strategies to improve scores was also 

assessed, due to the concern in previous research in examinee cheating.   The design of the IP 

method excludes items placed in the pocket from use in the item selection algorithm, meaning 

the items placed in the pocket are not used to select the subsequent items.  The strategy 

suggested by Wainer (1993), where examinees purposely answer initial items incorrectly in order 

to get subsequently easier items, thereby artificially increasing scores, is not possible.  The 

exclusion of items placed in the pocket from the item selection algorithms eliminates the use of 

both the Kingsbury and Generalized Kingsbury strategies, as well.  The impact of using the 

pocket on test completion was not directly assessed since there was no time limit and all 

simulated examinees responded to all 40 items.  Han (2013) suggests that in operational testing 

programs, where some time limit is placed on examinees, IP usage for the lower ability 

examinees could inhibit the completion of the test.  The size of the pocket, suggested by Han 

(2013), should be based on the length of the test, limiting it to 20% of the test.  The IP method 

displayed robustness to manipulative testing strategies while maintaining efficiency and 

precision, as well as providing more flexibility to examinees. 
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Statement of Problem 

The development of CAT has increased assessment efficiency, while also increasing 

measurement precision.  The increased efficiency has decreased the demand on examinees; 

however, the adaptive nature of the tests has restricted examinees’ control in moving through a 

test as they would with a P & P tests with the opportunity to skip questions, as well as review 

and change answers.  This restriction was necessary due to the ability estimation algorithm, 

which is estimated after each item based on the response to that item.  Allowing examinees to 

change answers could open the door for cheating.  

For instance, the Wainer strategy is the purposeful answering of items incorrectly, 

thereby creating an easy test.  When the examinee is allowed review and revision, the examinee 

goes back through this artificially easy test and answers all the items correctly, resulting in an 

inflated score.  The Kingsbury and Generalized Kingsbury strategies use the information from 

the subsequent item, or examinees’ perception of the item’s difficulty, to gage whether the 

previous item was answered correctly.  If the subsequent item is more difficult, then the previous 

item was answered correctly.  If the subsequent item is easier than the previous item, the 

examinee can assume the response to the previous item was incorrect.  The examinee uses this 

information to correct the items that were answered incorrectly.  Previous research by Lunz et al. 

(1992), Stone and Lunz (1994), and Vispoel et al. (2000 & 2002) provides evidence that the 

Wainer strategy and both the Kingsbury and Generalized Kingsbury strategies are not plausible 

and are not likely to be used by examinees in either low or high stakes testing.  

Although relatively little research has been conducted on anxiety from CAT restrictions, 

the restrictive testing procedures could have the effect of increasing examinee anxiety, which 
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could result in poor measurement of those examinees.  It has also been suggested that 

disallowing review could increase measurement error due to typographical errors that examinees 

would have caught had they had the chance to review their item responses (Lunz et al., 1992; 

Stone & Lunz, 1994; Stocking, 1997).  

Stocking (1997) extended previous research by Stone and Lunz (1994) with the 

development of three models that allowed restricted revision options.  However, these 

restrictions were limiting and conditional bias at extreme theta levels was found mostly out of 

the acceptable range for operational testing programs.  Han’s (2013) IP method provides a viable 

option to address examinees’ control in moving through the test, while demonstrating robustness 

to cheating and conditional bias within acceptable theta ranges.  Han’s (2013) research was 

conducted using a dichotomous 3PL model; however, most operational testing programs, such as 

the Scholastic Achievement Test (SAT), contain both dichotomous and polytomously scored 

items.  Before an extension to mixed format tests is examined, extension of Han’s (2013) IP 

method to the polytomous case is needed.  Currently, no research has been conducted to date that 

allows for review, revision, or skipping questions using a polytomous IRT model.   

A limitation of Han’s (2013) study was the lack of content balancing in the simulation 

design, which does not reflect existing operational testing programs.  Han’s (2013) study 

employed one termination criteria, which was a fixed number of items. Therefore, the 

investigation of a variable length termination criteria will contribute to the applicability of this 

new method to a wider variety of adaptive assessments.   In addition, test length was not varied 

in Han’s (2013) simulation study, thus, varying test length should be explored to determine the 

impact test length has on measurement precision in conjunction to the IP method.   Han’s (2013) 

simulation study employed no time limit and therefore no items were remaining in the IP.  As 
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such, two potential outcomes for items remaining in the IP at the conclusion of the test, forced to 

answer or ignoring them, should be examined to determine the impact on measurement 

precision.  The forced answer (FA) condition will replicate the condition in Han’s (2013) study, 

whereas the ignore (Ign) condition will simulate the impact on precision of measurement when 

the items are disregarded as if the examinee never saw them.  

Research Questions 

The purpose of this dissertation research is to investigate the performance of a CAT using 

the IP method with polytomously-scored items that are calibrated using the GPCM.  The impact 

of different item pocket sizes and termination criteria will also be evaluated.  In addition, the 

performance of a CAT using the IP method will be compared to a baseline CAT without 

implementing the IP method.  Four main research questions will be addressed in this study: 

1)  What is the impact of the IP method on precision of measurement across the range of ability 

levels when applied to a CAT using the GPCM with content balancing and exposure control 

procedures? 

2)  What is the impact on precision of measurement under the two termination criteria (i.e., fixed 

and variable length)? 

3)  What is the impact of the two item completion conditions (forced answer or ignored) on 

precision of measurement?  

4) What impact does implementing the IP method have on test efficiency in the variable length 

conditions? 
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Chapter 3: Methodology 

Design Overview 

 The CAT simulation study extended the application of the IP method to a polytomous 

CAT using the Generalized Partial Credit Model (GPCM).  The application of this method to a 

polytomous model was evaluated in terms of IP usage, conditional bias, precision of 

measurement across the range of ability (θ), and administration efficiency.   

 The application of the IP method to the GPCM was investigated under three pocket size 

conditions, including two, three, and four items, compared to a baseline condition without the 

application of an IP.  Han (2013) investigated three pocket size conditions of two, four, and six 

items; however, his study employed a dichotomous IRT model which generally requires longer 

tests than tests using polytomous items for more accurate person and item measurement.  It has 

been shown that polytomous items provide more information per item (Koch & Dodd, 1989) 

and, thus, shorter tests can achieve accurate person and item measurement.  Han (2013) 

suggested that the IP size be based heavily on the length of the test, with the pocket containing 

no more than 20% of the items on the test. As such, smaller IP sizes were chosen for this study 

because polytomously-scored items will be used with 15- and 20-item tests. 

 Han’s (2013) study investigated only a fixed length stopping rule. The termination 

criterion in CATs may impact the precision of measurement.  Accordingly, the current study 

used two stopping rule conditions, two fixed length condition and variable length conditions , in 

which administration will stop when a specified precision of measurement (SE ≤ 0.3) has been 

achieved or the maximum number of items has been administered.  Han’s (2013) study 

employed only one test length, 40 items; thus, the current study used two test length conditions, 

15- and 20-items tests.   
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Under Han’s (2013) design, no items were left in the item pocket at the completion of the 

test, meaning that before the test would conclude, the items in the pocket had to be answered.  

The current study investigated the impact on measurement precision under two item completion 

conditions: the items in the pocket are ignored (Ign) or examinees are forced to answer (FA), 

matching Han’s (2013) design. 

 In sum, four independent variables were manipulated, including IP size (2, 3, 4), item 

completion design (ignore items in the pocket and forced completion of items), test length (15 

and 20 items), and CAT stopping rule (fixed-length and variable-length), resulting in a 

completely crossed 3 x 2 x 2 x 2  factorial design with 24 conditions.  In addition, four baseline 

traditional CAT conditions in which the IP method is not implemented were included, resulting 

in 28 total conditions.  All conditions implemented content balancing using a content constrained 

CAT (C-CAT; Kingsbury & Zara, 1989) and exposure control using Kingsbury and Zara’s 

(1989) Randomesque procedure with a six item group size.  Ability estimation utilized 

Maximum Likelihood Estimation (MLE) with a variable step size adjustment implemented until 

an ability estimate could be obtained.  Each condition had 1,000 simulated examinees sampled 

from a normal distribution with 500 replications. 

Item Pool and Test Characteristics 

 The item pool that was used in this study is based on a national testing program, 

consisting of 157 constructed response items.  This pool includes items in three content areas, 

with the first content area (I) containing 61 items, content area II containing 59 items, and 

content area III having the fewest with 37 items.  Within each content area, items differ in the 

number of steps to a solution or number of response categories.  Each content area includes items 
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with three, four, or five response categories which corresponds to the possible number of score 

points of two, three, and four, respectively, for each item.  The item pool contains 99 three-

category items, 29 four-category items, and 29 five-category items.  The item parameters from 

this national testing program item pool are the same as was used in Davis’ (2004) study.  Table 1 

displays the percentage of items by content area and number of response categories.  According 

to Davis (2004), this item pool’s test information peaks at θ = -0.6.  Descriptive statistics for this 

item pool are shown in Table 2 and provide the mean item discrimination and step values across 

the three content areas (Davis, 2004). 

 

            Content Areas 

No. of Categories  Area I   Area II  Area III 

 3   24.57%  23.63%  14.81% 

 4   7.22%   6.94%   4.35% 

 5   7.23%   6.94%   4.35% 
 
Table 1. Percentage of Items by Content Area and Number of Response Categories 

 

  Discrimination Step  Step  Step  Step 

Difficulty 1     Difficulty 2     Difficulty 3      Difficulty 4 

Mean   0.92  -0.99   0.18  -0.19  -0.12   

SD   0.19   0.90   0.99   0.76   0.90   

Minimum  0.54  -3.13  -1.81  -1.48  -2.36   

Maximum  1.52   1.50   3.57   1.51   2.34   

n   157    157    157      58      29  
 
Table 2. Descriptive Statistics for Item Parameters for Item Pool 

Data Generation 

 To simulate a population of examinees whose ability distribution matches the item pool, 

1,000 examinee ability (θ) levels were randomly selected from a normal distribution with a mean 
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of 0 and a standard deviation of one, with 500 replications.  Examinee item responses were 

generated based on the GPCM using the IRTGEN SAS program developed by Whittaker, 

Fitzpatrick, Williams, and Dodd (2003).  To generate item responses for each examinee, the 

program first calculates the probability of responding in each category using Equation 6.  Then, 

the probabilities for each category for an item are summed to provide a cumulative subtotal.  

This cumulative subtotal is compared to a random number drawn from a uniform distribution.  If 

the random number is less than or equal to the cumulative subtotal for a particular category, then 

the examinee is assigned that category score for that item.  This process continues for all 

simulated examinees for all items in the pool. 

CAT Simulation 

 The CAT simulation used Davis’ (2004) constrained CAT program to estimate 

examinees ability (θ) level using the GPCM with modifications to include an IP.  For each 

condition, examinee responses and item pool characteristics were input into the program for 

simulation with item selection utilizing the program’s default algorithm, Maximum Fisher item 

information (MFI).   

All simulated examinees began the test with an initial ability (θ) estimate slightly above 

the population distribution mean, θ = 0.  Before the interim ability can be estimated with MLE, a 

modified variable step size, within a particular content area, was used to adjust the initial ability 

(θ) estimate.  This continued until a response in two different categories, if one response was in 

either of the extreme categories, was achieved, after which MLE provides interim ability 

estimates for the remainder of the CAT.  
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Item selection based on MFI was constrained with the Randomesque exposure control 

procedure in all conditions. Content balancing was done using content constrained CAT (C-

CAT) based on the joint proportions of content area and number of categories (see Table 1) in all 

conditions.  Based on Davis’ (2004) research, the Randomesque procedure performs optimally 

when the six item group size is used with polytomous items.  Therefore, for all conditions, the 

six item group size was used in the present study.  The C-CAT content balancing procedure 

began the test by randomly selecting a content area from which the first item was selected.  After 

the initial item was selected, the procedure iteratively compared the joint proportions in Table 1 

to determine the content area with the largest discrepancy between the target proportions and 

administered item proportions.  The content area with the largest discrepancy had an item 

selected for administration.   

Simulation of examinee usage of the IP followed the procedure used by Han (2013).  Han 

assumed that examinees will place items that they find challenging in the pocket to come back to 

later if time allows.  An item placed in the pocket will only be used for the C-CAT balancing 

procedure and excluded from the ability estimation until the answer is finalized, at which point 

that item is removed from the pocket.  Similar to Han’s (2013) simulation study, a procedure was 

used to determine which items are selected for placement in the pocket in the current simulation 

study.  Han (2013) simulated which items the simulees would find difficult and therefore placed 

in the pocket by comparing the simulated examinee’s known ability level (θ) to the item’s 

difficulty (b) parameter. When the known ability level was more than 0.5 logits below the item’s 

difficulty, the examinee would be designated as finding the item challenging.  Han’s (2013) 

study used the 3PL model, in which each item has one difficulty (b) parameter.  Polytomous 

items cover a range of ability levels, meaning each item has multiple b parameters or step 
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difficulties.  However, the information functions for polytomous items peak at the point on the 

ability scale (θ) where the item provides the most information about an examinee at that ability 

level.  Polytomous items can be selected based on information functions (Kamakura & 

Srivastava, 1982).  For this study, an item was considered challenging for a simulated examinee 

if the examinee’s known θ was 0.5 logits below the ability level that corresponds to the peak of 

the item’s information function.  Only items in which the peak of their item information function 

was found to be above the simulated examinee’s ability level were selected for placement in the 

item pocket. 

When the examinee’s true ability was located below the ability level indicated by the 

peak of the information function by 0.49 logits or less, the item was selected for placement in the 

pocket 50% of the time.  When the examinee’s known ability level was below the ability level 

indicated by the information function by 0.5 logits or more, the item was selected for placement 

in the pocket 70% of the time.  When an item met these two conditions and the IP was full, the 

current item and the item(s) in the pocket were compared to determine if an item would be 

removed and administered or the current item would be administered.  The easiest item in the 

paired comparison would be selected based on the discrepancy between the two items’ ability 

levels corresponding to the peaks of the items’ information functions.  When this discrepancy 

was 0.49 logits or less, the easiest item was selected 50% of the time.  When the discrepancy 

between two items was 0.5 logits or greater, then the easiest item was selected 70% of the time.  

Based on these comparisons, the current item would be answered if it was deemed easiest or the 

easiest item in the pocket would be answered to make room in the pocket for the current item.  

Once the item is selected for administration it was administered and the response for that item 

based on the simulee’s known ability level was recorded. 
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The percentage in determining the easiest item to answer was based on research by 

Vispoel et al. (2002) in a live testing situation on test taking strategies and examinee’s accuracy 

in determining the difficulty of items.  Vispoel et al. (2002) found that examinees are not 

accurate in determining the most difficult item when comparing pairs of items, with accuracy 

increasing as the difference in difficulty between the two items increases.  Although examinees 

are not very accurate in selecting the easiest item in pairs of items, the computer can always 

select the easiest item.  Therefore, the percentages were used to introduce error in determining 

the items placed in the pocket and in determining the easiest item in the pocket to answer. 

Han’s (2013) study required all items in the pocket to be answered before concluding the 

test.  The forced answer (FA) item completion condition in the current study simulates the same 

requirement used in Han’s study.  An additional item completion condition was added to the 

current study in order to examine the impact on measurement precision when items in the pocket 

are ignored at the conclusion of the test.  In this situation, those items are simply disregarded, not 

administered and the test concludes.  Additionally, those items placed in the pocket are above the 

examinee’s known ability level and could have been placed in the pocket toward the beginning 

of the test, therefore, would likely not provide very much information.  The forced answer (FA) 

condition does confound the stopping rule, however, which will be discussed further below.   

All simulated CATs terminated under two termination criteria: fixed or variable length 

stopping rules.  Additionally, all simulated CATs with an IP applied two item completion 

conditions: (1) forced answer (FA) and (2) ignored (Ign).  Further, the fixed length tests 

terminated once the examinee had completed either 15 or 20 items.  Test length has a direct 

impact on measurement precision, in that as test length increases measurement precision 

increases, although, examinees are not measured with the same precision across the ability 
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continuum.  Specifically, the examinees’ with extreme abilities, either low or high, will be 

measured with less precision.  The fixed length criteria of 20 items was based on the 

comprehensive study by Davis (2004) in which the same item pool and polytomous IRT model 

was utilized.  The 15 item criteria was included to investigate the impact of precision of 

measurement with a shorter test.  The forced answer (FA) condition is meant to replicate Han’s 

(2013) study by extending findings to the polytomous case.  However, because the fixed length 

will be compared to the variable length conditions, some adjustments were made.  Specifically, 

in the forced answer (FA) item completion condition, the simulated examinees are required to 

answer item(s) in the pocket, as was the case in Han’s (2013) simulation.  Therefore, depending 

on the number of items in the pocket, the examinee is forced to answer the item(s) once the 

termination criterion has been met.  For instance, if the number of items in the IP is three, the 

examinee will have to answer those three items after the 15 or 20 items have been administered, 

with 18 or 23 total items administered, respectively.   In the ignored (Ign) item completion 

condition, the simulees ignore the item(s) left in the IP and are administered 15 or 20 items total, 

depending on the test length condition.   

The variable length stopping rule terminated the test once a pre-specified precision of 

measurement was achieved (i.e., SE ≤ 0.3) or the maximum number of items was completed (15 

or 20 items), whichever came first.  The variable length termination criteria has the advantage of 

shorter tests and equal measurement precision for those examinees’ whose abilities are matched 

to the item pool distribution.  Meaning the test was designed to measure those abilities with 

many informative items for those abilities included in the item pool.  Again, under the forced 

answer (FA) item completion condition, the examinee was forced to answer the item(s) in the IP 

after the SE dropped below the termination criteria (0.3), or the maximum number of items had 
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been administered.  For instance, for an examinee with three items in the IP and if the SE 

dropped below the 0.30 criteria at item 12, the examinee would be forced to answer the three 

items in the pocket, resulting in a total of 15 items administered.  Conversely, for an examinee 

with three items in the IP and if the SE never drops below the 0.30 criteria, this examinee would 

be forced to answer the three items in the pocket, resulting in a total of 18 items administered.  

This modification allows for the variable length conditions to be comparable to the fixed length 

conditions.  In situations where the variable length SE criteria is met, the items in the pocket are 

answered, resulting in two, three, or four more items administered after the termination criteria is 

met in the two, three, and four item IP size, respectively.  Therefore, the fixed length conditions 

must follow this same criteria, administering the items in the pocket after the termination criteria 

is met, resulting in two, three, or four more items administered depending on the IP size 

condition.  Under the ignore (Ign) item(s) completion condition, once the termination criteria 

was satisfied, fixed or variable length, the test terminated, ignoring the item(s) remaining in the 

pocket.   

Data Analysis 

  The results of the simulated CAT using the item pocket method was analyzed in terms of 

(1) item pocket usage, (2) the overall precision of measurement of the final theta estimates 

(including mean conditional standard error of the ability estimates, mean bias, and root mean 

square error), and (3) test efficiency.  The use of MLE in ability estimation may lead to 

nonconvergent cases.  In these cases, MLE is not implemented or the final θ estimate is below -4 

or above +4 (Gorin, Dodd, Fitzpatrick, & Shieh, 2005).  These nonconvergent cases were  

listwise deleted in all conditions before the outcome measures were calculated.  However, for 

each condition, the mean number of nonconvergent cases across the 500 replications in a 
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condition as well as the minimum and maximum number of nonconvergent cases within a 

condition are reported.    

   The overall precision of measurement was assessed in a variety of ways.  Descriptive 

statistics of the final θ estimates and their standard errors for each condition are reported, as well 

as the grand mean, mean minimum, and mean maximum theta value per condition.  The impact 

of the two item completion conditions on the final theta estimates is of interest.  The impact was 

evaluated in terms of the overall precision of measurement.  Descriptive statistics for the two 

item completion conditions of the simulees’ final θ estimates and their standard errors are 

reported as well as the grand mean, mean minimum, and mean maximum across the 500 

replications within these conditions.  Recovery of the known thetas was evaluated using the 

mean Pearson product moment correlation across the 500 replications per condition, as well as 

the minimum and maximum correlation between the known and estimated θ values in a 

condition. Theta recovery was also evaluated using bias and root mean square error (RMSE).  

Bias assesses the systematic error of measurement in the final theta estimates and is defined as: 

 

 ˆ
n

k k
kBias

n

 




 , (13) 

where ˆk  is the final theta estimate for simulee k, k  is simulee k’s known theta, and n is the 

number of simulees.  Bias was averaged over the 500 replications and plotted across the range of 

theta with 0.5 increments for the three IP size conditions.  RMSE assesses the total error of 

measurement and composed of bias and standard error in the final theta estimates. RMSE is 

defined as: 
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where ˆk  is the final theta estimate for simulee k, k  is simulee k’s known theta, and n is the 

number of simulees, which was averaged over the 500 replications per condition.  The CSEM 

assesses the precision of measurement at different ability levels, θ.  For all conditions, the 

standard error of measurement of final theta estimates with 0.5 increments across the range of θ 

was averaged over the 500 replications, producing the grand mean CSEM.  These were plotted 

across the ability scale for the IP size conditions, producing conditional plots to assess the 

precision of measurement in the final theta estimates.       

The overall IP use was assessed with descriptive statistics, including the mean, minimum, 

and maximum IP use across the 500 replications in each IP size condition.  The IP usage was 

also assessed conditionally on θ with 0.5 increments across the range of θ because it is accepted 

that the use of the IP will vary by examinee ability level.  Therefore, for each condition, the 

grand mean of IP usage was calculated, conditional on known theta, by averaging IP usage 

across the 500 replications.  

The efficiency of the CAT was evaluated in all conditions by comparing the mean, 

minimum, and maximum number of items administered (NIA) over the 500 replications.  

Smaller mean values indicate more efficient tests.  Typically, test efficiency is not evaluated with 

fixed length tests, whereas it is evaluated with variable length tests; however, the use of the 

forced answer (FA) item completion conditions in the study will result in variability in the NIA 

in both variable length and fixed length test conditions.  Therefore, the efficiency of fixed length 

tests is also evaluated.  Nonetheless, the test efficiency of fixed length tests will be of interest 
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mainly in forced answer (FA) conditions.  The conditional NIA is also of interest because the 

abilities of examinees in the center of the item pool distribution will be measured better due to a 

larger number of items that match those ability levels.  Conversely, examinees with extreme 

abilities, either very high or very low, will have fewer items in the item pool that match their 

ability levels.  Therefore, the grand mean NIA, averaged over the 500 replications and 

conditioned on θ with 0.5 increments across the range of θ was plotted to assess conditional 

efficiency. 
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Chapter 4: Results 

Nonconvergent Cases 

 Cases were considered nonconvergent if MLE was not implemented or the theta estimate 

was greater than +4 or less than -4 (i.e., out of range). Nonconvergent case were listwise deleted 

for all conditions before the outcome measures were calculated.  For each condition, the mean 

number of nonconvergent cases across the 500 replications, for both types of nonconvergent 

cases, as well as the minimum and maximum number of nonconvergent cases are reported.  

Table 3 displays the mean number of nonconvergent MLE cases and the out-of-range cases 

averaged across the 500 replications in each condition.  Across both types of nonconvergence 

cases, the grand mean of nonconvergent cases in conditions with IP sizes of 0, or the traditional 

CAT without implementing the IP method, was 49.92.  The conditions in which IP size was 2 

and 3 resulted in a grand means of 69.87 and 54.21 nonconvergent cases, respectively.  On 

average, IP conditions with item pocket sizes of 4 resulted in fewer average nonconvergent 

cases, with a grand mean of 46.06.  Across all conditions, the average number of cases where 

MLE was not reached was less than 1 across replications. 

 Averaging across conditions, the IP size 0 resulted in grand means of nonconvergent 

cases of 50.07 for the fixed length conditions, 49.77 for the variable length conditions, 49.65 for 

the 15 maximum items conditions, and 50.20 for the 20 maximum item conditions.  The IP size 

of 2 resulted in an increase in nonconvergent cases.  Across conditions, the IP size of 2 resulted 

in grand means of nonconvergent cases of 69.76 for the fixed length conditions, 69.97 for the 

variable length conditions, 70.36 for the 15 maximum items conditions, and 69.38 for the 20 

maximum item conditions.  There was a decrease in the grand means of nonconvergent cases 
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with the IP size of 3, resulting in grand means of 54.29 for the fixed length conditions, 54.13 for 

the variable length conditions, 54.50 for the 15 maximum items conditions, and 53.92 for the 20 

maximum item conditions.  The IP size of 4 resulted in the lowest grand means of nonconvergent 

cases, with 46.07 for the fixed length conditions, 46.06 for the variable length conditions, 46.51 

for the 15 maximum items conditions, and 45.61 for the 20 maximum item conditions. 

 Using an item pocket size of 0, or the traditional CAT without the IP method, with the 

fixed length 15 item test resulted in a mean of 49.34 out-of-range cases, with a minimum of 33 

and a maximum of 73.  The fixed length tests with a maximum of 20 items resulted in a mean of 

50.80 out-of-range cases, with a minimum of 34 and maximum of 74.  The variable length 

maximum of 15 items tests resulted in a mean of 49.95 out-of-range cases across the 500 

replications, and a minimum of 31 and a maximum of 71.  The variable length maximum of 20 

items resulted in a mean of 49.59 out-of-range cases, with a minimum of 30 and a maximum of 

73 cases.  For all traditional conditions, the mean number of nonconvergent MLE cases was less 

than 1 across the 500 replications (See Table 3). 

The implementation of the Item Pocket method generally resulted in slightly more 

nonconvergent cases.  The IP size of 2 with the 15 item fixed length test in the forced answer 

(FA) condition resulted in a mean of 70.34 out-of-range cases (min = 46, max = 93).  The IP size 

of 2 with the 15 item fixed length test in the ignore (Ign) condition resulted in a slightly higher 

mean of 70.34 out-of-range cases (min = 48, max = 96).  The IP size 2 with the 20 item fixed 

length test in the FA condition resulted in a slightly lower mean number of out-of-range cases of 

69.17 (min = 51, max = 101).  When ignoring the items in the pocket, the IP size of 2 with the 20 

item fixed length test resulted in a mean of 69.26 out-of-range cases (min = 42, max = 94).   
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Similar patterns were displayed in the variable length conditions with IP sizes of 2, with a 

slightly higher mean of out-of-range cases for the 15 item test than the 20 item test.  Specifically, 

the IP size of 2 with the 15 item fixed length test resulted in a mean of 70.35 out-of-range cases 

(min = 47, max = 100) when examinees were forced to answer items in the pocket whereas the 

mean number of out-of-range cases was 69.30 (min = 43, max = 95) for the corresponding 

condition with 20 items.  In the same conditions (IP sizes of 2 with variable length tests), a 

slightly larger mean number of out-of-range cases resulted when examinees ignored the items in 

the pocket (M = 70.46, min = 46, max = 94) with 15 item tests as compared to 20 item tests (M = 

69.77, min = 49, max = 93).  

Overall, the IP size of 3 conditions resulted in lower mean out-of-range cases compared 

to the IP size of 2 conditions.  For instance, in the forced answer condition with fixed length 

tests, the mean number of out-of-range cases was 53.96 (min = 35, max = 77) for the 15 item test 

while it was 54.21 (min = 36, max = 76) with the 20 item test.  In the ignore IP condition with 

fixed length tests, the mean number of out-of-range cases was 54.82 (min = 30, max = 80) with 

the 15 item test whereas it was 54.18 (min = 36, max = 77) with the 20 item test.  The mean 

number of out-of-range cases in the two variable length FA conditions were similar to those 

found in the two fixed length FA conditions, resulting in an average number of out-of-range 

cases of 54.31 (min = 36, max = 76) and 53.56 (min =34, max = 79) with 15 item and 20 item 

tests, respectively.  The mean number of out-of-range cases in the variable length Ign conditions 

was 54.92 (min = 34, max = 79) and 53.74 (min =31, max = 75) with 15 item and 20 item tests, 

respectively.   

Overall, the IP size of 4 conditions resulted in the lowest average number of out-of-range 

cases.  The fixed length 15 item test conditions resulted in an average number of out-of-range 
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cases of 46.25 (min = 28, max = 67) and 46.75 (min = 27, max =66) for the FA and Ign 

conditions, respectively.  The fixed length 20 item tests resulted in a slightly lower mean number 

of out-of-range cases as compared to the respective 15 item tests, with means of 45.22 (min = 28, 

max =64) and 46.05 (min = 23, max = 78) for the FA and Ign conditions, respectively. The 

variable length tests with 15 items resulted in similar numbers out-of-range cases as those found 

with the fixed length tests with 15 items.  For instance, the mean number of out-of-range cases in 

the variable length FA test with 15 items condition was 46.65 (min = 26, max = 65).  The 

variable length Ign test with 15 items condition resulted in a mean number of out-of-range cases 

equal to 46.40 (min = 28, max = 68).  The variable length test conditions with 20 items resulted 

in an average number of out-of-range cases equal to 45.17 (min =28, max = 64) and 46.01 (min = 

28, max = 68) in FA and Ign conditions, respectively.   

The out-of-range cases resulting in the current study indicate that issues with ability 

estimation are present.  Nonconvergence can result from the examinee responding in the extreme 

categories and, therefore, MLE is never implemented or the estimated thetas are out of range, 

meaning that the ability estimates are above θ = 4 or below θ = -4.  The overall the mean number 

of nonconvergent cases across the 500 replications is approximately 5% of each condition.  It 

should be noted that, on average, as the IP size increased, the mean number of nonconvergent 

cases decreased, indicating an interaction between the implementation of the IP method and 

nonconvergence.  The issue of nonconvergent cases will be discussed further in the following 

chapter.    
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Condition 
Out of Range Nonconvergent MLE 

Mean Min Max Mean Min Max 

Traditional 

(IP=0) 

Fixed 15 Items 49.34 33 73 0.074 0 2 

Fixed 20 Items 50.80 34 74 0.034 0 1 

Variable 15 Items 49.95 31 71 0.068 0 2 

Variable 20 Items 49.59 30 73 0.034 0 2 

IP Size 2 

Fixed 15 

Items 

Forced Answer 70.28 46 93 0.062 0 1 

Ignored 70.34 48 96 0.106 0 3 

Fixed 20 

Items 

Forced Answer 69.17 51 101 0.032 0 1 

Ignored 69.26 42 94 0.034 0 1 

Variable 

15 Items 

Forced Answer 70.35 47 100 0.052 0 2 

Ignored 70.46 46 94 0.088 0 1 

Variable 

20 Items 

Forced Answer 69.30 43 95 0.028 0 1 

Ignored 69.77 49 93 0.028 0 1 

IP Size 3 

Fixed 15 

Items 

Forced Answer 53.96 35 77 0.048 0 2 

Ignored 54.82 30 80 0.080 0 2 

Fixed 20 

Items 

Forced Answer 54.21 36 76 0.032 0 1 

Ignored 54.18 34 77 0.040 0 1 

Variable 

15 Items 

Forced Answer 54.31 36 76 0.056 0 1 

Ignored 54.92 34 79 0.080 0 2 

Variable 

20 Items 

Forced Answer 53.56 34 79 0.026 0 1 

Ignored 53.74 31 75 0.034 0 2 

IP Size 4 

Fixed 15 

Items 

Forced Answer 46.25 28 67 0.050 0 2 

Ignored 46.75 27 66 0.088 0 3 

Fixed 20 

Items 

Forced Answer 45.23 28 64 0.030 0 1 

Ignored 46.05 23 78 0.042 0 2 

Variable 

15 Items 

Forced Answer 46.65 26 65 0.044 0 2 

Ignored 46.40 28 68 0.084 0 2 

Variable 

20 Items 

Forced Answer 45.17 28 64 0.028 0 1 

Ignored 46.01 28 68 0.032 0 2 

Table 3. Nonconvergent Cases Averaged Across the 500 Replications 
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Estimated Thetas 

The overall recovery of the known thetas was evaluated with descriptive statistics.  The 

grand mean, across the 500 replications, as well as the average standard deviations of the 

estimated thetas is presented in Table 4.  The mean standard error of the theta estimates within 

each condition is included in Table 4, in addition to the minimum and maximum theta estimates 

and standard errors across the 500 replications.  All conditions resulted in slightly larger grand 

mean theta estimates and standard deviations compared to the known theta grand mean of 0.0 

and standard deviation of 1.0. 

Overall, the known theta estimates were recovered slightly better in the IP size of 0 

(traditional CAT) conditions than in the other IP size conditions, with grand means closer to zero 

and lower standard deviations.  The fixed length conditions with an IP size of 0 resulted in grand 

mean theta estimates of 0.017 and 0.014 with corresponding standard deviations of 1.096 and 

1.080, for the maximum items of 15 and 20, respectively.  The variable length conditions, with a 

maximum of 15 and 20 items, resulted in grand mean theta estimates of 0.015 (SD = 1.095) and 

0.009 (SD = 1.077), respectively.  The traditional fixed length and variable length 20 item 

conditions resulted in the lowest grand means, 0.014 and 0.009, respectively, as expected due to 

increased measurement precision as the number of items administered increases.  Conversely, the 

shorter tests, both fixed length 15 items and variable length 15 items, resulted in the largest grand 

mean theta estimates. 

The implementation of the IP resulted in a slight increase in grand means compared to the 

traditional CATs without the implementation of the IP method.  The IP size of 2 resulted in 

grand mean theta estimates of 0.018 (SD = 1.095) and 0.020 (SD = 1.106) for the fixed length 15 

items forced answer (FA) and ignore (Ign) conditions, respectively.  The IP size 2 fixed length 
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20 items conditions resulted in grand mean theta estimates of 0.016 (SD = 1.083) and 0.018 (SD 

= 1.089) for the FA and Ign conditions, respectively.  The same pattern was seen with the 

variable length conditions, with larger grand means and standard deviations resulting in the 15 

item tests than the 20 item tests.  The variable length conditions with 15 maximum items resulted 

in grand mean theta estimates of 0.018 (SD = 1.095) and 0.019 (SD = 1.105) for the FA and Ign 

conditions, respectively.  The variable length 20 item test resulted in slightly lower grand mean 

theta estimates of 0.011 (SD = 1.081) and 0.012 (SD = 1.088) for the FA and Ign conditions, 

respectively.  Of the IP size 2 conditions, the variable length with a maximum of 20 items 

resulted in the lowest grand mean theta estimates and standard deviations.   

 As IP size increased, the grand mean of the theta estimates decreased, approaching the 

grand means of the traditional, baseline conditions. The IP size of 3, fixed length 15 item test 

resulted in grand mean theta estimates of 0.017 (SD = 1.086) and 0.019 (SD = 1.101) for the FA 

and Ign conditions, respectively.  The IP size 3 fixed length test with 20 items resulted in 

identical grand mean theta estimates for the FA and Ign conditions of 0.015 with slightly 

different standard deviations, FA (SD = 1.075) and Ign (SD = 1.083).  Again, the variable length 

conditions with an IP size of 3 resulted in a similar pattern as was seen with the IP size of 2, with 

the variable length conditions performing slightly better than the fixed length conditions.  The 

variable length test with 15 maximum items resulted in grand mean theta estimates of 0.016 (SD 

= 1.086) and 0.019 (SD = 1.101) for the FA and Ign conditions, respectively. In contrast, the 

variable length conditions with a maximum of 20 items resulted in grand mean theta estimates of 

0.011 (SD = 1.073) and 0.011 (SD = 1.083) for the FA and Ign conditions, respectively.  The 

variable length test with 20 maximum items resulted in the lowest grand mean theta estimates 

and standard deviations for the IP size of 3 conditions.   
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Similar to the IP size of 2 and 3 conditions, the IP size of 4 generally resulted in slightly 

lower grand mean theta estimates and standard deviations with the longer test conditions (20 

maximum items) and the variable length conditions.  For the IP size of 4, fixed length with 15 

item tests, the grand mean theta estimates were 0.016 (SD = 1.080) and 0.019 (SD = 1.099) for 

the FA and Ign conditions, respectively.  The fixed length 20 item test conditions resulted in 

grand mean theta estimates of 0.014 (SD = 1.070) and 0.016 (SD = 1.082) for the FA and Ign 

conditions, respectively.  The variable length conditions with an IP size of 4 and maximum of 15 

items resulted in grand mean theta estimates of 0.015 (SD = 1.080) and 0.018 (SD = 1.099) for 

the FA and Ign conditions, respectively.  The variable length 20 maximum item tests with an IP 

size of 4 resulted in grand mean theta estimates of 0.011 (SD = 1.068) and 0.012 (SD = 1.080) 

for the FA and Ign conditions, respectively. 

The recovery of the known theta’s for the Ignore conditions resulted in slightly larger 

theta estimate grand means and standard deviations as compared to the FA conditions.  For 

instance, the IP size of 2 with fixed length 15 item test Ign condition resulted in a theta estimate 

grand mean of 0.020 (SD = 1.106), whereas the corresponding FA condition resulted in a grand 

mean of 0.018 (SD = 1.095).  This same pattern is repeated for all IP size conditions, with very 

slight decreases in grand means and standard deviations as IP size increases.  

 The overall precision of measurement was assessed with the mean standard error, 

averaged over the 500 replications within each condition (see Table 4). In addition, the minimum 

and maximum for each condition across the 500 replications illustrates the range of standard 

errors across replications.  The traditional, IP size of 0, fixed length 15 item test condition 

resulted in a mean standard error of 0.333 (min = 0.268, max = 0.895) while  the fixed length 20 

item tests resulted in a mean standard error of 0.295 (min = 0.244, max = 0.760).  The 
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traditional, IP size of 0, variable length 15 maximum item test condition resulted in a slightly 

higher mean standard error of 0.338 (min = 0.281, max = 0.859).  The variable length with 20 

maximum item test conditions resulted in a mean standard error of 0.317 (min = 0.278, max = 

0.761), slightly lower than the shorter variable length condition, but slightly higher than the fixed 

length condition with 20 maximum items.     

Again, as IP sizes increased, the standard errors generally decreased.  Specifically, the IP 

size of 2 with fixed length 15 item test conditions resulted in a mean standard error of 0.315 (min 

= 0.257,max = 0.810) and 0.338 (min = 0.272, max = 0.857) for the FA and Ign conditions, 

respectively.  The IP size of 2 for the fixed length 20 item test conditions resulted in mean 

standard errors of 0.284 (min = 0.236, max = 0.735) and 0.300 (min = 0.247, max = 0.760) for 

the FA and Ign conditions, respectively.  The variable length 15 maximum item test conditions 

resulted in mean standard errors of 0.318 (min = 0.254, max = 0.815) and 0.342 (min = 0.283, 

max = 0.853) for the FA and Ign conditions, respectively, which is a slight increase compared to 

the fixed length 15 item test conditions.  The IP size of 2 variable length with 20 maximum item 

tests resulted in mean standard errors of 0.299 (min = 0.252, max = 0.733) and 0.319 (min = 

0.280, max = 0.758) for the FA and Ign conditions, respectively. 

The IP size of 3 resulted in slightly lower standard errors than those seen with IP size of 

2, however, this is only the case with the FA conditions.  The IP size of 3 fixed length 15 item 

test conditions resulted in mean standard errors of 0.307 (min = 0.252, max = 0.788) and 0.341 

(min = 0.276, max = 0.852) for the FA and Ign conditions, respectively.  A slight decrease is 

seen with the fixed length 20 item test conditions, with mean standard errors of 0.279 (min = 

0.233, max = 0.720) and 0.302 (min = 0.251, max = 0.751), respectively, for the FA and Ign 

conditions.  The variable length conditions in conjunction with the IP size of 3 resulted in 
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slightly increased standard errors, on average, compared to the fixed length conditions.  For the 

variable length 15 maximum item tests, the mean standard errors were 0.308 (min = 0.248, max 

= 0.787) and 0.344 (min = 0.286, max = 0.858) for the FA and Ign conditions, respectively.  The 

IP size of 3 variable length 20 maximum item tests resulted in slightly lower mean standard 

errors of 0.291 (min = 0.246, max = 0.721) and 0.319 (min = 0.283, max = 0.756) for the FA and 

Ign conditions, respectively. 

The IP size of 4 with fixed length 15 item test conditions resulted in a slightly lower 

mean standard error of 0.300 (min = 0.247, max = 0.770) and 0.344 (min = 0.280, max = 0.858) 

for the FA and Ign conditions, respectively.  The fixed length 20 maximum item tests with an IP 

size of 4, resulted in mean standard errors of 0.274 (min = 0.230, max = 0.709) and 0.305 (min = 

0.254, max = 0.763), respectively, for the FA and Ign conditions.  The variable length conditions 

with the IP size of 4 produced similar mean standard errors as the fixed length conditions.  

Specifically, the variable length 15 maximum item test conditions resulted in mean standard 

errors of 0.300 (min = 0.245, max = 0.765) and 0.345 (min = 0.288, max = 0.860) for the FA and 

Ign conditions, respectively.  The variable length 20 maximum item test conditions resulted in 

mean standard errors of 0.284 (min = 0.240, max = 0.707) and 0.320 (min = 0.285, max = 

0.763), respectively, for the FA and Ign conditions.  

Similar to the traditional CAT conditions, increasing the maximum number of items 

resulted in more precise measurement as indicated by smaller standard errors.  The fixed length 

15 item FA test conditions resulted in mean standard errors of 0.315, 0.307, and 0.300 for IP 

sizes of 2, 3,and 4, respectively.  The fixed length 20 item FA tests resulted in the most precise 

measurement for all IP size conditions, with mean standard errors of 0.284, 0.279, and 0.274 for 

IP sizes of 2, 3, and 4 respectively.  This same pattern is seen with the variable length conditions, 
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with decreases in SEs as test length increases.  For instance, the variable length 15 maximum 

item FA test conditions resulted in mean SEs of 0.318, 0.308, and 0.300, respectively, for IP 

sizes of 2, 3, and 4.  The mean standard errors for IP sizes of 2, 3, and 4 for the variable length 

20 maximum item FA test conditions were 0.299, 0.291, and 0.284, respectively.   

However, the opposite is also true. That is, as the maximum number of items decreased, 

the IP size increased, and the items in the pocket are ignored, the standard errors increased, 

demonstrating a slight loss in measurement precision.  The fixed length 15 item Ign test 

conditions resulted in mean standard errors of 0.338, 0.341, and 0.344 for the IP sizes of 2, 3, 

and 4, respectively.  Increasing test length decreased the standard errors; however, under the Ign 

conditions, as IP size increased, the SEs increases slightly.  For instance, the fixed length 20 item 

Ign test conditions resulted in mean standard errors of 0.300, 0.302, and 0.305, respectively, for 

IP sizes of 2, 3, and 4.  The variable length 15 item Ign test conditions resulted in the largest 

mean standard errors for all IP size conditions, with means of 0.342, 0.344, and 0.345 for IP 

sizes of 2, 3, and 4, respectively.  The same general pattern is seen with the variable length 20 

maximum item tests under the Ign condition; however, the impact on the standard errors is 

diminished, with mean SEs of 0.319, 0.319 and 0.320 for IP sizes of 2, 3, and 4, respectively.  

For the FA conditions, as the IP sizes increased, the SEs slightly decreased. Conversely, 

the fixed length 20 item Ign tests resulted in a mean SE of 0.300, 0.302, and 0.305 for IP sizes of 

2, 3, and 4, respectively.  The implementation of the IP method under the FA conditions resulted 

in increased measurement precision, as seen with lower mean standard errors, which is due to the 

additional information gained with the forced administration of additional items.  Conversely, the 

implementation of the IP method under the Ignore conditions resulted in a slight overall loss in 
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measurement precision when compared to the traditional CAT without an IP, which is due to the 

loss of information from the items that were ultimately ignored.      

Condition 

Final θ Estimate Standard Error 

Grand Mean 

(SD) 
Min Max Mean Min Max 

Traditional 

(IP=0) 

Fixed 15 Items 0.017(1.096) -3.540 3.662 0.333 0.268 0.859 

Fixed 20 Items 0.014(1.080) -3.457 3.607 0.295 0.244 0.760 

Variable 15 Items 0.015(1.095) -3.540 3.667 0.338 0.281 0.859 

Variable 20 Items 0.009(1.077) -3.449 3.609 0.317 0.278 0.761 

IP Size 2 

Fixed 15 

Items 

Forced Answer 0.018(1.095) -3.489 3.629 0.315 0.257 0.810 

Ignored 0.020(1.106) -3.530 3.667 0.338 0.272 0.857 

Fixed 20 

Items 

Forced Answer 0.016(1.083) -3.468 3.593 0.284 0.236 0.735 

Ignored 0.018(1.089) -3.457 3.609 0.300 0.247 0.760 

Variable 

15 Items 

Forced Answer 0.018(1.095) -3.500 3.647 0.318 0.254 0.815 

Ignored 0.019(1.105) -3.547 3.657 0.342 0.283 0.853 

Variable 

20 Items 

Forced Answer 0.011(1.081) -3.465 3.589 0.299 0.252 0.733 

Ignored 0.012(1.088) -3.456 3.601 0.319 0.280 0.758 

IP Size 3 

Fixed 15 

Items 

Forced Answer 0.017(1.086) -3.479 3.610 0.307 0.252 0.788 

Ignored 0.019(1.101) -3.546 3.654 0.341 0.276 0.852 

Fixed 20 

Items 

Forced Answer 0.015(1.075) -3.452 3.580 0.279 0.233 0.720 

Ignored 0.015(1.083) -3.460 3.568 0.302 0.251 0.751 

Variable 

15 Items 

Forced Answer 0.016(1.086) -3.466 3.605 0.308 0.248 0.787 

Ignored 0.019(1.101) -3.546 3.675 0.344 0.286 0.858 

Variable 

20 Items 

Forced Answer 0.011(1.073) -3.460 3.582 0.291 0.246 0.721 

Ignored 0.011(1.083) -3.469 3.586 0.319 0.283 0.756 

IP Size 4 

Fixed 15 

Items 

Forced Answer 0.016(1.080) -3.461 3.599 0.300 0.247 0.770 

Ignored 0.019(1.099) -3.558 3.666 0.344 0.280 0.858 

Fixed 20 

Items 

Forced Answer 0.014(1.070) -3.435 3.573 0.274 0.230 0.709 

Ignored 0.016(1.082) -3.477 3.601 0.305 0.254 0.763 

Variable 

15 Items 

Forced Answer 0.015(1.080) -3.474 3.584 0.300 0.245 0.765 

Ignored 0.018(1.099) -3.535 3.671 0.345 0.288 0.860 

Variable 

20 Items 

Forced Answer 0.011(1.068) -3.438 3.563 0.284 0.240 0.707 

Ignored 0.012(1.080) -3.452 3.601 0.320 0.285 0.763 

Table 4. Grand Mean Theta Estimates and Standard Error Descriptive Statistics Averaged Across 

the 500 Replications 
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Overall Measurement Precision 

 The Pearson product-moment correlations between the known and estimated thetas are 

presented in Table 5.  The mean correlations, across the 500 replications, illustrate the accuracy 

in recovering the known thetas.  In addition to the mean correlation, the minimum and maximum 

correlation across the 500 replications are reported in Table 5.  The traditional CAT, with an IP 

size of 0, fixed length condition resulted in a mean correlation of 0.946 (min = 0.921, max = 

0.957) for the 15 item test and 0.957 (min = 0.934, max = 0.967) for the 20 item test.  The IP size 

of 0 variable length conditions resulted in slightly lower mean correlations of 0.945 (min = 

0.896, max = 0.956) for the 15 maximum item test condition and 0.951 (min = 0.909, max = 

0.961) for the 20 maximum item test condition. 

Implementation of the IP method generally increased accuracy in recovering the known 

thetas.  The IP size of 2 fixed length 15 item test conditions resulted in mean correlations of 

0.951 (min = 0.904, max = 0.961) and 0.944 (min = 0.907, max = 0.958) for the FA and Ign 

conditions, respectively.  The fixed length 20 item test conditions resulted in slightly increased 

mean correlations of 0.959 (min = 0.928, max = 0.969) and 0.954 (min = 0.917, max = 0.965), 

respectively, for the FA and Ign conditions.  The IP size of 2 variable length conditions resulted 

in a slight decrease in mean correlations compared to their fixed length counterparts, with mean 

correlations of 0.949 (min = 0.914, max = 0.961) and 0.943 (min = 0.914, max = 0.956) for the 

variable length 15 maximum item FA and Ign test conditions, respectively.  The IP size of 2 

variable length 20 maximum item test conditions resulted in mean correlations of 0.955 (min = 

0.920, max = 0.965) and 0.950 (min = 0.920, max = 0.961) for the FA and Ign conditions, 

respectively.  Overall, the known thetas were more accurately recovered in the Forced Answer IP 

test conditions, resulting in slightly higher correlations as compared to the traditional CAT 
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conditions.  Conversely, slightly lower correlations were found in the Ignore conditions when 

compared to the traditional CAT conditions; however, the correlations were comparable across 

the IP sizes.  The same pattern continued in the IP size of 3 Forced Answer conditions, which 

resulted in higher mean correlations as compared to the IP sizes of 0 and 2 forced answer 

conditions.  Specifically, the IP size of 3 fixed length 15 items conditions resulted in mean 

correlations of 0.954 (min = 0.924, max = 0.963) and 0.944 (min = 0.913, max = 0.955) for the 

FA and Ign conditions, respectively.  The mean correlations increased slightly for the fixed 

length 20 item test conditions, resulting in mean correlations of 0.961 (min = 0.925, max = 

0.969) and 0.955 (min = 0.925, max = 0.964) for the FA and Ign conditions, respectively.  Again, 

a slight decrease in mean correlations is seen in the variable conditions compared to the fixed 

length conditions.  The IP size of 3 variable length 15 maximum item tests resulted in mean 

correlations of 0.953 (min = 0.926, max = 0.963) for the FA condition and 0.943 (min = 0.917, 

max = 0.957) for the Ign condition.  

Generally, the pattern with the IP sizes of 2 and 3 is also seen in IP size of 4 conditions.  

The IP size of 4 fixed length 15 item test conditions resulted in mean correlations of 0.956 (min 

= 0.934, max = 0.965) for the FA and 0.944 (min = 0.910, max = 0.955) for the Ign condition.  

The fixed length 20 item test conditions resulted in increased mean correlations, with a mean of 

0.962 (min = 0.939, max = 0.970) and 0.954 (min = 0.925, max = 0.964) for the FA and Ign 

conditions, respectively.  The IP size of 4 variable length 15 maximum item test conditions 

resulted in similar, but slightly lower correlations than the fixed length conditions with means of 

0.955 (min = 0.929, max = 0.964) for the FA condition and 0.943 (min = 0.913, max = 0.955) for 

the Ign condition.  The variable length 20 maximum item test conditions resulted in slightly 

larger mean correlations than the shorter variable length conditions, with mean correlations of 
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0.960 (min = 0.925, max = 0.967) and 0.950 (min = 0.925, max = 0.960) for the FA and Ign 

conditions, respectively. 

The impact of the item completion conditions on the mean correlation is more distinctive 

with the FA conditions than the Ign conditions. For instance, the fixed length 15 item FA test 

conditions resulted in mean correlations of 0.951, 0.954, and 0.956 for IP sizes 2, 3, and 4, 

respectively.  The mean correlation between the known and estimated thetas increased as IP size 

increased.  This pattern continues as test length increased, with mean correlations of 0.959, 

0.961, and 0.962 for fixed length 20 item FA test conditions with IP sizes of 2, 3, and 4, 

respectively.  The variable length 15 maximum item FA test conditions resulted in mean 

correlations of 0.949, 0.953, and 0.955, respectively, for IP sizes of 2, 3, and 4.  Again, the mean 

correlations increased as test length increased, with mean correlations of 0.955, 0.957, and 0.960 

for the variable length 20 maximum item FA test conditions for IP sizes of 2, 3, and 4 

respectively.  Conversely, the fixed length 15 item Ign test conditions resulted in mean 

correlations of 0.944 for IP sizes 2, 3, and 4.  Increasing test length to 20 items for the fixed 

length test conditions under the Ign conditions resulted in mean correlations of 0.954, 0.955, and 

0.954 for IP sizes of 2, 3, and 4, respectively.  The Ign conditions for the variable length test 

conditions resulted in identical mean correlations for IP sizes of 2, 3, and 4 equal to 0.943 for the 

15 maximum item test conditions and 0.950 for the 20 maximum item test conditions, displaying 

no impact on recovery of known thetas for the variable length conditions under the Ign 

conditions. 
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Condition 
Correlation 

Mean Min Max 

Traditional 

(IP=0) 

Fixed 15 Items 0.946 0.921 0.957 

Fixed 20 Items 0.957 0.934 0.967 

Variable 15 Items 0.945 0.896 0.956 

Variable 20 Items 0.951 0.909 0.961 

IP Size 2 

Fixed 15 

Items 

Forced Answer 0.951 0.904 0.961 

Ignored 0.944 0.907 0.958 

Fixed 20 

Items 

Forced Answer 0.959 0.928 0.969 

Ignored 0.954 0.917 0.965 

Variable 

15 Items 

Forced Answer 0.949 0.914 0.961 

Ignored 0.943 0.914 0.956 

Variable 

20 Items 

Forced Answer 0.955 0.920 0.965 

Ignored 0.950 0.910 0.961 

IP Size 3 

Fixed 15 

Items 

Forced Answer 0.954 0.924 0.963 

Ignored 0.944 0.913 0.955 

Fixed 20 

Items 

Forced Answer 0.961 0.925 0.969 

Ignored 0.955 0.925 0.964 

Variable 

15 Items 

Forced Answer 0.953 0.926 0.963 

Ignored 0.943 0.917 0.957 

Variable 

20 Items 

Forced Answer 0.957 0.925 0.967 

Ignored 0.950 0.914 0.961 

IP Size 4 

Fixed 15 

Items 

Forced Answer 0.956 0.934 0.965 

Ignored 0.944 0.910 0.955 

Fixed 20 

Items 

Forced Answer 0.962 0.939 0.970 

Ignored 0.954 0.925 0.964 

Variable 

15 Items 

Forced Answer 0.955 0.929 0.964 

Ignored 0.943 0.913 0.955 

Variable 

20 Items 

Forced Answer 0.960 0.925 0.967 

Ignored 0.950 0.925 0.960 

Table 5. Pearson product-moment Correlations between Known and  

Estimated Thetas Averaged Across 500 Replications 
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The average, minimum, and maximum Bias and RMSE associated with the final theta 

estimates were calculated across the 500 replications for each condition and are presented in 

Table 6.  The mean bias for the IP size of 0 fixed length 15 item test condition was -0.015, 

whereas the fixed length 20 item test condition resulted in a mean bias of -0.012.  The same 

pattern is seen with the variable length conditions with an IP size of 0. Specifically, mean bias 

for the maximum of 15 item test condition was -0.013 and was -0,007 for the maximum 20 item 

test condition.   

The IP size of 2 fixed length 15 item test conditions resulted in mean biases of -0.013 and 

-0.016 for the FA and Ign conditions, respectively.  The IP size of 2 fixed length 20 item test 

conditions resulted in a mean bias of -0.012 for both FA and Ign conditions.  The IP size of 2 

variable length 15 maximum item test conditions resulted in similar mean bias as the fixed length 

conditions, with a mean bias of -0.012 for the FA and a mean bias of -0.015 for the Ign 

condition.  The mean bias decreased slightly for the IP size of 2 variable length 20 maximum 

item test conditions, with mean bias of -0.007 and -0.008 for the FA and Ign conditions, 

respectively.   

The IP size of 3 conditions produced similar mean bias as that of IP size of 2 conditions.  

Specifically, the IP size of 3 fixed length 15 item test resulted in mean bias of -0.012 for the FA 

condition and mean bias of -0.016 for the Ign condition. The IP size of 3 fixed length 20 item test 

conditions resulted in mean bias of -0.010 and -0.012 for the FA and Ign conditions, 

respectively.  The IP size of 3 variable length 15 maximum item test conditions resulted in mean 

bias of -0.012 and -0.015 for the FA and Ign conditions, respectively.  The variable length 20 

maximum item test with an IP size of 3 resulted in a mean bias of -0.007 for both the FA and Ign 

conditions.   
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The IP size of 4 fixed length 15 item test conditions resulted in a mean bias of -0.012 for 

the FA condition and a mean bias of -0.015 for the Ign condition.  The mean bias for the IP size 

of 4 fixed length 20 item test conditions was -0.010 and -0.012 for the FA and Ign conditions, 

respectively.  The IP size of 4 variable length 15 maximum item test conditions resulted in a 

mean bias of -0.011 for the FA condition and a mean bias of -0.015 for the Ign condition. The IP 

size of 4 variable length 20 maximum item test conditions resulted in mean bias of -0.007 and -

0.008 for the FA and Ign conditions, respectively. 

The impact to mean bias under the two item completion conditions is minimal.  Under the 

FA conditions, the mean bias for the fixed length 15 item test was -0.013, -0.012, and -0.012 for 

IP sizes of 2, 3, and 4, respectively.  Increasing test length reduced mean bias very slightly, with 

the fixed length 20 item FA test conditions resulting in mean bias of -0.012, -0.010, and -0.010 

respectively, for IP sizes of 2, 3, and 4.  The variable length conditions resulted in similar mean 

bias across IP size conditions under the FA conditions. For instance, the variable length 15 

maximum item FA test conditions resulted in mean bias of -0.012, -0.012, and -0.011 for IP sizes 

2, 3, and 4, respectively.  In contrast, increasing test length to 20 maximum items resulted in a 

mean bias of -0.007 for all IP size conditions under the FA condition.  Under the Ign condition, 

the decrease in mean bias seen in the FA conditions is less apparent.  For instance, the fixed 

length 15 item Ign test conditions resulted in mean bias of -0.016, -0.016, and -0.015 for IP sizes 

of 2, 3, and 4, respectively.  Increasing test length to 20 items for the fixed length tests resulted 

in mean bias of -0.012 for all IP size conditions.  The variable length 15 maximum item Ign test 

conditions resulted in mean bias of -0.015 for all IP size conditions as well.  The variable length 

20 maximum item Ign test conditions resulted in mean bias of -0.008, -0.007, and -0.008 for IP 

sizes of 2, 3, and 4, respectively, which is a slight decrease with an increase in test length. 
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The mean RMSE displayed a consistent pattern (see Table 6), with the Forced Answer 

conditions resulting in lower mean RMSEs when compared to the traditional CATs and the 

Ignore conditions resulting in mean RMSEs slightly higher than those in the traditional CAT 

conditions.  The traditional CAT (with IP size of 0) conditions resulted in a mean RMSE of 

0.356 for the fixed length 15 item test and a mean RMSE  of 0.314 for the fixed length 20 item 

test.  The variable length 15 maximum item test condition resulted in a mean RMSE of 0.358 and 

a mean RMSE of 0.332 resulted for the variable length 20 maximum item test condition.  The 

pattern seen here with the fixed length conditions resulting in slightly lower mean RMSE than 

the variable length conditions, as well as the longer test conditions resulting in lower RMSE than 

the shorter test conditions, is seen in all IP size conditions. 

The IP size of 2 conditions displayed the same pattern seen with the traditional conditions 

with the longer fixed length test conditions resulting in a lower mean RMSE, on average.  The IP 

size of 2 fixed length 15 item test conditions resulted in mean RMSEs of 0.340 and 0.365 for the 

FA and Ign conditions, respectively.  Increasing the test length to 20 items resulted in a mean 

RMSE of 0.308 for the FA condition and a mean RMSE of 0.326 for the Ign condition.  The 

variable length conditions resulted in slightly higher mean RMSEs than the fixed length 

conditions with a mean RMSE of 0.345 for the variable length 15 item FA test and a mean 

RMSE of 0.368 for the variable length 15 item Ign test condition.  Increasing test length 

decreased mean RMSE to 0.319 for the variable length 20 maximum item FA test condition and 

to 0.340 for the variable length 20 maximum item Ign test condition; however, the impact on the 

mean RMSE is not as substantial for the variable length conditions as it is in the fixed length 

conditions. 
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The above pattern continued with the IP size of 3 conditions, with the fixed length 15 

item tests resulting in mean RMSEs of 0.327 and 0.364 for the FA and Ign conditions, 

respectively.  The fixed length 20 item test conditions resulted in a mean RMSE of 0.297 for the 

FA condition and a mean RMSE of 0.323 for the Ign condition.  The IP size of 3 with variable 

length test conditions resulted in a mean RMSE of 0.329 for the 15 maximum item FA tests and 

a mean RMSE of 0.367 for the 15 maximum item Ign tests, whereas the 20 maximum item tests 

resulted in a mean RMSE of 0.309 and 0.337 for the FA and Ign conditions, respectively.  Again, 

the longer fixed length test condition resulted in lower mean RMSE compared to the longer 

variable length test conditions. 

In addition to the pattern of the longer fixed length conditions resulting in lower mean 

RMSE, the RMSE also decreased as IP size increased.  For instance, the IP size of 4 fixed length 

15 item test conditions resulted in a mean RMSE of 0.319 and 0.345 for the FA and Ign 

conditions, respectively.  The fixed length 20 item test conditions resulted in a lower mean 

RMSE of 0.293 for the FA condition and a mean RMSE of 0.323 for the Ign condition.  The 

variable length 15 maximum item test resulted in a mean RMSE of 0.321 for the FA condition 

and a mean RMSE of 0.366 for the Ign condition, whereas the variable length 20 maximum item 

test conditions resulted in mean RMSEs of 0.301 and 0.336 for the FA and Ign conditions, 

respectively.      

The two item completion conditions had an impact on the resulting mean RMSE.  For 

instance, the fixed length 15 item FA test conditions resulted in mean RMSEs of 0.340, 0.327, 

and 0.319 for IP sizes of 2, 3, and 4, respectively, decreasing with IP size increases.  Conversely, 

the fixed length 15 item Ign test conditions resulted in mean RMSEs of 0.365, 0.364, and 0.345 

for IP sizes of 2, 3, and 4, respectively, displaying a more gradual decrease with IP size 



 

88 

 

increases.  The fixed length 20 item FA test conditions resulted in mean RMSEs of 0.308, 

0.297,and 0.293 for IP sizes of 2, 3, and 4, respectively.  The fixed length 20 item Ign test 

conditions resulted in mean RMSE of 0.326, 0.323, and 0.323, respectively, for IP sizes 2, 3, and 

4.  The variable length 15 maximum item FA test conditions resulted in RMSEs of 0.345, 0.329, 

and 0.321 for IP sizes 2, 3, and 4, respectively.  The Ign conditions for the variable length 15 

maximum item tests resulted in mean RMSEs of 0.368, 0.367, and 0.366 for IP sizes of 2, 3, and 

4, respectively.  The variable length 20 maximum item FA tests resulted mean RMSEs of 0.319, 

0.309, and 0.301 for IP sizes of 2, 3, and 4, respectively.  In contrast, the Ign conditions for the 

variable length 20 maximum item tests resulted in a slower decrease in mean RMSE as IP size 

increased, with mean RMSEs of 0.340, 0.337, and 0.336 for IP sizes 2, 3, and 4, respectively.  

Again, as IP size increased, the mean RMSE decreased, in both the Forced Answer and Ignore 

item completions conditions; however, the decrease under the Ign conditions was more gradual.  
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Condition 
Bias RMSE 

Mean Min Max Mean Min Max 

Traditional 

(IP=0) 

Fixed 15 Items -0.015 -2.357 1.267 0.356 0.319 0.434 

Fixed 20 Items -0.012 -2.112 1.097 0.314 0.278 0.405 

Variable 15 Items -0.013 -2.226 1.272 0.358 0.326 0.483 

Variable 20 Items -0.007 -2.099 1.113 0.332 0.298 0.438 

IP Size 2 

Fixed 15 

Items 

Forced Answer -0.013 -2.387 1.206 0.340 0.298 0.476 

Ignored -0.016 -2.560 1.298 0.365 0.318 0.464 

Fixed 20 

Items 

Forced Answer -0.012 -2.333 1.072 0.308 0.270 0.403 

Ignored -0.012 -2.564 1.117 0.326 0.289 0.429 

Variable 

15 Items 

Forced Answer -0.012 -2.569 1.235 0.345 0.308 0.460 

Ignored -0.015 -2.591 1.285 0.368 0.329 0.450 

Variable 

20 Items 

Forced Answer -0.007 -2.321 1.085 0.319 0.280 0.423 

Ignored -0.008 -2.437 1.135 0.340 0.304 0.459 

IP Size 3 

Fixed 15 

Items 

Forced Answer -0.012 -2.189 1.171 0.327 0.295 0.440 

Ignored -0.016 -2.335 1.301 0.364 0.322 0.453 

Fixed 20 

Items 

Forced Answer -0.010 -1.984 1.064 0.297 0.264 0.410 

Ignored -0.012 -2.208 1.131 0.323 0.288 0.411 

Variable 

15 Items 

Forced Answer -0.012 -2.167 1.160 0.329 0.295 0.404 

Ignored -0.015 -2.399 1.301 0.367 0.325 0.447 

Variable 

20 Items 

Forced Answer -0.007 -2.118 1.059 0.309 0.274 0.413 

Ignored -0.007 -2.157 1.152 0.337 0.303 0.447 

IP Size 4 

Fixed 15 

Items 

Forced Answer -0.012 -2.071 1.121 0.319 0.283 0.392 

Ignored -0.015 -2.256 1.283 0.345 0.326 0.456 

Fixed 20 

Items 

Forced Answer -0.010 -2.029 1.011 0.293 0.261 0.367 

Ignored -0.012 -2.055 1.130 0.323 0.289 0.425 

Variable 

15 Items 

Forced Answer -0.011 -2.074 1.138 0.321 0.293 0.400 

Ignored -0.015 -2.220 1.308 0.366 0.323 0.439 

Variable 

20 Items 

Forced Answer -0.007 -2.004 1.040 0.301 0.271 0.419 

Ignored -0.008 -2.103 1.126 0.336 0.300 0.411 

Table 6. Mean, Minimum, and Maximum Bias and RMSE Averaged Across 500 Replications 
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Conditional Measurement Precision 

 Conditional plots of mean bias (see Figures 8, 9, 10, and 11) and grand mean SE (see 

Figures 12, 13, 14, and 15) associated with the final theta estimates, averaged across the 500 

replications, were created in order to examine the performance of the IP method at different 

ability levels.  Plots of mean bias conditional on known theta for each of the four stopping rule 

conditions are shown in Figures 8, 9, 10, and 11.  Figure 8A displays the mean bias for the fixed 

length 15 item FA and Ign test conditions for all IP sizes.  As can be seen in the top figure of 

Figure 8A, in the FA conditions, the conditional mean bias across the range of theta (-3.0 to 

+3.0) is the same as in the traditional CAT conditions (with IP size of 0).  For known thetas 

below θ = -3.0 and above θ = +3.0 in the Forced Answer conditions, the mean bias departed 

slightly from that of the conditional traditional CAT, with more positive bias for the higher 

abilities and slightly less negative bias for the lower abilities.  In the Ignore conditions (see 

Figure 8A, bottom plot), the mean conditional bias generally mirrored that of the traditional 

CATs for most ability levels, with slight departures for IP size 3 with abilities less than θ = -2.5 

where slightly more negative bias was observed.   

When comparing the Forced Answer and Ignore conditions for the fixed length 15 item 

tests (see Figure 8B), the Forced Answer conditions resulted in slightly less negative bias for 

ability levels ranging from 0 to 2.0 and slightly less positive bias for ability levels ranging from θ 

= -2.5 to θ = 0 with an IP size of 2. As IP size increased, the Ign conditions resulted in slightly 

more positive bias between θ = -2.5 and θ = -1.0 and slightly more negative bias for abilities 

between θ = 0.05 and θ = 2.0 as compared to the FA conditions (see Figure 8C & 8D).  However, 

as the test length increased, these differences disappeared.  As shown in Figure 9A, in the fixed 

length 20 item test  conditions under both FA and Ign conditions, all IP sizes produced very 
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similar mean conditional bias across the range of theta from θ = -3.0 to θ = +3.0  .  The extreme 

abilities displayed slight differences with the IP sizes of 2, 3, and 4, with the FA test conditions 

resulting in slightly less negative bias for abilities below θ = -3.0 and slightly more positive bias 

for abilities above θ = +3.0 as compared to the traditional condition.  These differences declined 

under the Ign conditions.  Comparing the FA and Ign conditions (see Figure 9B, 9C, and 9D), as 

IP size increased the differences at the extremes of the ability distribution decreased and the 

mean conditional bias in the center of the distribution are practically identical.   

This same pattern is seen in the variable length test conditions with the 15 item stopping 

rule as was seen above with the fixed length test conditions.  As seen in Figure 10A, the 

conditional bias is very similar for abilities in the center of the ability distribution; however, the 

extreme abilities result in slightly more negative bias in ability levels below θ = -3.0 and slightly 

more positive bias in abilities above θ = +3.0 for IP sizes 2, 3, and 4 under the FA conditions as 

compared to the traditional conditions.  These differences disappear under the Ign conditions, 

with the IP sizes’ lines practically overlapping (see Figure 10A, bottom plot).  Comparing the 

mean conditional bias for the FA and Ign test conditions with IP sizes of 2, 3, and 4 (see Figures 

10B, 10C, and 10D), as IP size increased, slightly more negative bias is seen in the higher ability 

levels (θ = 0 to θ = 2.5) and slightly more positive bias for the lower ability levels (θ = 0 to θ = -

2.5) under the Ign conditions.   

As test length increased, the differences seen between the Forced Answer and Ignore 

conditions with IP sizes of 2, 3, and 4 decreased (see Figure 11A).  The differences in the center 

of the ability distribution for the variable length 15 maximum item test conditions practically 

disappears in the longer 20 maximum item test conditions.  As seen in Figure 11A, the IP size 

conditions 2, 3, and 4 are overlapping the traditional condition for both the FA and Ign 
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conditions across the majority of the ability distribution.  Slight departures are seen for the 

extreme ability levels.  As seen in Figures 11B, 11C, and 11D, as IP size increased, the 

differences under the FA and Ign conditions in mean conditional bias for the extreme abilities 

decreased, with the FA conditions resulting in less mean conditional bias at the extreme ability 

levels. 
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Figure 8A. Plots of Mean Bias Conditional on Known Theta for Fixed Length 15 Items,  

IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 8B. Plot of Mean Bias Conditional on Known Theta for Fixed Length 15 Items,  

IP Size 2, Forced Answer & Ignore Conditions 
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Figure 8C. Plot of Mean Bias Conditional on Known Theta for Fixed Length 15 Items,  

IP Size 3, Forced Answer & Ignore Conditions 
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Figure 8D. Plot of Mean Bias Conditional on Known Theta for Fixed Length 15 Items,  

IP Size 4, Forced Answer & Ignore Conditions 
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Figure 9A. Plots of Mean Bias Conditional on Known Theta for Fixed Length 20 Items,  

IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 9B. Plot of Mean Bias Conditional on Known Theta for Fixed Length 20 Items,  

IP Size 2, Forced Answer & Ignore Conditions 
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Figure 9C. Plot of Mean Bias Conditional on Known Theta for Fixed Length 20 Items,  

IP Size 3, Forced Answer & Ignore Conditions 
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Figure 9D. Plot of Mean Bias Conditional on Known Theta for Fixed Length 20 Items,  

IP Size 4, Forced Answer & Ignore Conditions 
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Figure 10A. Plots of Mean Bias Conditional on Known Theta for Variable Length 15 Items,  

IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 10B. Plot of Mean Bias Conditional on Known Theta for Variable Length 15 Items,  

IP Size 2, Forced Answer & Ignore Conditions 
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Figure 10C. Plot of Mean Bias Conditional on Known Theta for Variable Length 15 Items,  

IP Size 3, Forced Answer & Ignore Conditions 
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Figure 10D. Plot of Mean Bias Conditional on Known Theta for Variable Length 15 Items,  

IP Size 4, Forced Answer & Ignore Conditions 
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Figure 11A. Plots of Mean Bias Conditional on Known Theta for Variable Length 20 Items,  

IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 11B. Plot of Mean Bias Conditional on Known Theta for Variable Length 20 Items,  

IP Size 2, Forced Answer & Ignore Conditions 
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Figure 11C. Plot of Mean Bias Conditional on Known Theta for Variable Length 20 Items,  

IP Size 3, Forced Answer & Ignore Conditions 
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Figure 11D. Plot of Mean Bias Conditional on Known Theta for Variable Length 20 Items,  

IP Size 4, Forced Answer & Ignore Conditions 
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As expected, the conditional grand mean SEs, presented in Figure 12, 13, 14, and 15, 

followed the same patterns as seen with the estimated thetas and correlations.  Figure 12A shows 

that the IP size of 4 for the fixed length 15 item FA test condition resulted in the lowest grand 

mean SE for all ability levels.  The traditional condition resulted in the highest grand mean SE 

for all ability levels.  However, under the Ign conditions, for all IP sizes, the resulting grand 

mean SE is practically the same (see Figure 12A, bottom plot).  Figures 12B, 12C, and 12D 

display the grand mean conditional SE for the three IP sizes, which indicate the same pattern 

seen with the mean RMSE in the FA and Ign conditions.  The FA conditions resulted in lower 

grand mean SEs than the Ign conditions for all ability levels, with this discrepancy increasing as 

IP size increased. 

Increasing test length had the same result with the grand mean SE as it did with the mean 

RMSE.  As seen in Figure 13A (top plot), the fixed length 20 item FA test condition resulted in 

smaller differences in grand mean SE for the IP size conditions across ability levels, with the IP 

size of 4 resulting in the lowest SEs.  Figure 13A (bottom plot) plots the grand mean SE under 

the Ign test conditions, which looks similar to Figure 12A for the FA test conditions, with almost 

no differences in grand mean SE for all abilities.  Figures 13B, 13C, and 13D show that 

increasing test length decreases the differences between the FA and Ign conditions in grand mean 

SE, for all abilities.  Although the differences in mean SE decreased with increases in test length, 

increases in IP size resulted in decreases in grand mean SE for the FA conditions, but no effect 

on the Ign conditions, resulting in a widening gap between the two lines (see Figures 13B, 13C, 

and 13D). 

The pattern seen in the fixed length conditions is seen in the variable length conditions.  

Figure 14A displays the grand mean SE for all IP sizes under the FA condition (top) and Ign 
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condition (bottom).  The IP size of 4 resulted in the lowest grand mean SE for all abilities and the 

traditional conditions resulted in the largest mean SE.  The Ign conditions resulted in conditional 

mean SE that is virtually identical for all IP size conditions.  Again, the FA conditions resulted in 

lower conditional mean SEs as compared to the Ign conditions, with the SE decreasing for the 

FA conditions as IP size increased (see Figures 14B, 14C, and 14D).  Increasing test length had 

the same impact on the grand mean conditional SE in the variable length conditions as it did in 

the fixed length conditions.  As seen in Figure 15A (top plot), all IP sizes resulted in lower mean 

SEs across all abilities, with the IP size of 4 resulting in the lowest mean SE and the traditional 

resulting in the highest.  The Ign conditions (see Figure 15A, bottom) shows identical mean SEs 

for all abilities.  The same pattern is seen in Figure 15B, 15C, and 15D, with the differences in 

mean SE between the FA and Ign conditions shrinking as test length increased. Still, as IP size 

increased, the mean SE under the FA conditions decreased. 

Overall, the Traditional CAT (IP size of 0) conditions resulted in the largest conditional 

grand mean SEs across the range of theta for all stopping rule conditions as compared to the 

other IP size FA conditions.  Conversely, the traditional CAT (IP size of 0) conditions resulted in 

very similar conditional grand mean SEs compared to that of all IP size Ignore conditions across 

the range of known thetas.  When test length increased from 15 to 20 with both fixed and 

variable length tests, the conditional grand mean SEs in the Ignore conditions converged, 

resulting in the same SEs for all known theta values.  When IP size increased, the differences 

between conditional grand mean SEs in the Forced Answer and Ignore conditions increased, with 

the Forced Answer conditions resulting in lower mean SEs across the range of known thetas.   

 The most precise measurement was of the abilities in the center of the ability distribution.  

The peak of the test information function was at θ = -0.6, which is the ability at which the test 
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measures most precisely.  This is evident in the plots of mean SEs conditional on known theta 

(see Figure 12A, 13A, 14A, and 15A), with the lowest SEs falling between θ = -1.0 to θ = 0 

across all conditions. As ability decreased below θ = -2, mean conditional SEs also increased.  

The same pattern is seen on the positive extreme of the ability continuum.   
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Figure 12A. Plots of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 

15 Items, IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 12B. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 15 

Items, IP Size 2, Forced Answer & Ignore Conditions 
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Figure 12C. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 15 

Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 12D. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 15 

Items, IP Size 4, Forced Answer & Ignore Conditions 
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Figure 13A. Plots of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 

20 Items, IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 



 

117 

 

 
Figure 13B. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 20 

Items, IP Size 2, Forced Answer & Ignore Conditions 
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Figure 13C. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 20 

Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 13D. Plot of Mean Standard Error (SE) Conditional on Known Theta for Fixed Length 20 

Items, IP Size 4, Forced Answer & Ignore Conditions 
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Figure 14A. Plots of Mean Standard Error (SE) Conditional on Known Theta for Variable 

Length 15 Items, IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 14B. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

15 Items, IP Size 2, Forced Answer & Ignore Conditions 
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Figure 14C. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

15 Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 14D. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

15 Items, IP Size 4, Forced Answer & Ignore Conditions 
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Figure 15A. Plots of Mean Standard Error (SE) Conditional on Known Theta for Variable 

Length 20 Items, IP Size 0, 2, 3, & 4, Forced Answer & Ignore Conditions 
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Figure 15B. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

20 Items, IP Size 2, Forced Answer & Ignore Conditions 



 

126 

 

 
Figure 15C. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

20 Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 15D. Plot of Mean Standard Error (SE) Conditional on Known Theta for Variable Length 

20 Items, IP Size 4, Forced Answer & Ignore Conditions 
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Item Pocket Usage 

 A portion of the evaluation of the IP method is assessment of the IP usage, although this 

was not explicitly asked in the research questions.  The use of the IP is assumed to follow the 

same pattern seen in Han’s (2013) study in which the use of the IP will increase as the IP size 

increases and ability decreases. Thus, evaluation of this pattern is of interest. This was 

accomplished with descriptive statistics, which are presented in Table 7.  Included in Table 7 is 

the mean number of items placed in the pocket in each IP method condition, as well as the 

minimum and maximum number of items placed in the item pocket across the 500 replications. It 

is important to note that these numbers are higher than the IP size due to the rotation of items in 

and out of the item pocket throughout the course of the simulated test.  

As can be seen in Table 7, as test length and IP size increased, the mean number of items 

placed in the pocket increased.  The IP size of 2 fixed length 15 item test conditions resulted in 

mean IP use of 9.94 and 9.95 items for the FA and Ign conditions, respectively.  Increasing the 

test length to 20 items resulted in mean IP use of 12.95 and 12.96 items for the FA and Ign 

conditions, respectively.  The variable length 15 maximum item tests with an IP size of 2 

resulted in the mean number of items placed in the IP of 9.56 for the FA condition and 9.55 for 

the Ign condition, slightly lower than the mean in the fixed length 15 item test conditions.  The 

variable length 20 maximum item test conditions resulted in mean IP use of 10.87 items for both 

the FA and Ign conditions, which is, on average, almost two less items than the fixed length 20 

item test conditions. 

The mean number of items placed in the IP increased with IP size increases.  The IP size 

of 3 fixed length 15 item test conditions resulted in mean IP use of 10.69 items for both FA and 

Ign conditions.  Increasing test length increased the mean number of items placed in the IP, with 
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the fixed length 20 item test conditions resulting in a mean of 13.70 items placed in the IP for 

both FA and Ign conditions.  The IP size of 3 variable length 15 maximum item tests resulted in 

a mean of 10.41 items placed in the IP for both FA and Ign conditions, which is slightly less than 

the corresponding fixed length conditions.  The variable length 20 maximum item test conditions 

resulted in slightly higher means than the shorter tests, with 11.79 items for both FA and Ign 

conditions. Nonetheless, this is almost 2 items less (on average) than the corresponding fixed 

length test conditions. 

Increasing IP size to 4 resulted in increases in the mean number of items placed in the IP.  

The fixed length 15 item test conditions resulted in a mean of 11.39 items placed in the IP for 

both FA and Ign conditions. The condition with the largest mean number of items placed in the 

pocket is the IP size of 4 with the fixed length 20 item test condition, with a mean of 14.41 items 

for both FA and Ign conditions.  The variable length 15 maximum item tests again resulted in 

slightly lower mean number of items placed in the IP compared to the fixed length test, with a 

mean of 11.21 items and 11.22 items for the FA and Ign conditions, respectively.  The variable 

length 20 maximum item tests with an IP size of 4 resulted in mean IP use of 12.67 and 12.68 for 

the FA and Ign conditions, respectively.   

Generally, the Forced Answer and Ignore conditions resulted in the same mean number 

of items placed in the pocket.  This was expected but was assessed for program validity 

purposes.  The minimum number of items placed in the pocket for all conditions was 1, except 

for the IP size of 3 with the fixed length 20 item test condition in which items in the pocket were 

ignored and the IP size of 4 with the fixed length 20 item test condition in which examinees were 

either forced to answer or ignore items in the pocket, which resulted in a minimum of 2 items 

placed in the pocket.  On average, the maximum number of items placed in the pocket increased 
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with test length and IP size increases.  The IP size of 4 with the fixed length 20 item test and the 

IP size of 4 with the variable length 20 item test for both item completion conditions resulted in 

the highest maximum number of items placed in the pocket throughout the test with 23 items.  

The maximum number of items placed in the pocket follows the same pattern seen with the 

mean, which increased with test length and IP size increases. 

 

Condition 
Item Pocket Usage 

Mean Min Max 

IP Size 2 

Fixed 15 

Items 

Forced Answer 9.94 1 16 

Ignored 9.95 1 16 

Fixed 20 

Items 

Forced Answer 12.95 1 21 

Ignored 12.96 1 21 

Variable 15 

Items 

Forced Answer 9.56 1 16 

Ignored 9.55 1 16 

Variable 20 

Items 

Forced Answer 10.87 1 21 

Ignored 10.87 1 21 

IP Size 3 

Fixed 15 

Items 

Forced Answer 10.69 1 17 

Ignored 10.69 1 17 

Fixed 20 

Items 

Forced Answer 13.70 1 21 

Ignored 13.70 2 22 

Variable 15 

Items 

Forced Answer 10.41 1 17 

Ignored 10.41 1 17 

Variable 20 

Items 

Forced Answer 11.79 1 22 

Ignored 11.79 1 22 

IP Size 4 

Fixed 15 

Items 

Forced Answer 11.39 1 18 

Ignored 11.39 1 18 

Fixed 20 

Items 

Forced Answer 14.41 2 23 

Ignored 14.41 2 23 

Variable 15 

Items 

Forced Answer 11.21 1 18 

Ignored 11.22 1 18 

Variable 20 

Items 

Forced Answer 12.67 1 23 

Ignored 12.68 1 23 

Table 7. Mean, Minimum, and Maximum Number of Items Placed in  

the Item Pocket Averaged Across Replications 



 

131 

 

Conditional Item Pocket Usage 

 The conditional item pocket use is of interest due to the likely use of the pocket varying 

on ability level, as was seen in Han (2013).  Conditional IP usage was assessed by plotting the 

grand mean conditional on known theta across the range of θ from -3.5 to +3.5 with 0.5 

increments, averaged across the 500 replications. These plots are presented in Figures 16 through 

19.  Figure 16A displays the mean item pocket use for the fixed length 15 item test under the FA 

condition, which shows that the average number of items placed in the pocket increased for IP 

sizes of 2, 3, and 4 for abilities at and below θ = 0.  In addition, for the full range of abilities, IP 

use generally increased with IP size increases.  This same general pattern is seen under the Ign 

condition for the fixed length 15 item tests with IP sizes of 2, 3, and 4 (see Figure 16B).  

Increasing test length to 20 items for the fixed length test conditions under the FA and Ign 

methods resulted in the same pattern seen for the fixed length 15 item test conditions, with IP use 

increasing for abilities at and below θ = 0, and generally increasing with IP size increases (see 

Figure 17A and 17B).  To summarize, generally, as ability decreased below θ = 0, IP use 

increased in the fixed length conditions, regardless of item completion condition.  In addition, as 

IP size increased,  IP use also generally increased.   

The pattern seen with the fixed length 15 item tests is generally seen under the variable 

length 15 maximum item test conditions.  Again, as test length increased, the IP usage increased; 

however, the average number of items is slightly less under the variable length 15 maximum 

item test conditions for abilities at and above θ = 0 for both FA and Ign conditions (see Figure 

18A and 18B).  Under the variable length 20 maximum item test conditions, the pattern seen thus 

far slightly changes.  In Figure 19A, the point on the ability continuum where IP use increases, as 

seen in the fixed length test conditions, has shifted down to θ = -1.5.  In addition, abilities above 
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θ = 0 resulted in mean IP use slightly lower than the average seen in the corresponding fixed 

length test conditions.  The pattern of IP use seen in the variable length 20 maximum item FA 

test conditions is repeated under the Ign conditions (see Figure 19B).  The average number of 

items placed in the pocket for all ability levels generally increases as IP size increases.  

Interestingly, the ability level at which the average number of items placed in the pocket 

increases is shifted down to θ = -1.5 for the variable length 20 maximum item tests under both 

the FA and the Ign conditions.  The item completion conditions for all termination criteria 

resulted in similar IP use, meaning that termination criteria appeared to have no impact on IP 

use.   
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Figure 16A. Grand Mean Item Pocket Use Conditional on Known Theta, Fixed Length 15 Items, 

IP Size 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 16B. Grand Mean Item Pocket Use Conditional on Known Theta, Fixed Length 15 Items, 

IP Size 2, 3, & 4, Ignore Conditions 
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Figure 17A. Grand Mean Item Pocket Use Conditional on Known Theta, Fixed Length 20 Items, 

IP Size 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 17B. Grand Mean Item Pocket Use Conditional on Known Theta, Fixed Length 20 Items, 

IP Size 2, 3, & 4, Ignore Conditions 
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Figure 18A. Grand Mean Item Pocket Use Conditional on Known Theta, Variable Length 15 

Items, IP Size 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 18B. Grand Mean Item Pocket Use Conditional on Known Theta, Variable Length 15 

Items, IP Size 2, 3, & 4, Ignore Conditions 
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Figure 19A. Grand Mean Item Pocket Use Conditional on Known Theta, Variable Length 20 

Items, IP Size 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 19B. Grand Mean Item Pocket Use Conditional on Known Theta, Variable Length 20 

Items, IP Size 2, 3, & 4, Ignore Conditions 
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Test Efficiency 

 The efficiency of the CAT was evaluated with descriptive statistics, the mean, minimum, 

and maximum number of items administered (NIA), for each condition averaged across the 500 

replications.  The conditions with smaller mean values indicate more efficient tests.  Descriptive 

statistics for NIA are included in Table 8.  Typically, assessment of test efficiency is only 

evaluated when a variable length termination criteria is used.  However, the Forced Answer item 

completion conditions included in the present study will impact the NIA and, therefore, the fixed 

length conditions are included.  The possibility of an interaction of the IP size with the test length 

in variable length termination conditions was also assessed. 

The mean NIA for the Traditional CAT (IP size of 0) conditions is not applicable for the 

fixed length tests since they all resulted in the same number of items administered.  The 

traditional CAT (IP size of 0) variable length conditions resulted in a mean NIA of 14.27 and 

16.46 for 15 item and 20 maximum items tests, respectively.  In all IP size conditions, the fixed 

length FA tests resulted in mean NIAs slightly lower than the maximum number of items plus 

the IP size.  For instance, the IP size of 2 FA conditions with fixed length 15 item and 20 item 

tests resulted in mean NIAs of 16.99 and 21.99, respectively.  The maximum NIA for these 

conditions is 17 and 22 (i.e., 15 + 2 & 20 + 2), respectively.  The mean NIA for these conditions 

being slightly less than the maximum is the result of some examinees having less than the 

maximum number of items in the pocket at the end of the test.  This pattern is consistent for all 

of the fixed length, forced answer conditions. 

The variable length test conditions with the IP method resulted in slightly higher mean 

NIAs as compared to the Traditional CAT (IP size of 0).  This pattern holds for both item 

completion conditions. On average, the IP size of 2 variable length 15 item test condition 
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resulted in a mean of 16.55 when examinees were forced to answer items in the pocket and a 

mean of 14.43 when examinees ignored items in the pocket. These means are higher than the 

mean NIA of 14.27 found in the corresponding traditional CAT condition (IP size of 0 with a 

variable length 15 item test).  This is explained by the administration of additional items in both 

item completion conditions.  The Forced Answer condition requires the administration of the 

items in the pocket at the end of the test, which will result in a higher average NIA.  The 

explanation of the higher mean in the Ignore condition is the loss of information from the items 

placed in the pocket and ultimately ignored.  Skipping these items resulted in slightly more items 

administered on average across the 500 replications.  However, this difference is a mere 0.16 

average items across the 500 replications.  The same pattern is seen in the IP size of 2 with a 

variable length 20 item test conditions, wherein the Forced Answer condition resulted in a mean 

NIA of 18.90 and the Ignore condition resulted in a mean NIA of 16.85, which are both higher 

than the mean NIA (16.46) seen in the traditional CAT (IP size of 0) with the variable length 20 

item test. 

As the size of the IP increased, the tests slightly lost efficiency.  The IP size of 3 with 

variable length 15 item test conditions resulted in mean NIAs of 17.73 and 14.59 when 

examinees were forced to answer items in the pocket and when items in the pocket were ignored, 

respectively.  The IP size of 3 with variable length 20 item test conditions resulted in mean NIAs 

of 20.17 and 17.12 when examinees were forced to answer items in the pocket and when items in 

the pocket were ignored, respectively. This pattern continued in the IP size of 4 conditions, with 

the Forced Answer conditions resulting in a higher mean NIA proportionate to the IP size, and 

the Ignore conditions resulting in mean NIAs only slightly higher than that of the Traditional 

CATs.  Specifically, the IP size of 4 with fixed length 15 item tests under the forced answer 
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conditions resulted in a mean NIA of 18.99.  Increasing test length to 20 items resulted in a mean 

NIA of 23.99 for the IP size of 4 in the fixed length 20 item FA test condition.  The variable 

length 15 maximum item FA test condition resulted in a mean NIA of 18.91, whereas the Ign 

condition resulted in a mean NIA of 14.75, which is slightly less than the maximum number of 

items, but still slightly more than the IP size of 0 condition.  The variable length 20 maximum 

item test conditions resulted in mean NIAs of 21.43 and 17.38 for the FA and Ign conditions, 

respectively.  Again, the FA conditions resulted in mean NIA slightly higher than the maximum 

number of items due to the forced administration of the items remaining in the pocket and the 

Ign conditions resulted in mean NIAs lower than the maximum number of items, but slightly 

higher than the corresponding traditional IP size of 0 conditions.  
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Mean Min Max 

Traditional 

(IP=0) 

Fixed 15 Items 15.00 15 15 

Fixed 20 Items 20.00 20 20 

Variable 15 Items 14.27 11 15 

Variable 20 Items 16.46 11 20 

IP Size 2 

Fixed 15 

Items 

Forced Answer 16.99 15 17 

Ignored 15.00 15 15 

Fixed 20 

Items 

Forced Answer 21.99 20 22 

Ignored 20.00 20 20 

Variable 15 

Items 

Forced Answer 16.55 14 17 

Ignored 14.43 12 15 

Variable 20 

Items 

Forced Answer 18.90 12 22 

Ignored 16.85 12 20 

IP Size 3 

Fixed 15 

Items 

Forced Answer 17.99 15 18 

Ignored 15.00 15 15 

Fixed 20 

Items 

Forced Answer 22.99 21 23 

Ignored 20.00 20 20 

Variable 15 

Items 

Forced Answer 17.73 14 18 

Ignored 14.59 12 15 

Variable 20 

Items 

Forced Answer 20.17 15 23 

Ignored 17.12 12 20 

IP Size 4 

Fixed 15 

Items 

Forced Answer 18.99 15 19 

Ignored 15.00 15 15 

Fixed 20 

Items 

Forced Answer 23.99 22 24 

Ignored 20.00 20 20 

Variable 15 

Items 

Forced Answer 18.91 15 19 

Ignored 14.75 12 15 

Variable 20 

Items 

Forced Answer 21.43 13 24 

Ignored 17.38 12 20 

Table 8. Mean, Minimum, and Maximum Number of Items Administered (NIA) 

Averaged Across Replications 
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The possibility of an interaction occurring with the implementation of the IP method in 

conjunction with the variable termination criteria was assessed.  However, due to the large 

sample size, any test of this interaction will produce statistically significant results for very small 

differences.  Therefore, the mean NIA across the 500 replications was plotted for all IP sizes, test 

lengths, and item completion methods in the variable length conditions in Figure 20 (A & B).  As 

can be seen in Figures 20A and 20B, for both the FA and Ign item completion methods, the 

differences between the mean NIAs for the 15 item and 20 item tests at each IP size is 

comparable, indicative of no interaction.  As IP size increased, the mean NIA increased 

proportionally. 

 
Figure 20A. Plot of Mean Number of Items Administered (NIA) for Variable Length 15 & 20 

Items, IP Size 0, 2, 3, & 4, Forced Answer Conditions 
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Figure 20B. Plot of Mean Number of Items Administered (NIA) for Variable Length 15 & 20 

Items, IP Size 0, 2, 3, & 4, Ignore Conditions 
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levels, therefore resulting in shorter tests.  Examinees with abilities in the extremes of the item 

pool distribution will be less efficiently measured, meaning that more items are administered to 

those examinees because the SE criteria is never met.  Evaluation of the conditional efficiency 

allows for the assessment of test efficiency across the range of known thetas.   
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presented in Figures 21 and 22.  As expected, the variable length 15 item tests with both Forced 

Answer and Ignore item completion methods resulted in more efficient tests for those examinees 

whose abilities were between Theta of -1.5 and 0.0, with grand mean NIAs less than the 

maximum number of 15 items, particularly for IP sizes of 0, 2, and 3 for these abilities (see 

Figures 21A and 21B).  However, as IP size increased, for all other abilities, this efficiency is 

lost, particularly for the Forced Answer conditions.  This is explained by the requirement of 

answering the items in the pocket at the end of the test, thereby increasing the NIA.  Figure 21C 

displays the conditional grand mean NIA for the variable length 15 maximum item tests with an 

IP size of 2 under the FA and Ign conditions.  Figure 21C more clearly shows the lower mean 

NIA conditional on theta for abilities between θ = 0.0 and θ = -1.5 for both the FA and Ign 

conditions.  As IP size is increased to 3 (see Figure 21D), abilities between θ = 0.0 and θ = -1.5 

still result in lower mean NIA, although a slight loss of efficiency is lost with slightly higher 

mean NIAs for these abilities as compared to the IP size of 2 conditions.  When IP size is 

increased to 4 (see Figure 21E), only abilities from θ = -1.0 to θ = -0.5  result in grand mean 

NIAs below the maximum NIA for the variable length 15 item test conditions under both the FA 

and Ign conditions.   

When test length is increased to 20 items, the range of abilities that have less than the 

maximum NIA shifts up to θ = -1.0 to θ = 0.5 for the Forced Answer conditions (see Figure 

22A).  However, the Ignore conditions resulted in a broader range of abilities for which test 

efficiency is increased, with the range of abilities with less than the maximum NIA ranging from 

θ = -2.0 to θ = 1.0 (see Figure 22B).  Again, as IP size increased, test efficiency decreased, with 

IP size of 4 resulting in the least efficient tests for the ability levels noted above.  Comparing the 

FA and Ign conditions for the IP size of 2 variable length 20 maximum item test conditions (see 
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Figure 22C), the increased efficiency for abilities between θ = -2.0 and θ = 1.0 can be seen for 

both the FA and Ign conditions, with the most efficient tests at θ = -0.5.  Increasing IP size to 3 

(see Figure 22D) resulted in a slight loss in efficiency for abilities between θ = -2.0 and θ = 1.0, 

with slightly higher mean NIAs for these abilities.  This pattern continues for IP size of 4 (see 

Figure 22E), with a loss of efficiency for those abilities between θ = -2.0 and θ = 1.0; however, 

the most efficient tests were those for θ = -0.5 in both FA and Ign conditions.  As expected, the 

Ign conditions resulted in more efficient tests than the FA conditions for both the variable length 

15 and 20 maximum item test conditions.      
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Figure 21A. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 15 Items, IP Size 0, 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 21B. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 15 Items, IP Size 0, 2, 3, & 4, Ignore Conditions 
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Figure 21C. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 15 Items, IP Size 2, Forced Answer & Ignore Conditions 

 

 
Figure 21D. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 15 Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 21E. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 15 Items, IP Size 4, Forced Answer & Ignore Conditions 
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Figure 22A. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 20 Items, IP Size 0, 2, 3, & 4, Forced Answer Conditions 

 

 
Figure 22B. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 20 Items, IP Size 0, 2, 3, & 4, Ignore Conditions 
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Figure 22C. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 20 Items, IP Size 2, Forced Answer & Ignore Conditions 

 

 
Figure 22D. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 20 Items, IP Size 3, Forced Answer & Ignore Conditions 
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Figure 22E. Grand Mean Number of Items Administered (NIA) Conditional on Known Theta, 

Variable Length 20 Items, IP Size 4, Forced Answer & Ignore Conditions 
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Chapter 5: Discussion 

Computerized adaptive testing (CAT) has provided the benefit of shorter tests while 

increasing measurement precision, which is appealing to both educators and test takers.  These 

advances in testing have come with some restrictions. Specifically, the restriction on response 

review and revision that is allowed with paper-and-pencil (P & P) tests.  Recently, a new 

method, the Item Pocket method, was developed with the intent of relaxing these restrictions 

while maintaining the benefits of shorter tests and higher measurement precision.  The purpose 

of this dissertation research was to extend the application of this new method to a CAT using a 

polytomous Item Response Theory (IRT) model that is appropriate for partial credit scoring of 

items.  In addition, the impact of implementation of the IP method on variable length tests was 

also investigated.  A simulation study was conducted, manipulating IP size, test length, 

termination criteria, and item completion for items left in the IP at the end of the test.   

Three main sections in this chapter discuss the study results. The first section outlines the 

research questions based on the study findings. The next section addresses the limitations of the 

study and the potential directions for future research. The last section addresses the educational 

importance and practical applications of the study findings and conclusions are discussed. 

Research Questions 

1. What is the impact of the IP method on precision of measurement, across the range of ability 

levels, when applied to a CAT using the GPCM with Content Balancing and Exposure 

Control procedures?  

The overall precision of measurement was assessed in multiple ways, one of which was 

the recovery of the known thetas.  The known thetas were generated with a mean of 0 and a 



 

152 

 

standard deviation of 1.0.  The grand mean and standard deviation of the final theta estimates 

across the 500 replications in each condition were used as descriptive measures of recovery of 

known thetas.  All conditions resulted in grand means and standard deviations very close to a 

mean of 0 and a standard deviation of 1.0. More specifically, the grand mean and standard 

deviations of the theta estimates across ability levels in the IP conditions resulted in slightly 

larger values compared to those in the traditional CAT conditions.  The grand means and 

standard deviations for the 20 item test length conditions resulted in lower values compared to 

the shorter 15 item test length termination criteria, which was expected due to the increase in the 

number of items administered. Although the values were larger in all IP sizes as compared to the 

traditional CAT conditions, the average difference of 0.02 was not practically important.  

The mean standard errors (SEs) in each condition across replications also assessed the 

precision of measurement, with lower SEs indicating more precise measurement.  Again, the 

longer tests resulted in more precise measurement with lower mean SEs in all of the conditions.  

The mean SE for all IP size conditions was comparable to that of the traditional conditions.  The 

IP size of 4 conditions resulted in the lowest mean SEs in the Forced Answer conditions as a 

result of the administration of more items.  In general, the difference across conditions in mean 

SEs was less than 0.01, and of no practical importance. 

The correlation between the known and estimated thetas was also used to assess precision 

of measurement.  Overall, the IP conditions resulted in comparable mean correlations as the 

traditional conditions across replications.  However, as IP size increased, the mean correlation 

increased.  In the Forced Answer conditions, this is likely due to the administration of additional 

items, increasing the precision of measurement.  The Ignore conditions resulted in equivalent 

correlations for all of the IP sizes, with slightly larger mean correlations than the traditional 
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conditions.  This indicates that providing an item pocket decreases measurement precision, very 

slightly, with the average decrease of 0.02 across replications.  The differences across IP sizes 

and the traditional conditions is negligible. 

Bias and Root Mean Squared Error (RMSE) were used to assess the precision of 

measurement, with bias assessing the systematic error in the final theta estimates and RMSE 

assessing the total error in the final theta estimates.  Overall, the mean bias and mean RMSE in 

the final theta estimates for the IP conditions were similar to those in the traditional conditions 

across replications.  The same pattern as demonstrated with the mean correlations was seen.  

That is, as IP size increased in the Forced Answer conditions, the mean bias and mean RMSE 

decreased as compared to the traditional conditions.  The Ignore conditions produced identical 

mean bias and mean RMSE across IP size conditions.  This result indicates that the 

implementation of the IP method results in an average increase in mean bias of -0.01, which is 

too small to be of any practical importance.     

The positive conditional bias seen in Han’s (2013) study for the lower abilities was not 

seen to the same extent in the current study.  Han (2013) found that the average bias in theta 

estimates, within the range of theta from -2 to +2, was 0.057, 0.075, and 0.080 for IP sizes of 2, 

4, and 6, respectively (Han, 2013).  In the current study, the mean bias was -0.015, -0.013, -

0.012, and -0.012 for IP sizes of 0, 2, 3, and 4, respectively, in the fixed length 15 item forced 

answer test conditions.  The fixed length 15 item ignore test conditions resulted in mean bias 

values of -0.015, -0.016, -0.016, and -0.015 for IP sizes of 0, 2, 3, and 4, respectively.  The mean 

bias decreased slightly with the increase in test length, with the fixed length 20 item forced 

answer tests resulting in mean bias values of -0.012, -0.012, -0.010, and -0.010 for IP sizes of 0, 



 

154 

 

2, 3, and 4, respectively.  The fixed length 20 item ignore test conditions all resulted in a mean 

bias of -0.012 for all IP sizes.   

Although the mean bias in the current study was calculated using the entire range of theta 

from -4 to +4, the very slight increase in mean bias with the use of the IP method is an important 

finding.  In addition, the positive conditional bias was not as large in the current study as 

compared to that found in Han’s (2013) study.  For instance, the mean conditional bias for θ = -2 

was less than 0.05 for the IP size of 0; however, as IP size increased to 2, the mean bias 

increased to 0.30, and increased slightly more with IP sizes of 4 and 6 to around 0.40 in Han’s 

(2013) study.  In the current study, the mean conditional bias for θ = -2 with a fixed length 15 

item test was the highest (0.052) with IP size of 4 in the Ign condition and was the lowest (0.039) 

with IP size of 4 in the FA condition.  This mean conditional bias was lower in the longer test 

conditions, with a high value of 0.036 in the fixed length 20 item test condition with IP size of 0 

and a low value of 0.028 on the fixed length 20 item test condition with IP size of 4 with FA.  

The lack of additional bias in theta estimates is encouraging compared to the significant positive 

bias found in previous research, which was also more restrictive (Stocking, 1997).  Additionally, 

the substantial decrease in positive conditional bias in the lower ability levels demonstrates the 

robustness of the IP method to biased ability estimates.      

On average, the impact of implementing the IP method appeared to have a very minimal 

effect on the precision of measurement across the entire range of ability.  However, the precision 

of measurement varied across the ability continuum, requiring the assessment of measurement 

precision conditional on ability level.  The differences seen in the conditional standard errors of 

measurement (CSEMs) across the range of ability were slight for all conditions compared to the 

CSEMs in the traditional, IP size of 0 conditions.  Generally, the traditional conditions resulted 
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in slightly higher CSEMs when compared to the other IP sizes in the Forced Answer item 

completion conditions.  This is due to the additional items administered in these conditions, 

which results in increased measurement precision.  Generally, under the Ignore item completion 

conditions, the CSEMs were slightly higher in the IP size conditions compared to the traditional 

conditions.  This is consistent with the results of Han’s (2013) study in which the CSEMs in the 

IP size conditions resulted in slightly less measurement precision than in the traditional 

conditions.  However, in Han’s (2013) study, the CSEMs increased as IP size increased for lower 

ability levels.  This difference in findings can be explained by the additional information 

provided across a larger range of theta by each polytomously-scored item.   

 As test length increased, the differences in the CSEMs decreased across the range of 

ability.  The fixed length 20 item tests and the variable length 20 item tests resulted in the most 

precise measurement, conditional on ability.  Smaller differences were seen in the CSEMs 

between the FA and Ign conditions when IP size increased in fixed length 20 item tests and 

variable length 20 item test conditions.  The forced answer conditions resulted in only slightly 

more precise measurement in the longer test conditions for both the fixed length and variable 

length test termination scenarios.  Abilities in the middle of the distribution (i.e., θ = -1.5 to θ = 

0.5) resulted in the lowest CSEMs, which is due to the item pool distribution.  Specifically, 

because the item pool peaks at θ = -0.6, the item pool as a whole best measures examinees at this 

ability.  As a result of the item pool attributes, the higher abilities generally resulted in slightly 

larger CSEMs.  This pattern was seen in all conditions. 

 The impact of the IP method on precision of measurement when compared to the 

traditional conditions is minimal.  Recovery of the known thetas, correlations between known 

and estimated thetas, SE, bias, RMSE, and conditional SEM in IP method conditions were 
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comparable to those in the traditional CAT conditions without using an item pocket.  The 

inclusion of an IP only slightly decreased measurement precision while creating a more flexible 

test.  These results are consistent with that of Han’s (2013) study.  The findings suggest that this 

method could be a viable option to relax restrictions in CATs while maintaining the benefits of 

CATs. 

2. What is the impact on precision of measurement under the two termination criteria (i.e., fixed 

and variable length)? 

Han (2013) included only fixed length termination criteria and no items were left in the 

IP at the end of the test.  This study included both fixed and variable length termination criteria, 

requiring different treatments of the items in the pocket for comparison purposes.  Han (2013) 

forced the administration of the items in the pocket once the examinee approached the maximum 

number of items allowed for administration.  Thus, if an examinee had three items in the pocket 

and had already been administered 37 items, they would be required to answer the three items in 

the pocket in order to avoid administering more than the 40 maximum number of items.  If this 

same procedure had been implemented in this study, the two termination criteria would not be 

comparable.  Therefore, the two item completion conditions were included.  Forcing the answer 

of items remaining in the pocket after the termination criteria had been satisfied allows for the 

comparison of the two stopping rules.  However, this also results in more items administered in 

the Forced Answer conditions than the stopping rule specifies.  This has a direct impact on the 

precision of measurement, resulting in more precise measurement of ability in these conditions. 

Overall, more precise measurement occurred in the longer test conditions, both with fixed 

and variable length tests across replications.  On average, the variable length test conditions 
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resulted in lower grand mean theta estimates, lower correlations between the known and 

estimated thetas, lower bias, and slightly higher RMSE as compared to the fixed length test 

conditions.  It was expected that fixed length conditions would produce more precise 

measurement when compared to variable length tests.  This is due to the abilities in the center of 

the ability continuum generally measured more precisely.  The fixed length stopping rule will 

administer items until the maximum number of items has been met, which for abilities in the 

center of the continuum will result in the lowest SEs for these examinees.  The variable length 

stopping rule terminates the test when the SE drops below the criteria or the maximum number 

of items has been administered.  The abilities in the center of the ability continuum will have SEs 

at the criteria because the test will stop for them once this achieved, resulting in a mean SE 

slightly higher than that in the fixed length conditions.       

3. What is the impact of the two of item completion conditions (forced answer or ignored) on 

precision of measurement? 

 It was expected that the item completion conditions would have an impact on the 

precision of measurement.  The Forced Answer conditions resulted in higher precision, as 

expected, due to the administration of additional items, which results in more precise 

measurement.  In addition, as item pocket size and test length increased, measurement accuracy 

increased.  The Ignore conditions had no effect on precision of measurement across all 

conditions.  When comparing the IP conditions to the traditional conditions, the Forced Answer 

item completion method resulted in slightly more precise measurement, which increased as IP 

size increased.  The Ignore conditions resulted in slightly less precise measurement, on average, 

when compared to the traditional conditions, with no differences between IP sizes.  In general, 

the implementation of the IP method in the Ignore item completion condition resulted in a slight 
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loss of measurement precision.  In the Forced Answer conditions, measurement precision is 

increased, but likely not enough to justify the forced administration of additional items.  

4. What impact does implementation of the IP method have on test efficiency in the variable 

length conditions? 

 Test efficiency was assessed with descriptive statistics of the number of items 

administered (NIA) and conditional plots of grand mean NIAs.  Lower mean values indicate 

more efficient tests.  Overall, the traditional conditions resulted in the lowest mean NIAs across 

replications.  As IP size increased, efficiency decreased slightly, on average.  The Forced Answer 

conditions resulted in the least efficient tests, which is due to the administration of additional 

items.  The Ignore conditions resulted in only slightly less efficient tests as compared to the 

traditional conditions.  The variable length with 15 maximum item tests for all IP sizes in the Ign 

conditions resulted in only slightly less items administered than the maximum of 15.  The 

variable length 20 item test conditions resulted in 16-17 items administered in the traditional and 

IP method Ign conditions.  This indicates that the IP method does not substantially decrease test 

efficiency when the items in the pocket are ignored at the end of the test.   

 The IP method had not been implemented in conjunction with a variable length 

termination criteria, so a possible interaction was assessed.  The mean NIAs across replications 

could have been affected by the interaction between the IP method and termination criteria.  

However, due to the sample size of 500,000 simulated examinees, significance would be found 

for the smallest differences in mean NIAs, if tested.  Therefore, the mean NIAs were plotted by 

IP size in the variable length conditions.  Non-parallel lines would be indicative of an interaction.  

Conversely, parallel lines indicate no interaction.  The plots indicated no interaction for all IP 
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sizes in both variable length 15 and 20 item test conditions.  The mean NIAs increased 

proportionally with IP size in both the Forced Answer and Ignore conditions.   

Nonconvergent Cases 

The use of maximum likelihood estimation did not occur for cases where either MLE is 

not reached or ability estimates are out of range (above θ = 4.0 or below θ = -4.0).  For these 

nonconvergent cases, descriptive statistics were first calculated and then these cases were 

listwise deleted before the outcome measures were calculated.  Overall, all of the IP sizes and the 

two item completion conditions examined resulted in some differences in the mean numbers of 

out-of-range cases as compared to the traditional CAT without implementing the IP method.  

However, as IP size increased, the mean number of out-of-range cases decreased, with the 

traditional CAT conditions resulting in mean numbers of out-of-range cases falling between that 

of IP sizes 3 and 4.  The decrease seen in out-of-range rates with the increase in IP size is likely 

due to the additional opportunities for MLE to be implemented, with the administration of 

additional items.  In addition, these differences in the mean number of out-of-range cases could 

be due to the extra information provided by the administration of additional items in the IP 

Forced Answer conditions.  As the IP size increased, the number of items administered 

increased, which also decreased the number of out-of-range cases.  The administration of 

additional items generally increases opportunities for estimation.   

The average number of out-of-range cases in all conditions was similar to the average 

number of examinees in the extremes of the ability distribution, meaning that the number of out-

of-range cases that resulted were expected due to the data generation procedure.  The simulated 

examinees abilities were generated based on a normal distribution with a mean of 0 and a 

standard deviation of 1, which should result in approximately 2.5% of the abilities in the tails of 
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the distribution.  These abilities would be above a θ = 4.0 and below θ = -4.0, which would result 

in abilities that are out-of-range.   

The inability to estimate an examinee’s ability is a serious concern for applied 

researchers. Therefore, a closer look at the out-of-range cases was completed.  Upon further 

investigation into the out-of-range cases, a limitation of the program used was discovered.  The 

majority of the nonconvergent cases were classified as out of range.  However, this was not 

because those examinees’ had ability estimates above θ = 4 or below θ = -4.  The variable step 

size adjustment used to adjust the interim ability estimate before a ML estimate can be obtained 

did not continue long enough for some of these examinees.  This occurred because the high end 

of the response categories changed depending on the item.  For instance, if the response to the 

first item administered was 4 and that item had 5 response categories, that response would be 

classified as in one of the extreme categories and the variable step size would adjust the interim 

ability estimate.  If the next response was in the high extreme category, but that item only had 

four response categories, the variable step size adjustment did not recognize that this was an 

extreme category and discontinued the adjustment to the interim ability estimate and a standard 

error was calculated; however, a ML estimate could not be obtained because both responses were 

in the extreme categories.  This resulted in the ability estimate being snapped to a θ = 4, and 

therefore a nonconvergent case. When the examinee’s response was in the lower extreme 

category for the first few items, the variable step size functioned properly and continued to adjust 

the interim ability estimate until a response in a middle category was obtained.  In addition, if the 

examinee’s first response was in the high extreme response category and the response to the next 

item was in the low extreme response category, the variable step size adjustment stopped after 
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the second response when it should have continued until a response that was not in either of the 

extremes had been received. 

The use of content balancing confounded the nonconvergence issue as well.  The three 

content areas contained items with 3, 4, and 5 response categories.  For instance, content area 

one had many more items with 3 response categories compared to the number of items with 5 

response categories.  For example, there were a total of 6 items in content area three with 5 

response categories.  This results in an item selected for administration that is not optimal for the 

examinee’s current ability estimate because it may be the only item to select from that content 

area.  When content balancing was not used and the entire item pool as whole was available for 

item selection, the number of nonconvergent cases decreased by an average of ten cases.  It is 

important to ensure that when content balancing is used that there are a sufficient number of 

items across the range of abilities within each content area. 

The mean number of out-of-range cases decreased as IP size increased, indicating that an 

interaction between the IP and the ability estimation was present.  In order to identify why this 

was seen, a closer look at the audit trails was conducted.  These files contain all of the items 

selected for administration, the responses, interim ability estimates, and standard errors for each 

examinee.  Inspection of the audit trails revealed that the differential out-of-range cases for the IP 

size conditions was in part due to the issues seen with the variable step size adjustment and in 

part due to the way items were selected for placement in the item pocket.  The study was a 

simulation so it was decided that items would be selected for placement in the item pocket if the 

peak of the item’s information function was higher than the examinee’s known ability level.  If 

this difference was small, between 0.0 logits and 0.49 logits higher than the known ability, the 

item would be placed in the item pocket 50% of the time.  If this difference was more than 0.5 
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logits higher than the known ability, then the item would be placed in the item pocket 70% of the 

time.  In the IP size of 2 conditions, if the first item selected was placed in the pocket because it 

satisfied the criteria for placement in the pocket and it was selected for placement in the IP based 

on the percentages, either 50% or 70%, the item was placed in the IP and another item was 

selected for administration.  This process continued until either the IP was full or an item was 

administered.  An interesting pattern was noticed. Specifically, when the first two items selected 

were placed in the IP, the first item actually administered and a response recorded was for the 

third item selected for administration.  The fourth item administered and a response recorded was 

for one of the first two items placed in the IP.  If the responses to the first two items administered 

were in the high extreme response categories and these were different (i.e., 4 and then 3), the 

variable step size adjustment stopped and started to calculate the standard error.  However, a ML 

estimate could not be calculated and the interim ability estimate was snapped to the high extreme 

(θ = 4).  The following items selected for administration were selected based on this interim 

ability estimate, meaning that the items selected were not informative for the examinee’s actual 

ability.  This resulted in the inability to recover the known ability. 

As the IP size increased, there were more slots for items to be placed if the criteria for 

placement was satisfied. This criteria was based on the difference between the examinee’s 

known ability and the peak of the item’s information function.  When the item’s information 

function peak was 0.5 logits higher than the known ability, the item was placed in the IP 70% of 

the time.  When the item’s information function peak was closer to the known ability (i.e., 0.0 to 

0.49 logits higher than the known ability), the item was placed in the IP 50% of the time.  Every 

time an item was selected for administration, the item was evaluated for placement in the IP, 

meaning the error that was introduced in placement of items in the item pocket increased with 
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every additional slot for an item.  This was seen in the IP size of 4, with more examinees 

responding to the first few items rather than the items being placed in the IP. For instance, 

looking at the same examinee in the fixed length 15 item test with an IP size of 2 condition, the 

first two items selected for administration were placed in the IP. Thus, the discrepancy between 

the known ability and the item’s information function peak was large enough and the item fell in 

the 50% or 70% bucket for placement in the pocket. However, in the IP size of 4 condition, the 

first item selected for administration was administered rather than placed in the IP, meaning that 

it did not fall into the 50% or 70% bucket for placement in the pocket. The response was then 

recorded for the examinee in the IP size of 4 condition and the next item was selected for 

administration based on the updated interim ability estimate.  As a result of the first few items 

selected for administration being administered, the issue with the ML estimation spinning out-of-

range decreased and the number of out-of-range cases decreased as well.    

Limitations and Future Research 

 The findings of the current study support the use of the IP method for items that the 

examinees find challenging.  However, due to the simulated nature of the study, items were 

selected for placement in the pocket based on the difference between the known ability and the 

peak of the item’s information function, indicating the ability level for which the item most 

precisely measures.  When the known ability is further below the item’s information function 

peak, it is assumed that the item would be challenging to the examinee and therefore be placed in 

the pocket.  This may not be the way examinees use the IP in a true testing situation.  Thus, the 

IP method should be studied with live examinees, investigating the true use of the item pocket.   

However, the current simulation study limited the use of the IP to items the simulated examinee 
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would find challenging based on the item characteristics compared to the examinees’ known 

ability.   

 As was the case with Han’s (2013) study, there was no time limit for the test.  Although 

in operational tests, most examinees complete the entire test, not all complete the test all the 

time.  The examinees in the lower ability levels are more susceptible to not completing the test.  

The inclusion of an IP would likely have the effect of further decreasing completion by those 

examinees in the lower extreme of the ability continuum.  However, this was not examined in 

this study and could limit the applicability in CATs for certain populations of examinees. 

 Most operational tests are composed of both dichotomous and polytomous items, referred 

to as mixed format tests.  The current study examined the applicability of the IP with 

polytomously-scored items only.  The previous research (Han, 2013) used dichotomously-scored 

items with the 3-PL model and used the difficulty of the item (the b-parameter) for determining 

which items are placed in the pocket.  Polytomous items do not have one b-parameter associated 

with them.  Instead, multiple b-parameters are associated with polytomously-scored items.  

Therefore, the item information function peak was used to infer difficulty of the item and 

placement in the IP.  There is the possibility that the findings from Han’s (2013) study may 

slightly change if the 2-PL model was used and item information functions were used for 

determining use of the IP.  The GPCM simplifies to the 2-PL when there are only two score 

categories.  Both the 2-PL and the GPCM could be used in a mixed format test.  Therefore, 

future research should investigate mixed format tests with the IP method.  In addition, the IP 

method should be studied with live examinees, examining the true use of the item pocket.  Han 

suggested that response review and revision restrictions could increase examinee test anxiety, 

which the IP method could reduce.  Thus, it would be interesting to also assess examinee test 
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anxiety in conjunction with the IP method.  Currently, operational tests that allow response 

review and revision are multi-stage tests, which allow review and revision with each module.  

Future research could compare these two methods. 

 A couple of limitations of the current study were discovered through investigation of the 

nonconvergent cases.  The use of maximum likelihood estimation can and does result in 

nonconvergent cases.  There are two types of nonconvergent cases, those in which the final theta 

estimates are outside of the range of theta, -4 to +4, and those where MLE is not reached.  

However, every test-taker expects an ability estimate at the conclusion of the test.  In the current 

study, the number of cases where the ability estimate was out-of-range were higher than 

expected.  It was discovered that the variable step size adjustment was not performing as 

designed, which resulted in increased out-of-range cases.  The use of Bayesian estimation would 

avoid this issue, such as Expected a Posteriori (EAP) estimation (Bock & Mislevy, 1982), which 

is most commonly used in CAT.  In addition, the limited number of items in some of the content 

areas confounded the out-of-range issue.  It is recommended that the item pool contain a 

sufficient number of items in all content areas.  In the current study, the number of items in the 

content area with four or five response categories was very low and had a direct impact on 

nonconvergence.  The process of selecting items for placement in the item pocket was a 

limitation to the current study as well.  The IP appeared to interact with the issues discovered 

with the variable step size adjustment.  As the IP size increased, this issue decreased, resulting in 

less out-of-range cases.  Consequently, the simulation program used in the present study should 

be modified to allow for the appropriate administration of items and estimation of ability using 

MLE in the scenarios wherein ability estimates would be estimated as out-of-range as previously 

described. Further, the selection of items for placement in the IP may not be the actual way real 



 

166 

 

examinees will use the IP. Therefore, further research is needed studying the true use of the IP 

with live examinees.   

Educational Importance 

 The use of Computerized Adaptive Testing has increased in the last few decades with the 

increase of computer use in daily life.  However, the majority of tests that students are exposed 

to are still of the paper-and-pencil (P & P) variety.  CATs are typically more restrictive than P & 

P tests due to the algorithms used.  Adaptive testing has benefits of shorter tests and more precise 

measurement of abilities.  However, there is a lack of flexibility with CATs to be able to move 

through the test like a P & P test and review and/or revise responses.  Previous research (Vispoel 

et al., 2000) found that examinees desire the ability to review and revise answers in CATs.  Until 

the use of the IP method, review and revision of responses with CATs was restricted to occur 

after all the items had been answered, resulting in biased ability estimates.  The IP method 

provides the opportunity to relax these restrictions while maintaining acceptable measurement 

precision. 

 The findings from the initial IP method study (Han, 2013) indicated that the IP method 

can be applied to a CAT using the 3-PL model and maintain an acceptable level of measurement 

precision.  The current study extended this line of research to a polytomous IRT model 

appropriate for partial credit scoring of items.  The findings indicate that measurement precision 

is comparable to that of a CAT without using the IP method.  In addition, the performance of the 

IP method in conjunction with a variable length termination criteria was explored.  Results 

indicated that implementation of the IP method with a variable length test produces comparable 

measurement precision and test efficiency to a CAT without implementing the IP method.   
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 The optimistic findings of comparable measurement precision to a traditional CAT and 

reduced bias as compared to Han’s (2013) findings support the use of the IP method with CATs 

using partial credit scoring of items.  Specifically, IP sizes of 2, 3, and 4 for the fixed length 20 

item FA test conditions resulted in the higher mean correlations, which increased as IP size 

increased as compared to the traditional condition, indicating that the FA improves recovery of 

known thetas.  The fixed length 20 item test conditions also resulted in lower mean bias and 

RMSE as compared to the traditional condition, which decreased as IP size increased in the FA 

conditions.  The mean final theta estimates were closer to 0 and smaller mean SEs in the fixed 

length 20 item FA test conditions as compared to the traditional and the shorter 15 item fixed 

length FA test conditions.  The measurement precision increased as IP size increased.  This 

increased measurement precision comes at the cost of test efficiency with mean NIAs higher than 

those seen in the traditional and in the Ign conditions.  The fixed length 15 and 20 item Ign test 

conditions resulted in slightly less measurement precision, but also resulted in lower mean NIAs 

than the FA test conditions.  These findings are consistent with Han’s (2013) study, while 

extending the applicably to fixed length tests using polytomously-scored items appropriate for 

partial credit scoring of items.   

In addition, the findings support the applicability of the IP method to variable length 

tests, which account for a sizable portion of operational CATs.  The longer variable length 20 

item FA test conditions resulted in the highest measurement precision, which increased as the IP 

size increased as compared to the traditional variable length 20 maximum item test conditions 

and the corresponding Ign conditions.  Again, this increased measurement precision decreased 

test efficiency in the FA variable length test conditions.  
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The differences seen in the conditions are minimal and produce practically equivalent 

measurement precision. Therefore, the tester should choose the type of test to administer (e.g., 

traditional CAT versus an IP CAT) based upon their needs.  The size of the IP should be based 

on the test length, restricting the size of the pocket to hold only 20% of the items to be 

administered.  The decision of how to handle the items left in the IP at the end of the test should 

also be determined by the tester.  Ignoring the items could threaten over-exposure of those items; 

however, if exposure is not a concern, then ignoring the items in the pocket results in practically 

equivalent measurement precision as a traditional CAT.  Overall, this method allows CATs to be 

less restrictive and more like P & P tests, which students are used to taking.  Additionally, this 

research expands the types of CATs to which the IP method could be applied.  The application of 

this method in a live testing situation could possibly reduce examinee anxiety due to the relaxed 

restrictions and possibly reduce careless examinee errors, although little to no research exists on 

anxiety due to CAT restrictions.   
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