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ABSTRACT 

OPTIMAL TEST DESIGNS WITH CONTENT BALANCING AND VARIABLE 

TARGET INFORMATION FUNCTIONS AS CONSTRAINTS 

FEBRUARY 1993 

LAM TIT LOONG, B.SC (HONS.) UNIVERSITY OF LONDON 

M.ED, UNIVERSITY OF SINGAPORE 

Ed.D., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Hariharan Swaminathan 

Optimal test design involves the application of an item 

selection heuristic to construct a test to fit the target 

information function in order that the standard error of the 

test can be controlled at different regions of the ability 

continuum. The real data simulation study assessed the 

efficiency of binary programming in optimal item selection 

by comparing the degree in which the obtained test 

information was approximated to different target information 

functions with a manual heuristic. The effects of imposing 

a content balancing constraint was studied in conventional, 

two-stage and adaptive tests designed using the automated 

procedure. 

Results showed that the automated procedure improved 

upon the manual procedure significantly when a uniform 

target information function was used. However, when a 

peaked target information function was used, the improvement 

over the manual procedure was marginal. Both procedures 
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were affected by the distribution of the item parameters in 

the item pool. 

The degree in which the examinee empirical scores were 

recovered was lower when a content balancing constraint was 

imposed in the conventional test designs. The effect of 

uneven item parameter distribution in the item pool was 

shown by the poorer recovery of the empirical scores at the 

higher regions of the ability continuum. Two-stage tests 

were shown to limit the effects of content balancing. 

Content balanced adaptive tests using optimal item selection 

was shown to be efficient in empirical score recovery, 

especially in maintaining equiprecision in measurement over 

a wide ability range despite the imposition of content 

balancing constraint in the test design. 

The study had implications for implementing automated 

test designs in the school systems supported by hardware and 

expertise in measurement theory and addresses the issue of 

content balancing using optimal test designs within an 

adaptive testing framework. 

vii 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS . V 

ABSTRACT . vi 

LIST OF TABLES . xi 

LIST OF FIGURES . xii 

Chapter 

1. INTRODUCTION . 1 

1.1 Statement of the Problem. 1 

1.2 Purpose of the Study . 6 

1.3 Theoretical Framework . 7 

1.3.1 Item Information Matrix as a Basis for 
Test Design . 7 

1.3.2 Two-stage and Adaptive Test Designs . 9 
1.3.3 Use of Binary Programming for Test Design . 10 

1.4 Significance of the Study . 11 

1.5 Scope and Delimitations of the Study. 13 

2. LITERATURE REVIEW. 15 

2.1 Classical Test Theory and its Application in Test 
Designs . 15 

2.1.1 Classical Test Theory . 16 
2.1.2 Application of Classical Test Theory in 

Test Designs . 17 

2.2 Application of Item Response Theory in Test 
Designs . 20 

2.2.1 Item Response Logistic Models . 21 
2.2.2 Item Pool Assessment Procedures for Test 

Designs . 2 3 
2.2.3 Application of IRT in Test Development .... 30 
2.2.4 Issues Relating to IRT Based Test Designs . 38 

2.3 Test Design by Binary Programming . 41 

2.3.1 Structured Optimal Item Selection . 42 
2.3.2 Simultaneous Test Construction . 43 

vm 



2.3.3 Minimax Model of Test Construction. 44 
2.3.4 Maximin Model of Test Construction. 46 
2.3.5 Development of Two-stage Tests . 47 

3. METHOD. 49 

3.1 Data Source . 49 

3.2 Item Pool Calibration . 49 

3.3 Assessing Model-data Fit . 50 

3.4 Test Development . 51 

3.4.1 Conventional Tests . 52 

3.4.1.1 Broad-range Conventional Tests .... 52 
3.4.1.2 Peaked Conventional Tests . 55 
3.4.1.3 Conventional Tests with Content 

Balancing . 55 

3.4.2 Two-stage Tests . 57 
3.4.3 Adaptive Tests . 58 

3.5 Scoring . 59 

3.6 Statistical Analysis . 61 

3.6.1 Information Analysis . 62 
3.6.2 Analysis of Score Differences . 63 
3.6.3 Correlational Analyses . 64 

4. RESULTS . 65 

4.1 Unidimensionality Assessment . 65 

4.2 Descriptive Statistics . 67 

4.3 Comparison of OTD and UD Designed Broad-range 
Tests . 68 

4.4 Comparison of OTD and UD Designed Peaked Tests .. 69 

4.5 Comparison of Content Balanced Conventional 
Tests. 71 

4.6 Comparison of Tests with Content Balancing 
Constraint . 72 

4.7 Comparison of Two-stage Test Designs . 76 

4.8 Comparison of Adaptive Test Designs . 78 

ix 



5. DISCUSSION AND CONCLUSION . 84 

5.1 Conventional Test Designs . 84 

5.2 Two-stage Test Designs . 86 

5.3 Adaptive Test Designs . 87 

5.4 Possible Applications of Automated Test Designs 
in the Schools . 88 

5.5 Conclusion . 89 

5.6 Suggestions for Further Study . 92 

APPENDIX: ITEM BANK PARAMETERS . 94 

BIBLIOGRAPHY . 100 

x 



LIST OF TABLES 

Table Page 

1. Fit statistics for linear and nonlinear factor 
models . 67 

2. Analysis of Standardized Residuals for the 
1-, 2- and 3-Parameter Logistic Models . 68 

3. Distribution and Descriptive Statistics of 
Test Items by Content in Item Pool . 69 

4. Obtained and Target Information Functions of 
Specified Ability Levels for Conventional 
Test Designs . 73 

5. Correlation of Conventional Test Scores with 
Standardized Raw Scores . 75 



LIST OF FIGURES 

Figure Page 

1. Plot of Eigenvalues of Inter-Item Correlation 
Matrix . 66 

2. Obtained Test Information Functions of UD 
and OTD Designed Broad-range Conventional 
Tests . 70 

3. Obtained Test Information Functions of UD 
and OTD Designed Peaked Conventional 
Tests . 71 

4. Obtained Test Information Functions of UD 
and OTD Designed Conventional Tests with 
Content Balancing . 72 

5. Obtained Test Information Functions of OTD 
Designed Conventional Tests with and 
without Content Balancing . 74 

6. INACC Plots for Conventional Tests with and 
without Content Balancing . 76 

7. RMSD Plots for Conventional Tests with and 
without Content Balancing . 77 

8. INACC Plots for Two-stage Tests with and 
without Content Balancing . 78 

9. RMSD Plots for Two-stage tests with and 
without Content Balancing . 79 

10. Testlet Target Information Bars . 80 

11. INACC plots for Adaptive Tests with and 
without Content Balancing . 82 

12. RMSD Plots for adaptive Tests with and 
without Content Balancing . 83 

Xll 



CHAPTER 1 

INTRODUCTION 

Optimal test design involves the selection of items 

based on the assumption of the additive property of item 

information in Item Response Theory from which the standard 

error of a test can be controlled at different regions of 

the ability continuum. The choice and the level of 

difficulty of the items selected by the particular item 

selection heuristic depends on the anticipated ability 

distribution of the group of examinees to be tested and the 

test specification table used. Tests designed for 

scholarship awards for example, will comprise items of the 

appropriate difficulty level in which high ability examinees 

will have a probability of 0.50 of answering the items 

correctly. 

1.1 Statement of the Problem 

A common practice among practitioners in designing 

norm-referenced tests is to select items with difficulties 

(proportion correct) centered around 0.5 to maximize 

internal consistency reliability and to maximize test score 

variance (Allen and Yen, 1979). The test will have most of 

its items concentrated at one difficulty region and will 

measure very well, individuals whose ability levels are near 

this difficulty region of the test. This conventional test 

is said to be 1peaked* at this particular band (McBride, 
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1976). Individuals further below and above that level will 

be measured less precisely by the test. On the other hand, 

if the test developer should choose items that spread evenly 

from the lowest to the highest difficulty level, the items 

will be spread thinly at each difficulty level because of 

constraints laid by the fixed length of the test. 

Consequently, although there is almost equal measurement 

precision at each ability level, because of the few items 

located for each ability level, the overall measurement 

precision is low (McBride, 1976). 

However, a more important issue in classical test 

design is that the item characteristics (item difficulty and 

item discrimination) depend on the particular examinee 

samples in which they are obtained (Hambleton and 

Swaminathan, 1985). Because of this, an item bank 

calibrated in the classical mode and from which tests are 

developed is only appropriate if the examinees to be tested 

are similar in ability distribution to that of the 

calibration sample. 

A better solution to the problem of test construction 

involves an application of Item Response Theory (IRT) 

whereby, items from an item pool with known characteristics 

are optimally selected to fit the target information 

functions specified for the test. Because of the fact that 

IRT item parameter estimates are independent of the group of 

examinees used from the population of examinees from whom 

the test was designed (Hambleton & Swaminathan, 1985), this 
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makes the development of an item bank using IRT model more 

meaningful. Another important feature of IRT is the concept 

of test information which is inversely related to the 

standard error associated with the ability estimate 

(Hambleton and Swaminathan, 1985? page 104). The test 

information consists entirely of independent and additive 

contributions from the individual item information. It is 

this additive property that forms the basis for modern test 

design. This is in contrast with classical test theory 

where it is not possible to identify the contribution of an 

individual item to test reliability or validity independent 

of the contributions of the other items. 

A standard procedure for test design based on the IRT 

model is described by Birnbaum (1968) which involves setting 

up a target test information in which the test is to be 

built and selecting items with item information that will 

fill the area under the target information. The individual 

item information are added cumulatively with back-tracking 

if necessary in order to fill the whole target information 

curve. Although test designs based on target information is 

an advantage over that of the classical model, rules for 

optimal item selection appear to be lacking from literature 

(Boekkooi-Timminga, 1992). One such contribution on item 

selection heuristics based on the Birnbaum (1968) procedure 

is given by Hambleton and Swaminathan (1985). In Birnbaum's 

(1968) and Lord's (1980) description of the heuristics 

involved in item selection, it is assumed that the selection 
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process is done by hand. Hambleton, Arrasmith and Smith 

(1987) have shown how shorter, yet more efficient criterion- 

referenced tests can be constructed from a 249-item 

certification exam based on optimal item selection at the 

cut-off score of interest. 

It can be seen that with a large item pool and with 

constraints such as the imposition of content balancing, 

Birnbaum's method of test construction have certain 

limitations. Firstly, the method involves a manual 

procedure and it can be time consuming especially when 

dealing with a large item pool calibrated using the three- 

parameter logistic model. Secondly, there is no guarantee 

of optimal results within the constraint of a fixed test 

length. Thirdly, it is difficult to apply when constraints 

such as content balancing and administration time are added 

in the test development process (Boekkooi-Timminga, 1992). 

A linear programming approach applied to Birnbaum's 

method of test design was recently developed and implemented 

in a number of studies (e.g. van der Linden, 1987, 

Theunissen, 1985,1986). Theunissen's (1986) and Adema's 

(1990) use of binary programming enables the test developer 

to build a test by first, setting the target information of 

the test and then proceeding to select items based on 

specific binary programming algorithms. These studies 

dealing with a host of item selection algorithms to cater to . 

various test designs have shown that with automated test 

design, much time is saved and in most cases, optimal 

4 



results are achieved. The computer program, Optimal Test 

Design (OTD) (Verschoor, 1991) was developed for optimal 

item selection based on the 1- and 2-parameter item response 

logistic models. The program was subsequently updated to 

include the 3-parameter logistic model. 

A number of factors have to be considered in the test 

development process. One has to consider the appropriate 

height of the target information in relation to test 

lengths. Setting too high a target test information will 

indeed, ensure a high precision of measurement provided that 

there are enough good items in the item pool for selection. 

So, although the development of binary programming 

procedures allows for fast automated item selection within 

the computer environment, the whole process is still limited 

by the characteristics of the item pool. In the use of OTD, 

the program will register a non-solution problem if there 

are not enough items from the pool to fit the target test 

information. Since test designs based on the binary 

programming approach make use of a set of constraints in the 

enumeration of a design problem, the success or failure of 

such a numerical procedure depends ultimately on the 

distribution and stratification of the item pool. For 

example, the imposition of content balancing may add further 

constraints to the test development process if the item 

characteristic distribution is not homogeneous across 

content subdomains. Hambleton, Arrasmith and Smith (1987) 

have shown that content balanced 20-item tests have slightly 
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lower test information compared to noncontent balanced 

tests. This is due to the fact that the imposition of 

additional constraints such as content balancing will mean 

that the item bank has to be stratified according to the 

content subdomains of the test. If the distribution of item 

characteristics such as item difficulty and item 

discrimination is not homogeneous across content subdomains, 

poorer quality items may have to be selected across content 

subdomains to accommodate the content balancing requirement. 

Although automated test designs have proven to be fast and 

efficient, comparisons between such techniques with 

Birnbaum's (1968) manual procedure have yet to be made in 

order to ascertain the degree in which the resulting test 

designs approximate to the target information. This study 

attempts to address these issues. 

1.2 Purpose of the Study 

The study concerned the development of conventional, 

two-stage and adaptive tests from an item pool using optimal 

item selection techniques. Specifically, the main goal of 

the study was to investigate the influence of variable 

target test information and content balancing on the outcome 

of test designs based on the binary programming approach and 

to examine the measurement precision of these tests. The 

criterion for ascertaining measurement precision was based 

on the comparison of obtained test information curves as 

well as the degree in which the known abilities of the 
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examinees were recovered by the test designs. Specifically, 

the goals of this study were: 

1) To compare the accuracy of automated test designs 

based on the binary programming approach with 

Hambleton and Swaminathan1s (1985) optimal item 

selection heuristics in order to ascertain to 

what extent such procedures approximate closer to 

the target information. 

2) To determine and compare the measurement 

precision of automated test designs 

with target test information and 

content balancing as design variables. 

3) To ascertain whether the imposition of content 

balancing constraints in the test design process 

will incur a loss of measurement precision and 

relative efficiency. 

1.3 Theoretical Framework 

The following concepts form the bases for the 

theoretical framework of this study: 

1.3.1 Item Information Matrix as a Basis for Test Design 

Central to the application of IRT to adaptive testing 

is the use of item information function as the basis for 

item selection. According to Birnbaum (1968), for any 

binary item i, the item score u. has a Bernoulli 

distribution. For any fixed value of ability 6, the 

parameter P. (0) is the probability in which the examinee 
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gets the answer correct for item i. The item information 

function (Lord and Novick, 1968) for item i is given as: 

(1) 

The information function is derived from the maximum 

likelihood function for 0 based on the observed item 

responses, uf. This function is inversely proportional to 

the square of the length of the asymptotic confidence 

interval for estimating ability 0 from examinee score y. 

On the condition that local independence of item responses 

is kept, the item information is additive such that a test 

comprising a set of items will have the test information 

given by the summation of the item information: 

(2) I (u • • • 9 

Using a set of ability values and the corresponding set 

of items in the item pool, an item information matrix or 

information table (Thissen & Mislevy, 1990) can be created 

and stored in the computer. The information table is used 

for test designs in which a target information for the test 

is specified and the items are selected. By creating a 

reasonably large item pool where items are uniformly 

distributed so that good discriminating items are found in a 

broad spectrum of difficulty levels, a broad range of 

ability levels can be measured with good precision. 
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^•3.2 Two-stacre and Adaptive Test Designs 

A two-stage testing procedure consists of a routing 

test whereby, examinees are given a short test which will 

rout them to a second stage measurement test (Lord, 1980). 

This second stage test consists of a series of peaked tests, 

each with maximum information at increasing levels of 

ability. Examinees routed to the appropriate second stage 

tests will have their abilities estimated more precisely 

since they are given a test which has maximum information 

about their ability levels. The number of second stage 

tests is determined by considerations of economy (Lord, 

1980) and by the size of the item pool. 

It can be seen that the two-stage test is a simplified 

version of an adaptive test. The test is adaptive only at 

one stage - that of routing the examinees to the appropriate 

second stage measurement test. 

In an adaptive test, every individual is administered a 

different set of test items based on the individuals prior 

responses. The easier second item is selected from the item 

pool if the examinee fails the first item and a harder item 

is selected if the examinee passes the first item. This 

form of testing differs from the conventional paper-and- 

pencil tests in which all examinees are administered 

identical test items. In a sense, adaptive testing is a 

case of tests designed for each individual examinee 

(Boekkooi-Timminga, 1992). 
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1.3.3 Use of Binary Programming for Test Design 

Standard IRT test construction practice involves 

selecting the a number of items from an item pool that will 

fit the target test information within certain constraints 

such as content specifications imposed. The above test 

design problem can be translated into a linear programming 

problem. A linear programming model formulated to solve a 

test construction problem attempts to optimally select a 

number of items in the test subject to the constraints that 

at least a certain amount of information is obtained at some 

pre-specified ability levels. This model is stated as 

follows: 

Minimize: 

Subject to: 

Ii(6k)xi * T(0k) 

(3) 

(4) 

so that: 

xt e [0,1] (5) 

In the above model, xi is the decision variable for the 

ith item in the bank where i = 1,2,. . .I. If x, a 1, the 

. item is included in the test. If x{ = 0, the item is not 

included in the test. T(0k) is the target information value 

at the ability level 0k. 
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The main purpose of this problem is therefore, to load a 

test with the minimum number of items from a bank so that at 

a number of 6 points, the information [If(0k)] in the test 

is above the target. This general optimization problem can 

be applied to any test design with constraints imposed 

including that of two-stage and adaptive tests as can be 

seen later. Solution of this problem is done by an 

algorithm called the simplex algorithm, implemented in most 

computer programs and in particular, OTD (Verschoor, 1991) . 

1.4 Significance of the Study 

Given a calibrated item pool, a test constructor has 

two general considerations when developing a test. Firstly, 

he/she has to consider the goal of the test. For example, 

if the goal is to select gifted candidates for scholarships, 

then only a certain percentage of the difficult items in the 

pool is selected in order that the most gifted has a 0.5 

probability of getting the items correct. Using Birnbaum's 

(1968) method, the test constructor will set a higher target 

information function at the appropriate criterion region of 

the ability continuum. Secondly, the choice of the items is 

constrained by the test length as well as the test 

specifications such as content emphasis and item format. 

The process of optimal item selection can be done manually 

although it is time consuming and might only yield an 

approximate solution to the test design problem after 

several back-tracking cycles (van der Linden & Boekkooi- 

Timminga, 1989). This study attempts to compare the 
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accuracy of automated test designs with Birnbaum's (1968) 

and Lord's (1980) manual procedure of enumerating a test 

design problem. 

The test constructor with a knowledge of the concept of 

IRT test design need not know the intricacies of 

Optimization Theory since the application of the theory is 

translated into computer codes. This study highlights the 

relative ease and speed in which different kinds of tests 

can be developed from the same item pool. 

In the school setting, the teacher in implementing an 

instructional program normally has specific goals and skill 

areas in mind. Content balancing is important to school 

testing programs where the test specification table plays an 

important role in delineating the subject matter to be 

tested. Where there is a need to make use of IRT in the 

school setting, the use of a properly designed test will 

satisfy the requirements of the school testing program. 

The success of automated item selection depends 

ultimately on the quality of the item pool. Maintenance of 

such a pool is outside the scope of the computer environment 

as this relies on the expertise of the subject matter 

specialist and the skills of the item constructor. 

In this regard, this study also attempts to highlight 

the importance of the item pool characteristics and the 

proper maintenance and stratification of the pool which will 

ultimately affect the solution of the test design problem. 
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The study also points to the importance of the role of 

the test constructor and subject matter specialist in 

developing and maintaining an item bank appropriate for the 

test design. As highlighted by Wainer and Kiely (1987), 

test designs need a certain measure of ‘control1 in order 

that some measure of congruence between the goals of the 

testing program and the goals of instruction be met. 

1.5 Scope and Delimitations of the Study 

The study takes the form of a real-data simulation 

using the item responses of examinees based on the 

administration of a credentialling exam. The examination 

paper consists of 250 items which is sufficient to form an 

item pool for this study. Three limitations are apparent in 

this regard: 

1. The item pool is derived directly from a single 

administration of an exam paper. The items 

forming the exam paper were assumed to be 

appropriately selected from a larger item pool. 

As such, the quality of this item pool will 

depend on the quality of the items in the 

examination paper. 

2. Although the abilities of the examinees are 

known, their true abilities are unknown. 

Recovery of abilities by the tests will be based 

on the known abilities which have error 

components of their own. That is, the known 

abilities are not error-free and any comparison 
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of measurement precision of the tests is only 

relative in this sense. 

3. As in most simulation studies involving a live 

dataset, it is assumed that the way in which the 

examinee responds when the test is presented in 

different modes is similar. 

14 



CHAPTER 2 

LITERATURE REVIEW 

This chapter is organized into three sections. The 

first section deals with the development of the Classical 

Test Theory and its applications in test designs where item 

selection strategies and their limitations are discussed. 

The second section deals with the development of Item 

Response Theory and focuses on how it addresses certain 

limitations posed by the Classical Test Theory. This 

section then continues on with the application of Item 

Response Theory in test designs followed by a discussion on 

certain issues relating to its implementation. The third 

section reviews recent applications of binary programming 

techniques which attempt to complement the application of 

IRT in the development of conventional, two-stage and 

adaptive tests, thus forming the background of this research 

study. 

2.1 Classical Test Theory and its Application in Test 

Designs 

Classical test theory was based in part on the early 

statistical foundations laid by Karl Pearson (1857 - 1936) 

who developed a number of statistical techniques which 

formed the core of basic measurement theory (Allen & Yen, 

1979? page 3). These include the Pearson product moment 

correlation coefficient and the chi-square goodness of fit 

test. The first standardized achievement test was developed 
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by Binet and Simon in 1905. Work by Charles Spearman 

(1863 - 1945) led to the modern concepts of test reliability 

and factor analysis. 

2.1.1 Classical Test Theory 

Classical test theory postulates that an examinee has a 

true score (T) defined over a domain of test content. This 

true score is fixed but if the person is tested more than 

once, the observed score (X) varies because of variation due 

to measurement errors. The error scores over examinees are 

random with mean = 0 and uncorrelated with the true scores. 

It is assumed that repeated test administrations are 

independent of each other so that each test has no influence 

on subsequent tests. Since in reality, this is not 

possible, T is defined as an "expected" test score and is 

treated as a theoretical construct. The observed, true and 

error scores are linearly related. From this definition of 

classical test theory, the following is a model and a set of 

assumptions (Allen & Yen, 1979): 

Model : X = T + E 

Assumption 1: Ewan = 0 

The error scores over examinees on a single test 

administration is zero. 

Assumption 2: pet = 0 

The error scores and the true scores obtained by a 

population of examinees on a test administration are 

uncorrelated. This implies that examinees with high 

true scores do not have systematically more positive or 
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negative errors of measurement than examinees with low 

true scores. 

Assumption 3: pe.e, = o 

The error scores for two different tests are 

uncorrelated. That is, if a person has a positive 

error score for Test 1, he/she is not more likely to 

have a positive or negative error score on Test 2. 

Assumption 4: pe.t, = 0 

This assumption states that the error scores on one 

test are uncorrelated with the true scores on 

another test. 

It can be seen from the above assumptions that the 

error of measurement in the classical sense, is an 

unsystematic, or random deviation of an examinee's observed 

score from a theoretically expected observed score. 

Two tests (denoted by "1” and "2” below) are said to be 

"parallel" if: 

a) they measure the same content, 

b) T1 = T2 for each examinee and 

c) o’2(E,) = a2(E2) (error variances on the two 

tests are equal. 

In its simple form, the reliability of a test is the 

correlation of the observed scores (p^,) on a parallel test. 

2.1.2 Application of Classical Test Theory in Test 
Designs 

Classical test designs are based on two central 

concepts - test reliability and test validity. 
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Based on the assumptions of Classical Test Theory, the 

concept of test reliability can be further derived (Lord, 

1980? pages 4 & 5). The relationship between reliability, 

error score variance and observed score variance is given 

by: 

Pxx' - l-o2E/a 
2 
x (6) 

It is from Equation 6 that the quantity, coefficient 

alpha (a) is obtained (Gulliksen, 1950): 

P XT “ Pxx7 ^ 
n 

n-1 
(1 - 

Eoi 

(EoiPix) 
) (7) 

a is the lower bound of the reliability coefficient. 

a2, is the item variance and p.x is the item-test correlation 

(or item discrimination). 

For binary items, the item variance can be obtained 

from the item difficulty, p. (or proportion correct) and is 

computed as p. (1-p.). 

Test validity is defined as: 

r xy 
iP iy (8) 

where piY is the item-criterion correlation. 

Given a pool of test items the test developer who wants 

to design a test that has maximum reliability will: 

1. select items with large item-test correlations 

(in order to maximize the denominator of Equation 7 

so that a is increased) and 

2. increase the test length. 
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On the other hand, a test developer who wants to design 

a test that has maximum validity will: 

1. select items with large item-criterion 

correlations and low item-test correlations and 

2. increase the length of the test or the criterion 

used. 

This poses a dilemma for the test constructor who wants 

to maximize both the validity and reliability of the test 

because both large and small discriminating items will then 

be desirable. The test developer will then have to decide 

which goal is more important in order to determine the 

method of item selection bearing in mind that the test built 

on an emphasis of either goals will have different 

combinations of items. That is, if the items are chosen to 

maximize validity, the resulting test will not have good 

reliability. 

Hambleton and Swaminathan (1985; pages 1-3) listed a 

number of shortcomings in the Classical Test Theory which 

are fundamental to measurement and test designs. Among 

these are: 

1. Both reliability and validity indices used in the 

classical model are group dependent and therefore 

have limited generalizability. This is because 

the item difficulty and item discrimination used 

in both indices depend on the particular examinee 

samples in which they are obtained. The item 

discrimination index will increase when obtained 
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from a more heterogeneous sample. Hence, item 

statistics are useful only in item selection when 

constructing tests for examinee populations that 

are very similar to the examinee sample in which 

the statistics were obtained. 

2. The concept of test reliability is defined in 

terms of parallel forms which is difficult to 

apply in practice since a number of factors come 

into play when individuals are administered a test 

the second time. 

3. Standard errors used in the classical sense are 

averaged standard errors which are averaged over the 

ability levels so that every examinee is presumed 

to have the same error variance which might not 

be true in a testing situation where individual 

differences such as consistency and moods 

interact with ability levels when performing 

tasks. 

2.2 Application of Item Response Theory in Test Designs 

The solutions to the problems highlighted in the 

previous section come in the application of Item Response 

Theory (IRT) . The use of IRT makes it possible to estimate 

trait levels from the responses to a series of items (Weiss, 

1982). Credit is given to Lord's (1970) work in laying the 

psychometric foundation for applying IRT concepts to test 

designs. 
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2.2.1 Item Response Logistic MnrtPla 

Birnb aim's (1968) three-parameter logistic model 

assumed that the latent trait, 9 is unidimensional with an 

unrestricted domain, -a < 9 < a • It is also assumed that 

the principle of local independence holds (Lord and Novick, 

1968) where for a fixed value of 9, the distributions of the 

item scores are independent of one another. 

For item i, and the corresponding item response, ui, 

the conditional distribution given 9 of a single item 

response is L(u. |0) = P, (0) if u, = 1 and L(uj0) = Q. (^) if 

u. = 0. The response vector, v' = (u1f u2 . . ,un) where uf is 

scored either 1 or 0 is such that the likelihood function 

for estimating an individuals latent trait based on this 

response pattern is: 

n 

Pr (v|0;a,Jb, c) - ft (0) ^ (0) (9) 
2-1 

where: 

(0) - 1-Pi(0) (10) 

Equation 9 is viewed as the conditional distribution of 

the pattern u of item responses for a given individual with 

ability 9 and for known item parameters, a, b, c. The u. 

are random variables and since they can be determined from 

the examinees1 answer sheets, they become known constants. 

9, a, b, and c are considered fixed. If the item parameters 

are known from pretesting, Equation 9 becomes a function of 

the mathematical variable, 9 and is considered as the 
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likelihood function for 0. The maximum likelihood estimate 

of the examinee's ability is the value of 0 that maximizes 

the likelihood of his/her observed responses u.. 

The item characteristic function for the three- 

parameter model is then represented by: 

Pi(0) - Ci + 
1 - c. 

1 + e-Dai(e-b‘> 

(11) 

where: D is a scaling factor given the value of 1.7, 

af is the item discrimination, 

b. is the item difficulty and 

c{ is the pseudoguessing parameter. 

The parameter c. is the lower asymptote of the item 

characteristic curve and represents the probability of the 

examinee with low ability correctly answering the item. If 

the pseudoguessing parameter is assumed to be zero, then the 

two-parameter logistic model results. This assumption is 

most probable if the test is not too difficult, as in the 

case of competency testing following effective instruction 

(Hambleton & Swaminathan, 1985). The one-parameter (or 

Rasch) model results if all items have equal discriminating 

power and guessing is assumed to be zero. 

Where there is a close fit between the item response 

model and the test data of interest, a number of features in 

IRT can be seen to be particularly advantageous over the use 

of Classical Test Theory in test designs (Hambleton and 

Swaminathan, 1985? pages 10 & 11): 
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!• It places the person trait levels on the same 

scale as the item difficulty so that item 

selection can be appropriately done by matching 

the ability estimate with the difficulty of the 

item. The classical item difficulty value (p) 
r 

is not just a function of the difficulty of the 

item alone, but a function of the examinee 

characteristics as well. 

2. Examinee ability estimates are independent of the 

choice of test items used from the population of 

items which were calibrated. That is, the items 

are treated as fungible (interchangeable) units 

and that responses to the items are independent 

of each other so that ability levels can be 

estimated based on subsets of items administered to 

the individual. This enables the development of 

tests with items selected from a calibrated item 

pool. 

3. Items can be selected not just on difficulty 

levels alone, but on discrimination and 

pseudoguessing (as in the case of using the 

three-parameter logistic model) thus, adding more 

information to the item selection process. 

2.2.2 Item Pool Assessment Procedures for Test Designs 

Since IRT assumes unidimensionality to account for 

examinee performance in a single trait, evidence of 

unidimensionality must be ascertained in an item pool from 
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which a test is built. Unidimensionality depends a lot on 

the item selection process (Green and associates, 1984). 

Urry's (1981) suggestion for selecting items of at least 

0.80 discrimination means in psychometric terms that the 

items will have a higher correlation with the underlying 

trait they are measuring? thus ensuring unidimensionality. 

This is true of both conventional or adaptive tests. 

However, although selection of items with high a-values also 

means providing for greater information, Green and 

associates (1984) commented that this might mean rejection 

of some good item types as well as items that measure some 

important content areas. A more compromising criterion for 

accepting unidimensionality as suggested by Green and 

associates (1984) is to accept the factor pattern where 

there is one prominent factor that accounts for 70% of the 

total common variance even though there may be secondary 

factors. 

However, there are a number of fundamental problems 

associated with the classical linear factor analysis 

solution. Firstly, linear factor analysis assumes that the 

relationship between the observed variables and the 

underlying factors is linear and that the variables are 

continuous in nature. In the majority of binary item 

responses, the relationship between the item responses and 

the underlying trait is nonlinear and that these observed 

variables are categorical. The application of linear factor 

analysis to binary responses results in an approximation of 
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the nonlinear relationship to a linear one. One result is 

that difficulty factors emerge if guessing is allowed 

(Hulin, Drasgow & Parsons, 1983). 

In an attempt to solve this problem, McDonald 

(1980, 1982) demonstrated that applying nonlinear factor 

analysis to unidimensional binary data results in nonlinear 

factors instead of difficulty factors. Since the latent 

trait is related to performance in a nonlinear fashion, the 

application of nonlinear factor analysis seems appropriate. 

McDonald*s procedure is implemented in the computer program, 

NOHARMII (Fraser, 1983). 

Another approach to solving the problems associated 

with linear factor analysis is to make use of the full 

information approach to item factor analysis. This method 

avoids the use of interitem correlations since the classical 

factor analytic model is not suitable for binary variables 

such as the item score (Mislevy, 1986). Factor loadings are 

estimated directly from the response data beginning with one 

factor and increments in goodness-of-fit of the model are 

tested for additional factors entered in the model. The 

analysis continues until the addition of factors is not met 

with a significant increase in goodness-of-fit. A computer 

program, TESTFACT (Wilson, Wood, & Gibbons, 1984) is 

designed to handle this analysis. 

Green and associates (1984) suggest that a simpler way 

for analysis of an item pool in which the items are 

clustered in different content areas, is to score each 
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subtest and correlate the subtest scores. If the corrected 

correlations (i.e. corrected for disattenuation due to 

unreliability) are about 0.9 or higher, then 

unidimensionality of the item pool can be accepted. This is 

applicable in the case of large items pools of say, a few 

hundred items where items are categorized into a number of 

content areas. Each content area will therefore represent a 

subtest. 

A nonparametric procedure for assessing dimensionality 

was developed by Stout (1987). Stout's (1987) based his 

procedure on the premise that any subpopulation of examinees 

with approximately equal test scores on a reasonably long 

test should have equal abilities and thus local independence 

should be adhered to. On the other hand, if a test is 

multidimensional, then the examinees with approximately 

equal test scores may differ widely in the components that 

form their ability vectors. Stout's method has been shown 

to be discriminating well between unidimensional and two- 

dimensional tests in simulated datasets for correlations 

between abilities as high as 0.70 (Nandakumar, 1991). 

Previous factor analytic procedures are not appropriate for 

analyses of large item pools because of limitations on the 

matrix sizes and heavy computation memory involved. 

NOHARMII for example, can take in a maximum of only 140 

items. Hence, Stout's approach appears elegant for large 

item pools of 200 items or more since the procedure mainly 

involves computations of variance estimates of subgroups to 

26 



come up with an index for testing the null hypothesis for 

unidimensionality. 

If the item bank is kept without modification for a 

period of time, effects such as curricular and technological 

change over time may affect the item bank scale. Such an 

effect on the item bank parameters is called item parameter 

drift. This is defined as the differential change in item 

parameter estimates over time (Goldstein, 1983). For 

example, Bock, Muraki and Pfeiffenberger (1988) found from 

the results of a two-way ANOVA (items X year-groups), 

indications of item parameter drift in Physics Achievement 

Test (College Board) data. They attributed this to the 

change in Physics curricula over the 10-year period in which 

the test was administered. As part of the maintenance 

process of the item bank, certain items need to be retired 

when they are deemed to be overexposed and the size of the 

item bank need to be increased over time by preequating the 

tryout items to the bank scale. Item parameter drift is 

possible and a reason advanced by Sykes and Fitzpatrick 

(1992) is the possibility of declining examinee ability 

levels over the years with the result that the equating 

method used does not fully capture this trend. 

Other possible reasons for item parameter drift are 

item position, context effects and item content of tryout 

items selected to ultimately link up with the item pool 

scale. Wainer and Kiely (1987) and Whitely and Dawis (1976) 

have found that item difficulty estimates can vary as a 
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function of item position. When a prequating procedure is 

used, the placement of the tryout items into the item bank 

may affect their item calibrations due to item order 

effects. In an analysis of a professional licensure exam 

using ANCOVA methodology, Sykes and Fitzpatrick (1992) found 

an increase in item pool b values for one of the content 

categories after controlling for elapsed time between test 

administrations. If item parameters are influenced by other 

items in the test, then context effects are occurring. This 

again, have implications for the calibration of items for 

item pools. Yen (1980) in her study of seven test forms of 

the California Achievement Test (1977) found that item 

parameters estimated from the same context were more highly 

related than item parameters estimated from different 

contexts. 

Changes in item parameter values due to various factors 

associated with the item bank maintenance process tend to 

produce essentially linear transformations of trait 

estimates (Yen, 1980). These transformations affect the 

means and standard deviations of the examinee trait values 

as well as the relative sizes of individual trait values. 

Bock, Muraki and Pfeiffenberger (1988) proposed a method for 

maintaining and updating an IRT scale over a period of time 

while accounting for item parameter drift. This procedure 

can be extended to maintaining an item pool scale. The 

procedure which is implemented in the program, BIMAIN (1987) 

is an extension of the BILOG program. This procedure 
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involves the estimation of the likelihoods used in 

estimating the estimated numbers of correct responses and 

numbers of respondents at the quadrature points (the E step 

of the EM algorithm) by first excluding the tryout items. 

After the likelihoods are estimated, these are used to 

estimate item parameters of the block of items in the item 

pool together with the tryout items. 

Any test design depends on the quality of the 

calibrated item pool. An item pool of credible size cannot 

be build using a one time administration of a few hundred 

items to a single sample of examinees for obvious reasons. 

Apart from size, a good item pool requires good quality 

items over a wide ability range. In addition, the 

assumptions of the psychometric model used in the testing 

program must be satisfied. Although item calibration using 

IRT means that item parameters are invariant across 

population, Green and associates (1984) suggested that the 

population used for item calibration should be comparable to 

the target population especially in range. A simple item 

calibration scheme which made use of a randomized block 

design for administering 250 items was given by Wainer and 

Mislevy (1990). This involves dividing the 250 items into 

10 sets of 25 items each and administering 10 forms of the 

test randomly? each form consisting of a non-overlapping set 

and an overlapping set. 
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The item response model chosen for item calibration has 

to be assessed for model-data fit. A number of approaches 

had been discussed by Hambleton and Swaminathan (1985). 

Among these are: 

1. Residual analysis of model-fit data in which 

residual (difference between the observed data and 

an estimated item characteristic curve) plots across 

ability groups are made. Fit of the model to the 

data is judged by the smallness of the residuals or 

the closeness in which the observed average item 

performance of each ability group is to the 

estimated item characteristic curve. 

2. Plots of true and estimated item and ability 

parameters (Hambleton and Cook, 1983). 

3. Comparison of observed and predicted score 

distributions (Hambleton and Cook, 1983). 

2.2.3 Application of IRT in Test Development 

IRT offers a more meaningful method of item selection 

over that of the Classical Test Theory for two reasons. 

Firstly, the item parameters are sample invariant while the 

success of test designs using the classical method depends 

on how closely the calibration sample matches the population 

in which the test is intended. Secondly, the standard error 

of measurement used in the classical sense is an average 

error estimate applied to the whole group in which the test 

was administered, implying that the size of the error of 

measurement is independent of the * true scores* of the 
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examinees taking the test (Hambleton & Swaminathan, 1985? 

page 236). The IRT counterpart of the classical standard 

error of measurement is the test information function and 

its advantage is seen by the fact that the item information 

function has an additive property, each contributing 

independently to the test information function. This has 

important implications for test designs when the target 

information functions are specified and items are selected 

independently to fit the area under the information curve. 

This is not possible with the classical procedure because 

the contribution of an item to the test reliability cannot 

be determined independently from all the other items in the 

test. The test information function accounts for the 

estimate of the error of measurement (SEM) where 

SEM = 1/SQRT(Information) for each ability level instead of 

giving each examinee the same group error estimate in the 

classical sense. 

Lord (1980) outlined Birnbaum's (1968) procedure for 

the use of item information functions in test designs as 

follows: 

1. Describe the shape of the target information 

function in which the test is to be built. 

2. Select the items with item information that will 

fill up the hard-to-fill areas under the target 

information function. 
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3. After each item is added to the test, calculate 

the test information function for the selected 

test items. 

4. Continue selecting the items until the test 

information function approximates the target 

information function satisfactorily. 

Hambleton and Swaminathan (1985) illustrated the 

application of Birnbaum's procedure in test design by making 

use of a hypothetical example of a pool of 12 items. After 

specifying a target information of 6.25 from -2.00 to +2.00 

on the ability scale, items which supply a larger amount of 

information over a broad ability range was first chosen and 

the obtained test information plotted. Items with high 

information over a narrower ability range were then selected 

to fill the hard-to-fill areas under the target information 

curve. In another study, Hambleton and Swaminathan (1985) 

compared the efficiency of five item selection procedures in 

the construction of a scholarship selection test and a 

grading test: 

1. Random: A table of random numbers were generated and 

items were selected based on the random numbers. 

2. Standard: Items were chosen based on classical 

p-statistic between .30 and .70. 

3. Low/Middle/High difficulty: The best items with 

maximum information at the ability level of interest 

were chosen. 
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4. Up-and-down: An item with the highest information at 

the lowest specific ability level of the target 

information function was chosen. The items with the 

highest information were chosen from each of these 

specified ability levels upwards and the cycle 

repeated until the target information levels were 

reached. 

In the development of a scholarship test where the 

target information was set at the high end of the ability 

continuum, the authors found that the up-and-down method 

provided maximum information over a broader range of 

abilities. The random and standard methods were found to be 

inferior. In the development of a grading test where the 

target information was bimodal, the low-high difficulty 

method was found to be most appropriate. 

A two-stage testing procedure consists of a 

conventional routing test followed by a number of 

conventional second-stage measurement tests. The 

administration of the second-stage test depends on the 

examinee's score on the routing test. The main advantage of 

such a testing procedure is that the difficulty level of the 

second test is matched to the ability level of the examinee 

(assuming that the routing test performs its function well). 

As such, the test adapts only once - that at the second 

stage. 

Lord (1980) investigated over 300 two-stage test 

designs of different test lengths using a heuristic applied 
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to Birnbaum's (1968) procedure. Among some of his 

conclusions were: 

1. If the routing test is too long, not enough items 

are left for the second-stage test. As such, the 

routing test functions best as a single 

conventional test rather than having to rout the 

examinees to the second-stage level which have 

poorer measurement precision. On the other hand, 

if the routing test is too short, then examinees 

are likely to be poorly allocated to the second- 

stage measurement tests. 

2. At least four second-stage tests covering the 

range of the ability spectrum were needed for 

effective measurement. 

Lord (1980) without the benefit of computing power used 

arbitrary and fixed item difficulties as part of his item 

selection heuristic. For example, in the 60-item two-stage 

test designs, he designed four second-stage tests, each with 

the same difficulties, b ± 1.00/a and b ± 0.50/a where a is 

a fixed value. From Lord’s (1980) study, two-stage tests 

were shown to be efficient in measuring examinees at the 

extremes of the ability range although they may not be as 

effective as the adaptive test in measuring the same ability 

regions. Again, without the benefits of automated testing 

within the computer environment, Lord (1980) suggested 

various ways of administering the routing test such as self- 

scoring of the paper-and-pencil test and the immediate 
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administration of the appropriate second-stage test by the 

test administrator after knowing the routing test score. 

Lord (1980) was apparently not too concerned about the 

honesty of the examinee in self-scoring and suggested that 

the effect of a routing test scored improperly was 'simply 

to lower the accuracy of the final second-stage score of the 

examinee1 (Lord, 1980; page 140). 

Modern IRT-based adaptive testing involves an item pool 

from which items are selected in the test administration 

process. The pool generally consists of highly 

discriminating items, equally distributed across trait 

levels. The items are calibrated for difficulty, 

discrimination and guessing (Lord & Novick, 1968). A 

requirement for IRT analysis of the item pool is that the 

item responses are locally independent and this is tested by 

ascertaining unidimensionality of the items. Urry (1977) 

suggested that an item bank designed for CAT must have the 

following requirements: 

1. item discrimination must exceed 0.8 

2. item difficulty must have a rectangular 

distribution from -2.0 to +2.0 

3. item parameters for guessing should be less 

than 0.3 and 

4. item pool must have at least 100 items. 

Weiss (1985) suggested an item pool of 150 to 200 items 

for optimum results in CAT. However, CAT had been adapted 

from conventional tests by just using the items from the 
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fixed length tests. This was done by selecting items using 

maximum information strategy until there is no items left at 

the current trait level (Weiss, 1982? Weiss & Kingsbury, 

1984) . 

With the advent of high power, but relatively cheap 

desktop computers such as the 32-bit "486” machines with 

video graphics capabilities, CAT is enhanced with the 

possibility of a wide range of perceptual and visual 

tests. However, no computer system will enhance CAT 

without the necessary software. According to Weiss 

(1985), a typical CAT software must be able to create and 

update an item pool, create instructional sequences to make 

the adaptive test user friendly, select items by IRT 

procedures, terminate the test based on the particular 

strategy used, estimate individual trait levels, store test 

data, and produce test interpretations and test reports. 

Generally, item selection strategy involves the 

following: 

1. The initial estimate of the examinee's ability 

level is obtained. In many instances, the 

estimate of 0.0 is given. 

2. This initial ability estimate is used to select 

an appropriate item from the item pool. 

3. From the response of the examinee, the item is 

scored and the item score is used to revise the 

estimate of the examinee's ability level. 
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4. From the new estimate of the examinee*s ability, 

the next item, appropriate to the examinee's new 

trait level is selected from the item pool and 

the process is repeated. 

5. Based on an acceptable precision of the trait 

level estimate or unavailability of items 

pertinent to that trait level, the test is 

terminated. 

An item is then selected from the pool that has the 

maximum information possible to measure that particular 

trait level. After the administration of the item, the new 

trait level estimated from the response to that item is used 

to select another item in the pool, whose information 

function is most appropriate for the new trait level. Two 

common procedures for scoring response vectors in adaptive 

testing are maximum likelihood and Bayes modal estimation 

(Wainer & Mislevy, 1990). 

Two common criteria are used for termination of the CAT 

procedure. The first involves a preset standard error of 

estimate (SEE). This arbitrarily selected value will 

yield some expected level of validity given by: 

(12) 

The second criterion involves a specific number of 

items that have been administered and termination is done 

regardless of o2n. One problem associated with maximum 

likelihood scoring is that ability estimates cannot be 
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determined for response patterns in which the examinee 

answers all the items correctly or all the items 

incorrectly. There are also some unusual kinds of response 

patterns in which the maximum likelihood estimation 

procedure fails to converge. 

Samejima (1973) argued that there is no unique solution 

of 0 which satisfies every possible response pattern. That 

is, the maximum likelihood function does not always provide 

a unique maximum likelihood estimate unless a subdomain of 

the latent trait such that max(0.) < 0 < a is considered 

such that max(0{) is the maximum value of 0i for 

g = 1, 2, . . . n, and the left hand part of the ability 

domain is left out. However, Lord (1980) noted that this 

problem did not usually arise when large item pools (n > 20) 

were used. The problem of non-unique solutions due to all 

correct or all incorrect answers is usually solved by 

utilizing a prior ability distribution as in Bayes modal 

estimation. 

2.2.4 Issues Relating to IRT Based Test Designs 

Birnbaum*s (1968) description of test design based on 

the additive property of the item information and the 

optimal item selection within a target information assumed 

that the selection is done by hand. That is, although the 

computer can be used to compute an information matrix of all 

the items in the pool for the number of 0 points specified 

by the target information, the optimal selection of the 

items is based on the judgement of the test constructor. In 

38 



mastery testing where the target information is high at only 

one 9 level, item selection for minimum test length is 

relatively straightforward (Hambleton & de Gruijter, 1983). 

The item information can be sorted from high to low at that 

particular 0 level and the most informative items at that 

level meeting the target information are selected. However, 

with conventional tests, as well as two-stage tests (which 

comprises actually a routing conventional test and a set of 

second-stage conventional tests), selecting the shortest 

test to meet the target information over a range of 9 levels 

may not be so easy if done by hand (de Gruijter, 1990). 

This is especially true if the item pool is large and 

stratified by content subdomains, item formats and other 

variables involved in the decision making process. Even if 

the item pool is not stratified, the manual procedure of 

item selection can be time consuming, involving a number of 

backtracking cycles till an optimal solution is reached in 

order to achieve a test of a specified or minimum length 

desired by the test constructor. There is also no guarantee 

of optimal results within the constraint of a fixed test 

length. It is also quite difficult to apply when 

constraints such as content balancing and administration 

time are added in the test development process 

(Boekkooi-Timminga, 1992). 

In the case of adaptive testing by maximum information 

item selection, every examinee technically takes an 

individually designed test. Because the computer cannot 
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read test items which are pertinent to a particular area in 

the curriculum since they are selected on the basis of item 

statistics, this gives rise to an inbalance in test content. 

In a conventional test, this will not arise as the test 

developer would have used a test specification table to 

serve as a blueprint for test development and to ensure a 

balance in the content. 

As a result of this, content validity is put into 

question since the items administered may not follow the 

test specification table (Wise & Plake, 1989). To solve 

this problem, the item selection strategy can be modified to 

take test specification into account apart from examinee 

ability estimates. Kingsbury (1990) had shown how this 

could be done using the MicroCAT (Assessment Systems 

Corporation, 1987) software whereby a pre-selection strategy 

can be adopted in the software to ensure content balancing. 

In an attempt to address the issue of content 

balancing, Wainer and Kiely (1987) proposed the testlet 

model in which the examinee is given a fixed number of 

predetermined paths in a pyramidal item selection procedure. 

Kingsbury and Zara (1989) however, criticized the use of the 

testlet model on the grounds that this will reduce 

measurement accuracy because of the "weak" prestructured 

selection strategy. Furthermore, the use of pyramidal 

selection strategy is rather inefficient as it requires a 

rather large item pool. Kingsbury and Zara (1989) proposed 

a constrained version of CAT whereby a number of components 
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are built into the selection algorithm. These include a 

content balancing algorithm whereby, items selectively take 

into consideration, the test specification of the test 

developer. The rationale for the administration of 

hierarchical testlets instead of single items in CAT is that 

it has the advantage of limiting context effects and item 

exposure. 

Attempts had been made to apply binary programming in 

test designs in order to optimize the selection of items 

appropriate to the ability level of the examinees and to fit 

the target information curve within the kind of constraints 

imposed. This is an alternative to the trial and error 

procedure of Birnbaum (1968). The last section of the 

review addresses this procedure. 

2.3 Test Design by Binary Programming 

Yen (1983) originally suggested the use of linear 

programming techniques for test construction. Although she 

proposed to optimize an overall-quality index which is a 

function of item discrimination, fit and bias no explicit 

optimization model was given. Theunissen (1985) was the 

first to formulate a binary (0-1) linear programming model 

for solving test construction problems. Just as in 

Birnbaum*s (1968) procedure, a target information function 

over a number of 0 levels is used. A linear programming 

model formulated to solve a test construction problem 

attempts to minimize the number of items in the test subject 

to the constraints that at least a certain amount of 
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information is obtained at some pre-specified ability 

levels. This model is stated as follows: 

Minimize: 

Subject to: 

gi1(0k)x1 k T<ek) 

(13) 

(14) 

so that: 

Xi 6 [0,1] (15) 

In the above model, xf is the decision variable for the 

ith item in the bank where i » 1, 2, ... I. If xf - 1, 

the item is included in the test. If x? = 0, the item is 

not included in the test. T(0k) is the target information 

value at the ability level 0k. All items are assumed to fit 

the one-dimensional item response model. 

The main purpose of this problem is therefore, to load 

a test with the minimum number of items from a bank so that 

at all the specified target 6 points, the information in the 

test is above the levels [I,(0k)] considered. 

Following the above general model, a number of 

alternative objective functions and constraints have been 

developed. 

2.3.1 Structured Optimal Item Selection 

Theunissen (1986) considered the case where it is 

necessary to construct a test in which the items have to be 
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sampled from a number of content subdomains. If the number 

of items in each subdomain is fixed, then for the case of 

three subdomains involved, the optimal test design above is 

altered by changing Equation 13 to: 

E xi - “*■ 
i-r+l 

X, - n. 
i-e+l 

(16) 

where n1 + n2 + n3 = N (the number of items forming the 

test). From Equation 16, the number of items in the three 

content subdomains forming the item bank are r, (s - r) and 

(t - s) in that order, t is the total number of items in 

the bank. It is also assumed that the items are originally 

grouped into the three content subdomains specified above. 

If the number of items to be drawn from the subdomains is 

not a fixed constant then proportional drawing of the items 

can be done by altering equation 16 to: 

Z s 

aV Xi - b 5^ (17) 
i-r+l 

where the ratio of a to b indicates the proportionate item 

sampling. 

2.3.2 Simultaneous Test Construction 

This is an extension of Theunissen's (1985) model where 

T number of tests are constructed at the same time instead 

of a single test (Boekkooi-Timminga, 1987). Simultaneous 

test construction is important where parallel tests are 

needed (van der Linden & Boekkooi-Timminga, 1988). Test are 

considered to be parallel if their information functions are 
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the same (Samejima, 1977). The modification on Theunissen's 

(1985) basic model is as follows: 

Minimize: 

Subject to: 

I T 

i Tt(ek) 

(18) 

(19) 

so that: 

xit e [0,1] (20) 

2.3.3 Minimax Model of Test Construction 

Theunissen's (1985) binary programming model for test 

construction faces a limitation in that the obtained 

information functions usually have a peak in the middle of 

the ability interval (van der Linden, 1987). This is 

because the algorithm will select items with the bulk of 

their information in the interval [9}r0k] specified by the 

model. For the 1-P and 2-P logistic model, the item 

information are symmetric about their difficulty parameter 

values and the tendency of the algorithm is to select items 

located in the middle of the interval (van der Linden, 

1987). For the case of the 3-P model, because of the 

presence of the pseudoguessing parameter, the distribution 

of the item information functions is skewed to the left and 
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the items somewhat to the left of the interval will be 

selected. 

The minimax model proposed by van der Linden (1987) 

specifies the minimization of the largest deviation from the 

target test information subject to condition that all 

deviations are non-negative. The model is as follows: 

Minimize y. 

Subject to: 

^ Ii (0k)Xi - y I (6k) k-l,...,K (21) 

glife^Xi * I(0k) k - 1, . . .,K (22) 

Xi e [0,1] i -1,...#I (23) 

y denotes an arbitrary upper bound and 1,(0,^) is the 

value of the information function of item i at the point 0k. 

The arbitrary variable y is a dummy variable and does not 

contain any item or test parameters. 

The model specifies that the deviation of the obtained 

information function from the target information function 

should not be larger than the upper bound y. The constraint 

in Equation 21 stipulates that these deviations are non¬ 

negative. By minimizing the upper bound y the obtained test 

information function will tend to conform to the target 

information, resulting in the smallest possible peak. 
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2.3.4 Maximin Model Of Test Construction 

This is an alternative model to van der Linden's (1987) 

minimax model. The model conceptualized by van der Linden 

and Boekkooi- Timminga (1989) has the additional potential 

of controlling test length. The model is as follows: 

Maximize y 

Subject to: 

S Ii(ek)Xi - rky i o k - 1, ,K (24) 

(25) 

e [0,1] (26) 

y now is the lower bound which has to be maximized. 

Equation 25 sets the test length to n. 

A number of constraints can be added to the maximin 

model. If test constructor wants to control for test 

composition, the constraint in Equation 25 can be modified 

by letting Vj (j = 1,...,J) be a subset of items in the 
/ 

banks pertaining to a set of content subdomains. The 

modified constraint is as follows: 

(27) 

If the test constructor wants to control for 

administration time, the length of the test can then be 
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controlled by specifying the selection of items based on 

item administration time, t?. The constraint in Equation 25 

is then replaced by: 

i 

(28) 

where T is the time limit for administration of the whole 

test. 

2.3.5 Development of Two-stage Tests 

Two-stage testing previously defined can be developed 

by the application of either the Theunissen (1985) 

minimization model or the maximin model of van der Linden 

and Boekkooi-Timminga (1989). 

Theunissen (1985) suggested the use of a small subset 

of items from an item pool to be used as the routing test. 

This selection can be done by the specification of a target 

information function and the application of the minimization 

model. 

An additional constraint can be added to Theunissen's 

minimization model: 

n 

(29) 

where n is the number of items to be selected. 

In the development of the second-stage test, a number 

of sequential segments specified by the 9 levels on the 

ability continuum are selected based on the desired number 

of second-stage tests. For a fixed number of items in each 
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second-stage test, the same set of equations for the 

minimization model is used to solve the problem. 

Adema's (1990) procedure for development of the routing 

test is the same as the development of any conventional test 

using the maximin model. In the development of the second- 

stage tests, the maximin model is modified by giving an 

additional constraint as follows: 

Maximize y 

Subject to: 

i 

(30) 

(31) 

where U is the set of items selected for the routing test 

and should not be selected for the second-stage tests. 0 is 

the single ability level specified for each second-stage 

test. 

All linear programming problems discussed in this 

section are normally solved using the revised simplex method 

implemented in most computer codes. A brief description of 

this method and the iterative steps involved are given by 

Boekkooi-Timminga (1992). The computer program, OTD 

(Verschoor, 1991) implements the Theunissen (1985) 

heuristics. A prototype version of the computer program, 

CONTEST is currently being developed and implements the 

minimix and maximin models of van der Linden and Boekkooi- 

Timminga (1992) . 
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CHAPTER 3 

METHOD 

This is a real data simulation study in which the two- 

stage, conventional and adaptive testing strategies are 

applied to item-response data obtained from the 

administration of a credentfalling exam that had been 

previously administered conventionally by paper-and-pencil 

mode. 

3.1 Data Source 

Item responses to the a credentialling examination 

certification paper were used in this study. The exam paper 

consists of 250 multiple-choice items divided into 6 content 

subdomains in the approximate ratio of 1:2:1:1:1:1. The 

3523 examinees in the response dataset were divided into 2 

groups - the calibration group (1560) for the purpose of 

calibrating the test items and the empirical group (1934) 

where their actual responses were used in the simulated test 

administrations. 

3.2 Item Pool Calibration 

Item analysis was performed on the item responses based 

on the calibration group of 1560 examinees and 20 items with 

low (<0.20) or negative biserials were removed. From the 

230 items in the item pool, a spaced sampling of 80 items 

was assessed for unidimensionality using McDonald's 

nonlinear factor analysis procedure enumerated in the 

computer program, NOHARMII (Fraser, 1989). Because of 
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matrix size constraints, a spaced sampling was necessary and 

it was assumed that the 80 items would be representative of 

the characteristics of the whole item pool. 

The items were calibrated using the two-parameter 

logistic models by the computer program, BILOG 3 

(Mislevy & Bock, 1989). Because of the large matrix size, 

it was not possible to calibrate all 230 items at one time. 

The response strings were divided into segments of 80, 80 

and 70 items in that order, making three calibration runs in 

all. Item calibration took the form of a single group 

design in which each examinee took all *three test forms'. 

No scale transformation was necessary since all examinees 

took the same test of 250 items at the same time. 

3.3 Assessing Model-data Fit 

Item response theory methodology, including its 

application in adaptive testing assumes unidimensionality. 

Dimensionality is defined as the total number of abilities 

required to satisfy the assumption of local independence 

(Lord, 1980). If a set of items is to be unidimensional, 

there is only one ability affecting the responses of a set 

of items to meet the assumption of local independence. 

However, in reality, several abilities unique to a few items 

apart from a dominant ability (ability common to all items) 

are possible in a set of items (Hambleton and Swaminathan, 

1985? Yen, 1985). Simulation studies have shown that the 

dominant ability can be recovered well in the presence of 

minor abilities using computer programs such as LOGIST 
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(Reckase, 1979; Harrison, 1986). Hence, it is sufficient to 

show that there is one dominant ability underlying the 

responses to a set of items in order to apply unidimensional 

IRT models. 

McDonald (1980,1982) developed the method of nonlinear 

factor analysis to account for nonlinearity of data as an 

improvement over linear factor analysis. This method is 

appropriate within the context of item response theory 

because the latent variable is related to performance in a 

nonlinear fashion. The variables in the item response model 

are expressed as polynomial functions of latent traits. The 

procedure is implemented in the computer program, NOHARMII 

(Fraser, 1983) . 

Because of matrix size constraints, a random sample of 

80 items form the item pool were analyzed for dimensionality 

using McDonald's procedure. A response dataset is 

considered as essentially unidimensional if a two or more 

factor model do not show a significant reduction of the root 

mean square residuals. 

Residual analysis was used to assess the fit of the 

2-Parameter Model compared to the 1-P and 3-P Logistic 

Models. 

3.4 Test Development 

The responses of the empirical group of 1934 examinees 

were used in the simulation of test administrations based on 

optimal item selection. The following test designs involved 

the selection of test items to fit the target information 
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curves with test lengths and content balancing as 

constraints. 

3.4.1 Conventional Tests 

To address the first goal of the study where the 

improvement of test designs developed by automated 

techniques were compared with optimal item selection based 

on Birnbaum's (1968) procedure, the following conventional 

tests were developed: 

3.4.1.1 Broad-range Conventional Tests 

This test was developed to cater to a general 

measurement of ability over a broad ability spectrum where 

decision making such as grading is not important. Such 

tests may be used in a training program where the course 

instructor may need a quick assessment of the students' 

ability level from time to time using a short, but efficient 

test. The development of this test was initiated by setting 

a uniform target information at the ability levels: -2,1,0, 

-1,-2. The target information was set at 4.00. This target 

was selected based partly on the fact that the item 

information in the pool at the higher end of the ability 

continuum were rather low and a long test had to be 

constructed if the uniform target information was set too 

high. Since the abilities were transformed with a mean of 0 

and a standard deviation of 1, the ability range from -2 to 

+2 set by the target information would have a 95% coverage 

of the examinees (normal distribution of the abilities were 

assumed) and this was considered appropriate. 
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The objective of the design was to create the shortest 

test possible that could fit into this target information. 

The computer program, OTD (Verschoor, 1991) was used to 

enumerate the design problem. The item bank file was 

created for input into the OTD environment. The cost 

function specified by the program was set to 1.00 and the 

content balancing option was removed. The target 

information of 4.00 was set from ability levels -2 to +2 in 

the OTD environment. Since the program made use of the 

normal ogive model in the item selection procedure, in order 

to conform to the logistic model used in this study, all a- 

parameters in the item bank file was multiplied by a factor 

of 1.7. A 486, 40 MHz computer was used for all programming 

work. 

For the purpose of examining the efficiency of the 

automated procedure in optimal item selection, an optimal 

item selection technique, the up-and-down (UD) method 

(Hambleton and Swaminathan, 1985) was used. This method was 

chosen over the other optimal item selection methods because 

studies by the same researchers found that this method 

provided maximum information over a broader ability range 

(Hambleton and Swaminathan, 1985; page 252). As such, this 

technique would fit into the design objective where a short 

test was needed to cover a wide ability range. In the up- 

an-down (UD) procedure, an item with maximum information at 

ability +2 was chosen followed by items with maximum 

information at ability +1,0, -1 and -2. The obtained test 
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information was updated each time the items were added and 

item selection at any particular ability level was stopped 

once the target information at that level was reached. The 

cycle was then repeated until the obtained test information 

had reached the target information at all specified levels. 

Two modifications were made to this procedure to enhance its 

optimal item selection. Firstly, before selecting items 

with maximum information at any particular ability level, a 

number of items with maximum information over a wide ability 

range was selected. This was done by computing the mean of 

the item information for the five ability levels and sorting 

the means of all 230 items in the pool from high to low. 

This modification was based on suggestions by Hambleton and 

Swaminathan (1985? page 233). Secondly, back-tracking was 

allowed to remove and substitute items in order to obtain 

the shortest test length possible and in order that the 

obtained test information conform as closely to the target 

information as much as possible. The item information 

matrix was computed using the software package, STATA 

(Computing Resource Center, 1992). All sorting and item 

selection were done with the aid of the software. A program 

was written within the STATA environment to update the test 

information. Since optimal item selection based on 

Birnbaum's procedure was done with the aid of a fast 

computer system, this helped speed up the item selection 

process. 
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3.4.1.2 Peaked Conventional Testis 

This test was designed with the purpose of separating 

examinees into the pass and fail categories. The maximum 

amount of information was required at the region where the 

pass/fail decision had to be made. A criterion for passing 

was set at the ability level, 0.00. The test design was 

specified at the ability levels, -1.5,-0.5,0.0,0.5 and 1.5 

with the target information set at 3,10,12,10 and 3 

respectively. The resulting test would ensure a higher 

precision of measurement at the region of the specified 

pass/fail criterion. Again, the two item selection 

procedures already described were used. Except for changing 

the shape of the target information, the OTD test design 

specifications were the same in the previous design for the 

broad-range conventional test. 

3.4.1.3 Conventional Tests with Content Balancing 

This conventional test was developed with content 

balancing as the constraint in the item selection process. 

The test was developed to adhere strictly to a test 

blueprint where a course instructor after having completed a 

set of instructional modules desires to have a general class 

assessment based on subject matter emphasis. The target 

information was similar to that specified in the previous 

conventional test. However, the test design had a fixed 

test length of 42 items imposed and with a content balancing 

constraint added. The test was developed so that the number 

of items selected in the six content subdomains were 
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6,12,6,6,6,6 in that order. This content subdomain ratio 

would correspond to the content specifications of the 

original examination paper taken by the examinees. Within 

the OTD environment, the content balancing constraint was 

fixed to take in the relative content balancing ratio. The 

item bank file already had the categorization of the items 

specified in the very beginning to indicate the 

stratification of the item bank. 

In the use of the up-and-down (UD) method of optimal 

item selection, further modifications to the procedure were 

made. This time, instead of taking the whole item bank in 

the item selection process, the UD method was used for each 

of the six content categories and with the fixed number of 

items in each content subdomains in mind. The test was 

updated each time the first cycle of item selection was made 

in all six categories. Although the procedure was 

cumbersome, the use of the computer speeded up the process. 

In addition to the above three sets of conventional 

tests which were designed by both the OTD and the UD 

procedures, an additional 42-item broad-range conventional 

test was designed without content balancing by OTD and was 

used for comparison with the 42-item content balanced 

conventional test to address partly the second research 

goal. 

Four sets of comparisons were therefore made for the 

conventional tests: 
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1) broad-range conventional tests (OTD versus UD designs), 

2) peaked conventional tests (OTD versus UD designs), 

3) fixed length and content balanced conventional tests 

(OTD versus UD designs) and 

4) OTD designed fixed length conventional tests 

(content balanced versus noncontent balanced). 

3.4.2 Two-stage Tests 

To address the second and third goals of the study, two 

forms of two-stage tests of 42-item length were developed 

using the automated procedure. The first form had content 

balancing imposed as a constraint and the second had the 

content balancing constraint removed in the test development 

process. 

The target information desired for the routing tests 

was specified for three ability points: -1.50,0.0 and 1.50 

and the target was set at 3.00 to arrive at the optimal 

selection of the 14 items that will fit the target 

information. The optimization problem was specified in the 

specification file of OTD to reflect the kind of target 

information and the content category ratio as constraints. 

Once the 14 items were selected, they were removed from the 

item pool. 

In accordance with Lord*s (1980) suggestion for two- 

stage test development, four second stage measurement tests 

were developed using the automated procedure. The ability 

segments specified in the OTD environment for the 

development of these four tests were: -2.50 to -1.5, -1.5 
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to 0.0, 0.0 to 1.5, and 1.5 to 2.5. A uniform target was 

set for each ability segment and 28 items were optimally 

selected for each ability segment with and without content 

balancing. 

3.4.3 Adaptive Tests 

Two forms of adaptive test were developed to address 

further, the second and third goals of this study. A 

content balanced adaptive test was developed by forming item 

clusters or testlets from the item pool. This was done in 

OTD by setting target information bars of ability 1.0 in 

length across the ability continuum. The information bars 

were varied in height to adjust to the optimal selection of 

7 items in a balanced content ratio and were allowed to 

overlap each other. Each target information bar bore the 

constraint of content balancing and was varied so that only 

7 items were selected to form each testlet. The items were 

selected from the six content subdomains in the ratio 

1:2:1:1:1:1. Once the items were selected, they were 

removed from the item pool. 

The adaptive test procedure involved a search of 

testlets in the pool to determine which unadministered 

testlet had the most psychometric information at an ability 

level equal to a specified value. A subsample of 630 

examinees from the empirical group was used for individual 

adaptive testing and scoring. The examinee abilities were 

scored by maximum likelihood procedure. The test was 

terminated when the variance fell below 0.10. Because of 
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this, the last testlet to be administered to each examinee 

might not be administered completely. Once the termination 

criterion was reached, the test was stopped, resulting in a 

certain number of items in the last testlet being 

administered instead of the complete 7 items. Content 

balancing was still maintained to a certain degree, although 

approximately. 

The adaptive test procedure in which content balancing 

was not taken into account was the same in procedure to that 

described above except that instead of a search through the 

item pool for testlets, an item search was made without due 

regard to content balancing. 

3.5 Scoring 

The corresponding response strings of the conventional 

tests were created as ASCII files to serve as inputs into 

the MicroCAT (Assessment Systems Corporation, 1987) 

environment for conventional scoring. Based on the items 

selected for each test, the corresponding item parameters 

were also created as input files for the MicroCAT 

environment. 

In the case of two-stage tests, the examinees were 

initially scored by the routing tests and their ability 

levels estimated by the maximum-likelihood procedure. Based 

on these initial ability estimates, the examinees were 

routed to their respective second stage measurement tests 

where their responses were scored by the same procedure. 
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In the scoring of the adaptive tests, an input ASCII 

file was created, containing the parameter values of all the 

items in the item bank and imported into MICROCAT 

(Assessment Systems Corporation, 1987). Two separate banks 

were set up. In the case of the content balanced adaptive 

test design, the items were clustered based on the testlet 

designs resulting from the OTD runs. In the case of the 

adaptive test where content balancing was not taken into 

account, the item pool was treated as an unstratified whole. 

In the administration of the testlets, the Minnesota 

Computerized Adaptive Testing Language (MCATL) was used to 

design the testing strategy which involved the following: 

1. A search of the item cluster in the pool to determine 

which unadministered cluster had the most psychometric 

information at an ability level equal to a specified 

value. 

2. The examinee abilities were scored by maximum 

likelihood procedure. 

3. The test was terminated when the variance fell below 

.10. 
The termination criterion corresponds to the standard 

error of estimate criterion of 0.3162 specified by Urry 

(1974) in order to achieve a fidelity coefficient exceeding 

.95 in simulation studies. Because of the termination 

criterion, the last testlet to be administered to each 

examinee might not be administered completely. Once the 

termination criterion was reached, the test was stopped. 
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resulting in a certain number of items in the last testlet 

being administered instead of the complete 7 items. Content 

balancing was still maintained to a certain degree, although 

approximately. 

The test specification designed by MCATL was compiled 

in the MICROCAT environment. In addition to the estimated 

abilities, the test lengths for each examinee and the item 

identities were recorded. In the administration of the 

adaptive test without content balancing. Step 1 of the MCATL 

procedure was modified to an item by item search instead of 

searching through item clusters. 

The original credentialling exam paper consisting of 

250 items was taken by the examinees. After deleting 20 bad 

items to form the item pool, all examinees were scored on 

the 230 items in order to obtain ability estimates as a 

basis for comparison with the ability estimates obtained 

from the test designs. The raw scores were standardized 

with a mean of 0 and a standard deviation of 1. 

3.6 Statistical Analysis 

The item pool was assessed for unidimensionality using 

McDonald's procedure. The independent variables used in the 

study were the ability estimates from the tests developed by 

the various optimal item selection strategies. The 

dependent variable was the standardized raw scores (taken as 

a measure of the observed abilities) based on the examinee 

responses to the 230 items in the item pool. 
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3.6.1 Information Analysis 

Data analysis began with a comparison of the target and 

obtained information curves. This comparison was used to 

address the first goal of the study. The effectiveness of 

an item selection procedure would be judged by how close the 

obtained test information was to the target information. A 

successfully enumerated test design problem would be shown 

by the obtained test information above the target at the 

specified ability levels with the shape of the curve as 

close to the target as possible. Differences in the shape 

of the obtained test information curves were also used to 

examine the effects of constraints imposed by content 

balancing on the test design. Computations of item and test 

information were done using the software package, STATA 

(Computing Resource Center, 1992). A computer program, 

INFOR was written in STATA format to compute all item and 

test information at various ability levels and to perform 

all test information plots. 

The standardized raw scores of the examinees based on 

the 230 items in the item pool were grouped into ability 

groupings as follows: -2.50 < 9 < 2.50 at 9 intervals of 

0.5. If the scores cover the full range of the specified 

ability continuum, there will then be 10 ability groupings. 

Comparisons of score differences between the different test 

designs were based on the observed abilities. 
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3.6.2 Analysis of Score Differences 

Two evaluative indices were used in this study. The 

Inaccuracy was computed as: 

INACC(0) —^ I(^1- 
N 

(31) 

where: N is the number of examinees in the ability 

grouping, 

A 

0f is the estimated ability and 

0{ is the observed ability. 

This index takes into account, the size of the 

difference between the estimated and the observed abilities. 

The Inaccuracies were compared between the different optimal 

item selection strategies. 

The second index, the root mean square difference 

(RMSD) was computed as: 

RMSD (0) (32) 

This index gives more weight to larger differences between 

estimated and observed abilities. The computation of this 

statistic followed the same derivation of score differences 

for the RMSD. Small Inaccuracies or RMSDs will imply 

estimates that are closer to the observed abilities and 

hence, a greater level of concurrence in ability estimation 

for that ability grouping. 
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3.6.3 Correlational Analyses 

Pearson product-moment correlation analyses shows the 

degree in which the estimated and the observed abilities go 

together. High correlations between scores will imply that 

the test strategy concerned ranks the examinees in a similar 

order along the ability continuum. 

All computation work involving the item and test 

information, the RMSD, the IACC and all graphical plots were 

done using the software, STATA (Computing Resources Center, 

1992) and the graphics and data management software, STAGE 

(Computing Resources Center, 1989). 
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CHAPTER 4 

RESULTS 

4.1 Unidimensionalitv Assessment 

A stratified and spaced random sample of 80 items were 

drawn from the item pool to assess unidimensionality. The 

sampling was done to reflect the content emphasis of the six 

content subdomains by selecting the items in the six 

categories in the order: 11,25,11,11,11,11. Both linear and 

nonlinear factor analyses were performed on the 80 items 

based on 1934 examinees. A six factor solution was obtained 

using maximum likelihood linear factor analysis procedure 

implemented in the computer program, STATA (Computer 

Resource Center,1992). A rough approximation to 

unidimensionality was shown using a plot of eigenvalues of 

the inter-item correlation matrix. Figure 1 shows the 

dominant first factor and a high ratio of the first to 

second factor eigenvalues, which is a rough indication of 

unidimensionality (Reckase, 1979). Table 1 shows that the 

percentage variance accounted for by the first factor was 

very high in comparison with the other factors. 

One to six factor models were specified in McDonald*s 

nonlinear factor analysis procedure and enumerated in 

NOHARMII (Fraser, 1989). Results of the analysis showed 

that for two or higher factor models, the mean square 

residuals did not improve very much over that of the 
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Figure 1. Plot of Eigenvalues of Inter-Item Correlation 
Matrix 

the one-factor model. The degree of improvement was only 

about 2.0% for the six-factor model (see Table 1). The item 

pool was deemed to have essential unidimensionality, a 

condition fulfilled for application of IRT in testing. 

Model-data fit was assessed using residual analysis in 

a previous study (Hambleton, Dirir & Lam, 1992). Table 2 

shows that 11.9% of the absolute valued standardized 

residuals exceeded a value of 3 when the 1-p logistic model 

was fitted to the data. The residuals between 2 and 3 for 

the same model exceeded that of the normal distribution by a 

factor of 3 indicating that the 1-p logistic model showed 
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Table 1 

Fit statistics for linear and nonlinear factor models 

Model 

Ai 

Fit 

% Var 

indices 

SS res MS res 

Linear factor analysis 

Factor 
1 8.16 10.2 
2 0.94 1.2 
3 0.61 0.8 
4 0.59 0.7 
5 0.48 0.6 
6 0.47 0.6 

Nonlinear factor analysis 

1-factor 0.0713 0.0475 
2-factor 0.0702 0.0472 
3-factor 0.0702 0.0471 
4-factor 0.0683 0.0466 
5-factor 0.0676 0.0462 
6-factor 0.0685 0.0466 

the poorest fit. The distributions of the residuals for the 

2- and 3-p logistic models were quite close to each other 

while the residual distribution of the 3-p model 

approximated closest to the normal distribution. Although 

the 3-p logistic model fitted the test data best, the 2-p 

model was used in order to accommodate the version of OTD 

software which did not cater for the 3-p logistic model. 

4.2 Descriptive Statistics 

Descriptive statistics of the item pool showed that the 

items were generally easy and differed in discrimination in 

the content subdomains (see Table 3). Items in Subdomain F 
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Table 2 

Analysis of Standardized Residuals for the 1-, 2- and 
3-Parameter Logistic Models 

Logistic 
Model 

|0 to lj 11 to 2 j {2 to 3\ 1 > 3 1 

1 44.1 30.5 13.5 11.9 
2 61.6 30.1 6.1 2.3 
3 66.5 26.5 5.7 1.3 

Normal 
Dist. 

68.2 27.2 4.2 0.4 

generally have higher discriminations and items in 

Subdomain A are very easy compared to the rest. The 

differing characteristics of the item parameters may have a 

bearing in the optimal item selection process as can be seen 

later. 

4.3 Comparison of OTP and UP Designed Broad-range Tests 

Figure 2 shows the obtained information functions of 

both conventional tests developed by the binary programming 

(OTD) procedure and the modified up-and-down (UD) optimal 

item selection procedure. Successful enumeration of the 

optimization problem with uniform target set at 4 from 

ability -2 to +2 resulted in the selection of a minimum of 

30 items. The UD method on the other hand, resulted in a 

selection of 35 items. The obtained information functions 

were very close at the higher end of the ability continuum 

but differed greatly at the middle portion of the ability 
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Table 3 

Distribution and Descriptive Statistics of Test Items 
by Content in Item Pool 

Content Number of Descriptive statistics 
items Parm. Mean S.D. Min Max 

A 27 a 0.49 0.16 0.23 0.91 
b -0.58 1.04 -3.20 1.54 

B 78 a 0.55 0.17 0.22 1.00 
b -0.24 0.89 -2.34 2.35 

C 31 a 0.46 0.13 0.24 0.73 
b -0.21 1.09 -2.82 2.69 

D 30 a 0.48 0.14 0.26 0.70 
b -0.28 0.95 -2.06 1.89 

E 27 a 0.58 0.15 0.38 0.88 
b -0.17 0.88 -1.96 1.80 

F 37 a 0.64 0.21 0.28 1.05 
b -0.22 0.51 -1.19 0.74 

Item bank 230 a 0.54 0.17 0.22 1.05 
b 0.27 0.90 -3.20 2.69 

continuum. Item selection by the automated procedure 

appeared to have the advantage of improving on the obtained 

information function compared to the manual procedure by 

approximating closer to the target information. The 

automated test procedure also resulted in the development of 

a shorter test compared to the manual procedure. 

4.4 Comparison of OTP and UP Designed Peaked Tests 

Figure 3 shows the obtained test information curves of 

the peaked tests developed by the OTD and the UD procedure. 

This time, the two curves were very close, indicating that, 

with a peaked target, the automated procedure appeared to 

have a smaller improvement over the manual procedure. Both 
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Ability 

Figure 2. Obtained Test Information Functions pf UD and OTD 
Designed Broad-range Conventional Tests 

curves were shifted to the left of the target information 

because of the greater distribution of items with larger 

information at the lower ability levels. However, the 

obtained information curve arising from the manual procedure 

was shifted further to the left indicating a lesser 

approximation to the target information at the lower end of 

the ability continuum. Test lengths from both item 

selection procedures were almost the same. 
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Figure 3. Obtained Test Information Functions of UD and OTD 
Designed Peaked Conventional Tests 

4.5 Comparison of Content Balanced Conventional Tests 

Figure 4 shows the obtained test information of two 

conventional tests with the constraint of content balancing 

and a fixed test length of 42 items imposed. The design 

which used the UD procedure was not quite successfully 

enumerated at the ability level of +2. The obtained test 

information was slightly below the target information at 

this ability level (see Table 4). Again, at the lower end 

of the ability continuum, the manual procedure of item 

selection showed a lower approximation to the target 
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Ability 

Figure 4. Obtained Test Information Functions of UD and OTD 
Designed Conventional Tests with Content Balancing 

information. The percentage of item overlap for the two 

item construction procedures was 52.3. 

4.6 Comparison of Tests with Content Balancing Constraint 

Figure 5 shows the obtained test information curves for 

two fixed length conventional tests of 42 items developed by 

OTD. One test had the content balancing constraint imposed 

and the other had the constraint removed. With test length 

and target information held constant for both designs, the 

measurement precision of both tests can be examined by 

comparing both obtained test information curves. It can be 
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Table 4 

Obtained and Target Information Functions of Specified 
Ability Levels for Conventional Test Designs 

Test design 

o
 

o
 • 

CN
 

1 

Ability Level 

-1.00 0.00 1.00 2.00 

Test Lengtl 

Broad-range test . 

Target 4.00 4.00 4.00 4.00 4.00 

OTD 4.02 7.53 8.76 7.39 4.10 30 
UD 5.32 10.39 11.71 8.24 4.12 35 

Peaked test 

Target 2.00 10.00 12.00 10.00 2.00 

OTD 3.92 12.11 12.20 10.15 2.60 27 
UD 4.58 12.96 12.58 10.10 2.35 28 

Broad-range test with content balancing 

Target 4.00 4.00 4.00 4.00 4.00 

OTD 5.94 10.97 12.22 8.53 4.28 42 
UD 7.26 14.49 15.37 8.88 3.50 42 

seen that the test with the content balancing constraint 

removed has a higher information in the middle range of the 

ability continuum. A possible explanation of the 

differences in the test information is that the imposition 

of a content balancing constraint in the test design 

resulted in the forced selection of items of lesser 

information across content subdomains in order to fulfil the 

content ratio specification of the six content subdomains. 

The uneven distribution of the items in the six content 

subdomains could be seen when content balancing was lifted 
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Figure 5. Obtained Test Information Functions of OTD 
Designed Conventional Tests with and without Content 
Balancing 

(see Figure 5). More items from Subdomains B and F were 

selected at the expense of the other content areas. No 

items were selected from D. 

Table 5 shows the correlation of the ability scores of 

the eight conventional tests with the observed abilities 

based on the 230-item bank. 

The examinees were scored on the two conventional tests 

and the INACCs and RMSDs (both previously defined) were 

computed for 9 ability intervals (no examinees were found in 
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Table 5 

Correlation of Conventional Test Scores with Standardized 
Raw Scores 

Broad-range tests Standardized Raw Scores 

1) OTD designed (30 items) 0.92 

2) UD designed (35 items) 0.92 

Peaked tests 

3) OTD designed (27 items) 0.90 

4) UD designed (26 items) 0.89 

Fixed length content balanced (42 items) 

5) OTD designed 0.93 

6) UD designed 0.93 

Fixed- length OTD designed (42 items) 

7) Content balanced 0.93 

8) Noncontent balanced 0.94 

N = 1934 

the ability interval from 2.00 to 2.50) (see Figures 6 and 

7). These score differences were based on the criterion 

abilities estimated from the 230 items of the item pool. 

Although the INACCs and RMSDs of the noncontent balanced 

test were slightly lower than those of the content balanced 

counterpart, their differences were not so significant. 

Both MAD and RMSD were seen to increase towards the higher 

end of the ability continuum. 

75 



Figure 6. INACC Plots for Conventional Tests with and 
without Content Balancing 

4.7 Comparison of Two-stage Test Designs 

In the two-stage test designs in which the examinees 

were routed to the respective second stage measurement tests 

by the routing test, the INACC and RMSD are almost identical 

in the middle section of the ability continuum (see Figures 

8 and 9), indicating the efficiency of the routing test in 

correctly channelling the examinees to the respective second 

stage test. At the higher and lower ability levels, the 

INACC and RMSD differences between the two designs differed, 

indicating a greater loss of measurement precision for the 
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Figure 7. RMSD Plots for Conventional Tests with and 
without Content Balancing 

content balanced conventional test. The dip in the INACC 

and RMSD was seen at the high extreme end of the ability 

continuum indicating that the two-stage test was doing its 

job of measuring more precisely at the extreme ends of the 

ability continuum. Hence, the two-stage test showed an 

improvement in measurement precision over that of the 

conventional tests in this regard. 

The correlation of the test scores from the content 

balanced and from the noncontent balanced two-stage tests 

with the observed abilities were 0.89 and 0.91 respectively. 
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Figure 8. INACC Plots for Two-stage Tests with and without 
Content Balancing 

indicating that both test designs did not differ very much 

in recovering the criterion abilities. Both the 

conventional tests and the two-stage tests showed 

limitations in that the INACCs and the RMSDs were relatively 

high especially towards the higher ability levels. 

4.8 Comparison of Adaptive Test Designs 

Figure 10 shows the result of using two target 

information bars to optimally select testlets of 7 items 

each to form the content balanced adaptive test. A total of 

24 testlets were formed. The remaining items could not be 
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Ability Interval 

Figure 9. RMSD Plots for Two-stage tests with and without 
Content Balancing 

successfully selected to fit the information, even though 

lowered to the minimum and OTD failed to enumerate the 

problem each time. As such the best 148 items were 

clustered to form the content balanced adaptive test item 

pool. The testlets comprised items bearing the same 

specified subdomain ratio that is 1:2:1:1:1:1 in the six 

subdomains in that order. In each testlet, the items were 

arranged in the order: A,C,D,E,F,B to maintain consistency 

throughout the test administration process. As in the case 
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of the routing test, the testlets represented little peaked 

tests gleaned from the whole item pool. 

The mean item length, minimum and maximum number of 

items administered for the content balanced adaptive test 

were 35, 24 and 90 in that order. For the adaptive test in 

which content balancing was not considered, the values were 

30, 21 and 60 in that order. The longer test administration 

for some examinees was an indication of convergence 

difficulties probably due to some aberrant responses since a 

real dataset was used. 
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Figures 11 and 12 show plots of the INACCs and RMSDs of 

the two adaptive test designs. Because of the nature of the 

sampling, no examinees were found with observed abilities 

lower than -1.5 and more than 2.0. The plots were observed 

to be consistent throughout the whole ability levels, 

especially at the extreme ends, indicating almost similar 

measurement precision across abilities which is a feature of 

adaptive testing. What was most significant was that both 

INACCs and RMSDs were lower than those of the conventional 

and two-stage tests which indicate a further improvement in 

measurement precision especially at the extreme ends of the 

ability continuum. However, the score differences were 

higher in the content balanced adaptive test in some 

sections of the ability continuum and lower in the other 

sections of the ability continuum. The correlation with the 

observed abilities for the content balanced and the 

noncontent-balanced adaptive tests were 0.90 and 0.91 

respectively. 
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Figure 11. INACC plots for Adaptive Tests with and without 
Content Balancing 
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Figure 12. RMSD Plots for adaptive Tests with and without 

Content Balancing 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Though the concept of optimal item selection and target 

information curve fitting is nothing new and had been 

introduced as far back as 1965 by Lord, the method involved 

in the past appeared to be somewhat rigorous and was based 

on a manual item by item selection procedure with the 

construction of the test information curve each time to 

examine its fit with the target information, as outlined by 

Lord (1980) and implemented in a set of heristics by 

Hambleton and Swaminathan (1985). The test constructor is 

guided by the kinds of item difficulties and discriminations 

needed to fill the gaps that need to be filled in order to 

fit the target information curve. This manual procedure 

though somewhat rigorous, no doubt gives the test 

constructor a hands-on experience of seeing the change in 

test information as items are added or deleted. As such, 

the test constructor is fully in control of the test 

development process. The heuristics used by Hambleton and 

Swaminathan (1985) and modified in this study gave a 

systematic way of optimal item selection. With the help of 

the computer in performing all the computation and plotting 

work, the heuristics could be implemented fairly easily. 

5.1 Conventional Test Designs 

For all the conventional test designs, the manual up- 

and-down (UD) procedure took about 30 minutes to enumerate 
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each design problem while the automated procedure took only 

a few seconds when a 486 machine was used. The results 

showed in general, that the automated procedure based on the 

binary programming approach showed a closer approximation to 

the target information compared to the manual procedure of 

optimal item selection when a uniform target was used. 

Where a fixed test length was not imposed, the automated 

procedure produced a shorter test. With a peaked target, 

the improvement made by the automated test design over the 

manual UD procedure was not so apparent. Both methods also 

revealed difficulties in fitting the target information 

function towards the lower end of the ability continuum 

because of the higher distribution of easier items compared 

to more difficult items. The study showed that the manual 

procedure of optimal item selection yielded results that 

were almost as good as the tests developed by OTD. This 

could be seen by the closeness of the obtained test 

information curves and the high correlations between the 

estimated abilities with the criterion abilities 

(see Table 5, Chapter 4). 

The results also showed the efficiency of binary 

programming which attempts to select the best and optimal 

items despite the content-balancing constraint. On the 

other hand, the manual UD procedure could also approximate 

the results fairly closely despite the complexity of cycling 

the procedure across content subdomains. Problems 

highlighted by Boekkooi-Timmingga (1992) concerning the 
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difficulties of arriving at optimal solutions especially 

when additional content-balancing constraint was added could 

be minimized since back-tracking work can be quickened by 

the computer. Although the percentage overlap of items 

between the two conventional tests with fixed test lengths 

and content-balancing, was only 52.3, the correlation of 

scores between the two tests was 0.93. This is an 

indication of the property of the item bank where the IRT 

assumptions are met in which the items are fungible 

(interchangeable) units. At the item selection level, the 

study illustrated the sensitivity of content-balancing. The 

distribution of items differred significantly between the 

content-balanced test and a test without content-balancing. 

5.2 Two-stage Test Designs 

In two-stage tests, the difficulty in optimal item 

selection could be seen at the extreme ends? in particular, 

the higher end of the ability continuum because of the lower 

distribution of more difficult and discriminating items. 

Where the distribution of good items is high as in the 

middle region of the ability band, almost equiprecise 

measurement were found between the two test designs. 

Because of the relatively greater number of good items 

across content subdomains around the middle region of the 

ability continuum, test information between the content- 

balanced and noncontent-balanced designs did not differ very. 

much even though item selection combination differs. In 

other words, imposing a content-balancing constraint would 
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not affect measurement precision significantly provided that 

there is a good distribution of items across the content 

subdomains. This is also true of conventional tests. 

5.3 Adaptive Test Designs 

The effect of adaptive tests in lowering the score 

differences and ensuring equiprecise measurement have been 

shown in both content balanced and noncontent balanced 

designs. The use of OTD designed testlets for incoporation 

into a testlet based adaptive test system is an improvement 

over Kingsbury and Zara's (1992) testlet adaptive test model 

based on item selection by clustering of item difficulty 

levels. While the Kingsbury and Zara's model showed 

significant differences in measurement precision between the 

content balanced and the noncontent balanced adaptive tests, 

the model used in this study resulted in narrowing the gap 

between the two designs even though the item pool is less 

than ideal when compared to a simulated item pool used by 

the researchers. In the model used in this study, the small 

INACCs and RMSDs between the two adaptive test designs is an 

indication of the efficiency of automated item selection in 

selecting optimally, the items across content subdomains. 

An interesting part of the results was that in many sections 

of the ability continuum, the score differences of the 

content balanced adaptive test were actually lower than the 

noncontent balanced counterpart. This could partly be 

explained by the efficiency of both OTD and the adaptive 

algorithm in selecting the best items within the constraints 
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of content balancing to the extent that it even improved 

upon the adaptive test without the content balancing 

constraint. The results of the OTD designed testlet form of 

adaptive testing are very encouraging and indicates the 

viability of developing an efficient content balanced 

adaptive test. 

Finally, it must be noted that although the 

correlations between the estimated abilities from the test 

designs and the criterion abilities are high, the INACCs and 

RMSDs were different across test designs. This is because 

the correlation coefficient is a measure of how two sets of 

scores go together but the INACCs and the RMSDs are measures 

of how close the test scores are with the standardized raw 

scores. The high correlations between the test designs with 

different item combinations and the criterion scores are 

also a good indication that the assumption of IRT concerning 

item fungibility are met. 

5.4 Possible Application of Automated Test Designs in the 
Schools 

In the Singapore situation where every school is fully 

equipped with the necessary computer hardware and with 

sufficient government funding for the purchasing of 

software, the use of automated test development is a viable 

option. This is because of the availability of a core of 

teachers trained in basic test theory and the availability 

of items banks which are centrally linked to the Ministry of 

Education. 
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Because of the policy of continuous assessment in 

schools for diagnostic testing, streaming and for promotion 

purposes, the use of automated test designs will speed up 

the process of test development. The current practice among 

test practitioners is to select the items from the Ministry 

of Education central item banks based on the test 

specification tables. The items are selected based on the 

classical criteria of p-values between 0.4 and 0.6 although 

items are already calibrated using the Rasch model and in 

many cases, using the 2- and 3- parameter models. This 

apparent discrepancy in such item selection procedures 

stemmed from the difficulties and the time involved in 

applying Birnbaum's IRT-based methods of test construction. 

It is possible in the near future for teachers to improve 

the test development process by making use of automated 

methods of test designs using OTD or the yet to be released, 

CONTEST. 

The use adaptive testing as a form of continuous and 

diagnostic assessment together with the aid of OTD for 

content balancing will assure the school administrators that 

test specifications will be adhered to and give better 

credibility to the use of adaptive procedures. The tradeoff 

of course, will be a longer adaptive test in order to adhere 

to the constraints of content balancing. 

5.5 Conclusion 

Content specification is one of the important 

procedures to be followed in many school-based assessment 
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programs. This is also true in licensure and certification 

programs. While adaptive testing has been in use for a good 

number of years, one of the many concerns prior to its 

acceptance is the need for content balancing. Apart from 

content balancing, the test blueprint may also require the 

balancing of item format as well as balancing the skill 

levels tested by the items. These added variables will 

impose a heavy load on the manual procedure especially if 

the stratified item pool is large in order to accomodate the 

different item categories. 

The study shows that content balancing in test designs 

using binary programming procedures in OTD was done without 

the significant expense of measurment precision. Automated 

test designs used in an adaptive testing environment in a 

modified testlet based model reduces any possible loss of 

measurement precision even though the distibution of item 

parameters across content subdomains is uneven. It could 

also be seen that in a real item pool where the item 

discriminations are generally smaller when compared to those 

generated by the computer in simulation studies, the item 

information curves would be generally flatter and the use of 

OTD in this connection, would be an advantage in terms of 

efficiency and time. 

The application of linear programming in test designs 

as implemented in the computer program, OTD is a viable 

option and have been shown to improve the results of a test 

designs. This method involved setting a target information 
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and assured the test developer that the test would conform 

to a certain level of precision. This is of particular 

advantage especially when dealing with a less than ideal 

item pool where the distribution of item difficulties and 

item discriminations differ across content subdomains. 

However, the use of a real item pool is more realistic and 

reflects the problems associated with test designs in the 

real world. However, one must bear in mind the limitation 

of using OTD. Because of the binary programming algorithm 

used by Theunissen (1985) and implemented in OTD, the 

resulting test information always has a characteristic hump 

even though the target information is uniform. 

Nevertheless, the use of OTD as against the manual UD 

procedure is still an advantage as the obtained test 

information curves using OTD were significantly lower for 

uniform targets. 

Finally, although automated test designs offer the ease 

and efficiency in which a test is built by the computer, the 

test developer is still in control. Current software 

technology does not account for cross-item clue elimination. 

Hence the need for the test developer to ensure that this 

procedure is enforced especially when dealing with a large 

item pool. The test developer will also need to ensure the 

correct sequencing and layout of the test items forming the 

test. 
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5.6 Suggestions for Further Study 

It is envisaged that discrepancies in test information 

when content balancing constraint is imposed can be reduced 

if distribution of item characteristics across content 

subdomains is homogeneous. This can be done by increasing 

the number of items in each content subdomain to reflect a 

homogeneous measurement precision across content subdomains. 

Alternatively, the content subdomains can be collapsed to a 

smaller number. Further study in the application of optimal 

test design procedures needs to be looked into when these 

are taken into consideration. The practical implication at 

this point is that there is a need for any good item bank to 

constantly upgrade its pool especially when stratification 

is involved. 

As already pointed out by van der Linden (1987), the 

binary programming model used by Theunissen (1985) and 

implemented in OTD resulted in a characteristic hump in the 

obtained test information function even though the target 

was set to be uniform across ability levels. This is 

because of the way in which the algorithm will select more 

items located in the middle of the interval specified by the 

target, resulting in a high test information in this region. 

As such, it is near impossible to develop a rectangular test 

with equiprecise measurement across ability levels using 

OTD. However, the study indicated that with the use of a 

peaked target, OTD appeared to handle the optimal solution 

very well. The minimax and maximin models developed by van 
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der Linden (1987) specify the minimization of the largest 

deviation between the test information and the target 

information and result in a closer approximation to the 

target. The prototype software, CONTEST (van der Linden, 

1992) was recently developed to handle this model. An area 

for further study will be a comparison of the efficiencies 

of van der Linden's (1987) minimax/maximin models and 

Theunissen's (1985) model in optimally selecting items given 

a uniform, peaked and bimodal target and the implications of 

these models in test construction. 

Finally, although the study indicated the success for 

the use of OTD designed testlet form of adaptive testing, no 

comparison was made with other forms of content balancing 

methods in adaptive testing. One possibility for future 

research could be a comparative assessment of different 

forms of content balancing in adaptive testing that includes 

the Kingsbury and Zara's (1992) constraint and testlet forms 

of adaptive testing with the OTD-testlet procedure. 
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APPENDIX 

ITEM BANK PARAMETERS 
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ITEM BANK PARAMETERS 

Item a 
1 0.54 - 

2 0.54 - 
3 0.58 - 

4 0.91 - 

5 0.55 - 

6 0.61 - 

7 0.41 - 

8 0.67 - 

9 0.38 - 
10 0.52 
11 0.45 
12 0.38 - 
13 0.68 
14 0.41 — 

15 0.37 
16 0.32 
18 0.34 
19 0.38 
20 0.40 
21 0.64 
22 0.50 
23 0.52 
24 1.01 - 

25 0.47 
26 0.69 
27 0.77 - 

28 0.88 - 

29 0.63 
30 0.52 — 

31 0.42 
32 0.41 
34 0.36 - 

35 0.57 
36 0.51 
37 0.84 - 

38 0.68 
39 0.70 
40 0.30 
41 0.59 
43 0.33 - 

44 0.66 - 

45 0.63 
46 0.53 - 

47 0.50 - 

48 0.33 - 

49 0.30 - 

50 0.70 - 

52 0.60 
53 0.34 
54 0.47 — 

b Content 
41 11 
74 12 
36 12 
82 11 
17 14 
87 14 
30 11 
01 12 
34 12 
45 11 
72 15 
00 16 
32 12 
90 16 
11 16 
39 16 
09 12 
41 12 
72 12 
01 12 
35 12 
14 12 
32 12 
77 12 
57 15 
19 15 
92 15 
69 15 
69 11 
14 12 
23 15 
61 13 
48 13 
34 13 
22 12 
04 14 
81 12 
92 12 
39 12 
24 11 
25 15 
45 15 
72 11 
11 11 
99 12 
33 12 
46 14 
46 11 
61 11 
69 12 

1 
0 
0 
0 
0 
0 
2 
1 
2 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
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55 
56 
57 
58 
60 
62 
63 
64 
65 
66 
67 
68 
69 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 

112 

0.52 -1.19 11 
0.53 0.28 15 
0.43 1.36 15 
0.67 -0.60 12 
0.42 -1.03 14 
0.42 0.47 14 
0.65 0.52 12 
0.84 0.47 12 
0.69 -0.16 12 
0.86 -1.24 15 
0.70 -1.04 16 
0.63 -0.69 12 
0.48 0.27 13 
0.65 -0.38 13 
0.54 -1.60 12 
0.41 -0.38 16 
0.46 0.69 16 
0.49 -0.24 16 
0.26 1.77 14 
0.71 -1.02 13 
0.65 -0.26 12 
0.69 -0.79 14 
0.40 0.60 12 
0.60 0.05 13 
0.80 -0.66 12 
0.53 -0.19 13 
0.73 -1.12 12 
0.39 -0.16 15 
0.45 -0.36 11 
0.43 0.74 16 
0.55 -0.85 11 
0.68 -0.20 12 
0.44 0.16 12 
0.75 -0.56 15 
0.75 -0.35 12 
0.38 -0.30 15 
0.54 -0.40 12 
0.77 -0.10 16 
1.05 -0.25 16 
0.49 1.80 15 
0.65 -0.07 16 
0.77 0.52 16 
0.26 0.59 13 
0.73 0.16 16 
0.62 -0.89 16 
0.97 -0.98 16 
0.79 -0.10 16 
0.43 -1.47 15 
0.50 -0.03 16 
0.63 0.26 15 
0.58 -0.46 15 
0.48 0.18 14 
0.39 1.89 14 
0.43 0.43 13 
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113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
159 
161 
162 
163 
164 
165 
166 
167 
169 
170 
171 

0.78 -0.20 12 
0.52 -1.78 14 
0.51 -0.18 12 
0.41 -1.07 13 
0.65 0.71 13 
0.51 0.33 13 
0.81 -1.38 11 
0.51 -0.94 12 
0.53 -2.82 13 
0.46 -1.36 13 
0.84 -0.91 12 
0.62 -1.03 12 
0.70 -1.20 15 
0.26 -3.20 11 
0.34 -1.16 13 
0.46 -0.74 12 
0.54 -0.98 12 
0.48 1.53 12 
0.62 -0.24 12 
0.35 -1.20 11 
0.53 -2.00 12 
0.66 -0.85 14 
0.81 -1.19 16 
0.77 -0.37 16 
0.90 -0.48 16 
0.42 -0.77 11 
0.38 1.37 12 
0.72 -0.71 16 
0.60 0.16 16 
0.94 0.35 12 
0.46 -1.29 11 
0.53 -0.04 12 
0.22 0.53 12 
0.38 0.13 11 
0.33 -0.35 16 
0.53 -1.47 12 
0.56 -0.85 12 
0.54 0.15 12 
0.62 -0.32 15 
0.38 -0.79 15 
0.41 0.05 13 
0.61 0.53 13 
0.37 0.38 14 
0.30 -0.88 14 
0.31 -1.44 14 
0.47 1.55 12 
0.40 -1.10 14 
0.49 -0.26 12 
0.43 -0.67 16 
0.57 -1.16 11 
0.36 1.53 11 
0.38 -0.06 11 
0.74 -0.71 12 
0.28 -2.06 12 
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172 0.29 -0.32 14 
173 0.33 -0.17 12 
174 0.37 2.35 12 
175 0.43 -0.57 14 
176 0.58 0.51 12 
178 0.57 0.46 12 
179 0.23 1.54 11 
180 0.30 -2.06 14 
181 0.43 0.20 12 
182 0.35 -0.59 11 
183 0.66 0.23 11 
184 0.51 -0.69 12 
185 0.76 -0.41 16 
186 0.74 -0.28 16 
187 0.68 0.62 16 
188 0.54 0.52 12 
189 0.73 -1.29 11 
190 0.55 0.07 14 
191 0.51 -0.75 14 
193 0.45 0.34 12 
194 0.42 -0.53 15 
195 0.73 0.37 13 
196 0.34 0.08 13 
197 0.33 -0.22 13 
198 0.24 0.22 13 
199 0.42 0.84 13 
200 0.65 -1.69 12 
201 0.63 -0.75 12 
202 0.58 -0.87 14 
203 0.34 -1.49 12 
204 0.56 -0.17 14 
205 0.67 -1.53 12 
206 0.69 -0.68 14 
207 0.49 -1.08 14 
208 0.50 -0.28 12 
209 0.44 -0.63 13 
210 0.35 0.13 14 
211 0.65 -0.06 12 
212 0.80 -0.45 12 
213 0.39 -0.81 13 
214 0.72 -0.71 15 
215 0.64 -0.64 16 
217 0.48 -0.08 16 
218 0.41 -1.59 12 
219 0.86 0.45 12 
220 0.51 0.84 13 
221 0.50 -0.56 15 
224 0.35 1.40 14 
225 0.32 -0.72 12 
226 0.69 0.09 14 
227 0.41 0.21 12 
228 0.51 0.10 14 
229 0.61 0.13 15 
231 0.43 0.13 13 
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232 0.33 2.69 13 
233 0.29 -0.74 13 
234 0.28 0.21 16 
235 0.67 -0.77 16 
236 1.03 -0.15 16 
237 0.53 -0.52 15 
238 0.64 0.47 16 
239 1.01 -0.93 16 
240 0.79 0.80 12 
241 0.52 -0.34 12 
242 0.73 -0.16 16 
243 0.62 -0.12 16 
244 0.28 0.92 14 
246 0.47 -0.24 13 
247 0.33 -2.11 13 
248 0.33 -1.08 12 
249 0.43 -0.05 11 
250 0.53 -1.96 15 

Content Subdomains: A - 11 
B - 12 
C - 13 
D - 14 
E - 15 
F - 16 
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