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 Computerized classification tests (CCT) have been used in high-stakes assessment 

settings where the express purpose of the testing is to assign a classification decision (e.g. 

pass/fail). One key feature of sequential probability ratio test-type procedures is that items 

are selected to maximize information around the cutscore region of the examinee ability 

distribution as opposed to common features of CATs where items are selected to maximize 

information at examinees’ interim estimates. Previous research has examined the 

effectiveness of computerized adaptive tests (CAT) utilizing classification testing 

procedures a single cutscore as well as multiple cutscores (e.g. below 

basic/proficient/advanced). 

 Several variations of the SPRT procedure have been advanced recently including a 

generalized likelihood ratio (GLR). While the GLR procedure has shown evidences of 

improved average test length while reasonably maintaining classification accuracy, it also 

introduces unnecessary error. The purpose of this dissertation was to propose and 

investigate the functionality of a modified GLR procedure which does not incorporate the 
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unnecessary error inherent in the GLR procedure. Additionally this dissertation explored 

the use of the multiple cutscores and the use of ability-based item selection. 

 This dissertation investigated the performance of three classification procedures 

(SPRT, GLR, and modified GLR), multiple cutscores, and two test lengths. An additional 

set of conditions were developed in which an ability-based item selection method was used 

with the modified GLR. A simulation study was performed to gather evidences of the 

effectiveness and efficiency of a modified GLR procedure by comparing it to the SPRT 

and GLR procedures.  

 The study found that the GLR and mGLR procedures were able to yield shorter test 

lengths as anticipated. Additionally, the mGLR procedure using ability-based item 

selection produced even shorter test lengths than the cutscore-based mGLR method. 

Overall, the classification accuracy of the procedures were reasonably close. Examination 

of conditional classification accuracy in the multiple-cutscore conditions showed 

unexpectedly low values for each of the procedures. Implications and future research are 

discussed herein. 
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CHAPTER I: INTRODUCTION 

 The central tenet of testing is that a discrete demonstration of a trait can be 

quantified and extended to a description of the ability or construct level. In other words, 

the purpose of testing is to enable accurate generalizations from a small instance to a 

larger set of phenomena. Testing procedures have been used for centuries to provide 

evidence that an examinee had achieved a level of ability considered to be related to a 

pre-specified level competence. For example, some of the earliest records regarding 

assessments were proficiency measures in the Chan Dynasty (Wainer, Flaugher, Green, 

Mislevy, Steinberg & Thissen, 1990). 

 For the past few decades, the focus of many assessments has been to provide a 

score indicating one’s estimated ability level for a given trait. Oftentimes the score 

achieved on a test is used to then classify the individual into two or more categories. For 

example, the resulting scale score from a statewide academic achievement assessment 

may be used to determine if a student receives credit for a course or if they may advance 

to a subsequent grade level. Due to the nature of the decisions based on the results of the 

standardized tests, the accuracy of scores and classifications used to make decisions for 

students and schools as well as the security of the items and tests is of paramount 

importance. 
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 While much of the public discussion and media interest surrounding high-stakes 

standardized testing revolves around testing in public schools, high-stakes standardized 

testing is commonplace in many fields. Standardized testing has become a mainstay in a 

variety of professional settings. Classification testing methodologies have been 

successfully implemented in educational settings, employment screenings, and licensure 

and certification examination programs (Parshall, Spray, Kalohn & Davey, 2000). 

Medical and clinical settings also utilize testing and classification procedures for 

determining diagnoses and treatments. Additionally, many higher education entities 

require placement examinations to best determine the needs of individual students 

beginning formal education. One of the more notable standardized testing programs using 

a classification testing scoring procedure for decision making is the COMPASS (ACT, 

1993) which has been used in colleges and universities for course placement decisions.  

 In many situations classifying examinees into one of multiple categorizations (e.g. 

below average / average / above average) is preferable to simple dichotomous 

categorizations (e.g. pass / fail). For instance, state testing programs such as the State of 

Texas Assessments of Academic Readiness (STAAR) use ability scores to categorize 

students into three categories: Unsatisfactory, Satisfactory, and Advanced. Similarly the 

National Assessment of Educational Progress (NAEP), used in the Nation’s Report Card, 

also categorizes student performance into four categories: Below Basic, Basic, Proficient, 

and Advanced. Additionally, the Partnership for Assessment of Readiness for College 
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and Careers (PARCC) and the Smarter Balanced Assessment Consortium (SBAC) both 

use more than two cutscores, 3and 4 respectively. Classification testing procedures of 

several types (e.g. sequential probability ratio test, ability confidence interval, sequential 

bayes, etc…) have been shown to accurately classify examinees into dichotomous 

categories as well as into multiple categories (Eggen & Straetmans, 2000; Spray, 1993; 

Spray & Reckase, 1994). 

 Increasingly, testing in professional, clinical, and educational settings have been 

moving to computer-based test administrations as there are several advantages of 

computer-based administrations over traditional paper and pencil tests. Computer-based 

administrations allow for greater flexibility in the testing window for examinees while 

maintaining test security. Computerized administrations also provide the opportunity to 

make large-scale assessments adaptive to examinee ability based on computerized 

adaptive test (CAT) algorithms.  

 The idea underlying computerized adaptive testing is to develop a smart 

assessment through the use of item selection algorithms. CATs are capable of reducing 

the number of items needed to obtain examinees’ scores as well as improve the accuracy 

of the ability estimates by tailoring the exam to more closely match the examinee’s 

ability (Reckase, 1989; Wainer, et al., 1990). When assessing an individual’s ability 

level, we gain little information by administering items that are too difficult or too easy 

for the examinee’s ability. Thus by adaptively selecting items based on the examinee 



4 

 

 

response patterns, such as is done with CATs, the selected items are more informative 

and useful for obtaining an estimate of the examinee’s ability. Unfortunately, the adaptive 

algorithms common in CATs become less efficient when coupled with certain 

classification-only scoring methods—consequently the hallmark advantage of CAT 

becomes nullified. 

 There is an array of approaches one may take to classify examinees in the context 

of a CAT. Often an assessment is used to obtain an estimate of the examinee’s ability 

after which the scale score is used to classify them according to a pre-specified 

performance standard. This, an ability estimate approach, is commonly used in many 

large state-wide achievement test settings. The estimated ability levels that result from 

this type of assessment can be used for classification purposes such as admission to a 

school or educational program, advancement through an education program, and 

professional licensure or certification. One drawback of this method is that when 

compared to scoring procedures which are classification-only testing methodologies, the 

ability estimate approach requires examinees to answer more items. 

 A technique designed to solely classify examinees without directly estimating 

examinee ability is a feasible option as well. The prime advantage of the classification-

only type methods is that they are highly accurate and very efficient in item usage. The 

major criticism of such methodologies is that the procedure and outcome do not lend 

themselves to yield reasonable ability estimates and therefore does not provide insight 
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into how far above or below an examinee’s score is in comparison the performance 

standard. Even recently published variations of an established classification method still 

fail to be able to use traditional CAT methodologies and thereby cannot take full 

advantage of CAT capabilities. 

 As somewhat of a compromise between ability estimation and pure classification 

techniques, one may use ability estimates with their accompanying estimated standard 

errors to determine a classification. As a result both an ability estimate can be provided as 

well as conserving items by terminating the test upon reaching a classification decision as 

opposed to obtaining a specific level of precision for the ability estimate. The 

shortcoming of this technique is that it is not as efficient in conserving items as the 

classification-only type methodologies. 

 The focus of this study will be to develop and assess the functionality of a new 

classification methodology. Previously researched classification procedures, namely the 

truncated sequential probability ratio test and the generalized likelihood ratio test, will be 

included in the proposed study to provide baseline measures for comparison to the new 

classification procedure. This new classification procedure is a modification of the 

generalized likelihood ratio procedure. These three procedures will be compared to 

determine the relative merits of each procedure in terms of classification accuracy and 

test length. Additionally, this study will assess the implementation of an ability-based 

item selection method for use with the new classification procedure developed in this 
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dissertation. Therefore, the purpose of the currently proposed study is to (1) extend 

likelihood ratio test-based methodologies and (2) evaluate the proposed classification 

methodology in the context of traditional CAT procedures. Additionally, as classification 

is not limited to dichotomous decisions, the proposed research will incorporate single 

cutscore, two cutscores, and three cutscores conditions to examine the efficiency of the 

classification methods. 
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CHAPTER II: LITERATURE REVIEW 

 The following literature review provides an in-depth discussion of the three key 

components forming the foundation for this study. The first section is an overview of 

item response theory (IRT) presenting three commonly used dichotomous models, 

namely the one-parameter, two-parameter, and three-parameter logistic IRT models. The 

second section provides an overview of the essential elements of traditional computerized 

adaptive testing for dichotomous IRT models including the item pool, testing algorithm, 

ability estimation procedures, item selection procedures, and test termination methods. 

The final section presents an introduction to computerized classification testing with 

dichotomous IRT models including a detailed examination of the truncated sequential 

probability ratio test, generalized likelihood ratio, and the proposed modified generalized 

likelihood ratio. Special consideration is also given to the unique item pool requirements 

and item selection method of computerized adaptive classification testing using IRT 

models. 

ITEM RESPONSE THEORY 

 IRT is a model-based measurement system that has been used when implementing 

computerized adaptive testing programs. IRT models have a distinct advantage over 

classical test theory (CTT) in that IRT analyses are performed at the item level as 

opposed to the test level as with CTT. As the conventional purpose of CAT is to produce 
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an estimate of an examinee’s ability regarding a construct of interest, the item level 

analysis of IRT is especially advantageous for CAT as items are selected for 

administration to a particular examinee based on item statistics to maximize the accuracy 

of the ability estimate given their previous item responses. The item-level statistics 

provided by dichotomous IRT models describe the probability of an examinee’s response, 

correct or incorrect, conditional on the examinee’s ability level. For any item, the 

probability of a correct response can be produced for a discrete ability level and may be 

understood as the probability of a correct response for any randomly selected individual 

with the specified ability level (DeMars, 2010). The relationship between ability level 

and the probability of a correct response is a non-linear, monotonically increasing 

function that is depicted graphically by an item characteristic curve (ICC) (Lord, 1952). 

The subsequent sections provide a detailed description of three commonly used 

dichotomous IRT models. 

Dichotomous IRT Models  

 Dichotomous IRT models may be used when assessments utilize only a 

correct/incorrect scoring system for each item such as multiple-choice items. IRT 

presents probabilistic measurement models wherein items can be individually 

characterized by their parameter estimates: difficulty (b), discrimination (a), and pseudo-

guessing (c). The item’s parameter estimates together with the examinee’s responses to a 

series of items are used to calculate an ability estimate with an accompanying standard 
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error for the examinee’s performance. For the IRT models described in this study the 

modeling of the item parameters and examinee ability levels require that three core 

assumptions are met which are: (1) unidimensionality, (2) local independence, and (3) 

model specified functional form of item probabilities conditional on ability level. 

 The assumption of unidimensionality implies that examinee responses to test 

items represent observations of a single latent trait or ability. Therefore all differences 

between examinee ability estimates is due to actual differences in ability for the single 

ability dimension being measured (Embretson & Reise, 2000). All other factors that may 

have influenced the responses to test items are considered random error or nuisance 

variance distinctive to the individual item and not shared with other items. 

 The assumption of local independence requires that after conditioning on ability, 

responses to items are statistically independent of one another. By maintaining the 

assumption of local independence, we may reasonably conclude that examinee responses 

to test items represent observations of the unidimensional latent ability of interest. A 

similar, but weaker form of the local independence assumption assumes that responses to 

items are uncorrelated after conditioning on ability. In either circumstance, violating the 

assumption of local independence may cause a misrepresentation of ability estimates as 

item information is overestimated (Wainer & Lewis, 1990). Violation of the assumption 

of local independence may suggest that another dimension is influencing the responses to 

the items and thereby violating the assumption of unidimensionality (DeMars, 2010).  
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 The third assumption concerning correct model specified functional form posits 

that the empirical data from the examinees’ responses to the item follows the expected 

functional mathematical form specified by the model. A mathematical function can be 

used to model the expected probability of a given response conditionally across the 

ability continuum (Hambleton & Swaminathan, 1985). An item’s ICC can be used to 

examine how accurately the model specified functional form corresponds with the 

observed proportion of correct/incorrect responses based on conditional ability estimates 

using theoretical versus empirical plots or fit statistics (DeMars, 2010). 

 A key feature of IRT models is known as parameter invariance which presents 

two distinct advantages over classical test theory (Lord F. M., 1980). Item parameter 

invariance means that item parameter estimates are independent of the population used to 

calibrate the item parameters. Therefore, item parameter estimates should be invariant 

within a linear transformation to another metric or scale (i.e. scale scores). The stability 

of item parameters such as difficulty are a distinct advantage over the CTT model where 

item difficulty is dependent on the examinees who were used to estimate the items. Item 

parameter invariance is dependent on model-data fit. In situations where model-data fit is 

poor, parameter invariance cannot be maintained as different populations may produce 

inconsistent parameter estimates whereas good model-data fit would support parameter 

invariance. The second advantage of IRT models’ parameter invariance provides the 

capacity for individual ability estimates to be independent of the items used to obtain the 



11 

 

 

ability estimates for a given unidimensional trait. In comparison the classical test theory 

model, ability estimates are influenced by test characteristics.  

 As there are several commonly used dichotomous IRT models, model selection is 

an important aspect of any application. The IRT models differ based on the number and 

nature of the item parameters which are estimated. The assumptions required for each 

model must be considered along with the data being investigated to select a model. 

Selecting the wrong model will result in poor estimation of the ability levels of 

examinees. Commonly used dichotomous IRT models are the one-parameter, two-

parameter, and three-parameter logistic models. 

 One-parameter logistic IRT model. The one-parameter logistic model (1-PL) 

provides estimates of a single item parameter (Rasch, 1960). The item difficulty 

parameter is represented by b and is the only item parameter estimated by the 1-PL 

model. With the 1-PL, the probability of examinee j with a given ϴ, where theta 

represents the examinee’s ability level, correctly responding to an item is defined as 
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where bi represents the difficulty level, or location of the item along the trait continuum, 

of item i. Theoretically the value of the b parameter can range from -∞ to ∞ but it is more 

common for the range to be closer to -4 to 4. 

 The 1-PL model is the most restrictive model in that the model only allows for the 

difficulty, or b parameter, value to vary while subsequent models have additional varying 

item parameters. The 1-PL model includes two additional assumptions pertaining to item 

discrimination and the probability of an examinee guessing the correct response option. 

Item discrimination is constant across all items thus assuming that all items discriminate 

equally at their estimated difficulty locations and exhibiting ICCs that are all parallel. An 

examinee’s ability to correctly guess and obtain credit for the item is not given 

consideration with this model. Items where guessing may be successfully occurring may 

be considered for removal from the item pool and therefore the lower asymptote of the 

ICC for an item is assumed to be zero. 

 An ICC is used to illustrate the relationship between the examinee’s ability, the 

item difficulty parameter, and the probability of the response to the item. The individual’s 

ability is represented by the ϴ scale located on the x-axis. Figure 1 depicts ICCs for three 

1-PL items. The item difficulty is also on the same metric and x-axis being represented 

by the b parameter. Having both the ability scale (ϴ) and the difficulty scale (b 

parameter) on the same scale facilitates direct comparisons between examinee ability 

level and item difficulty regarding the probability of a correct response. The probability 
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of the individual’s response to the item ranges from 0.0 to 1.0 and is found along the y-

axis. 

 

Figure 1:    Three item characteristic curves estimated with the 1-PL model. 

 For the 1-PL model the b value of the item is defined by the ϴ value on the x-axis 

that corresponds with the point of inflection or the steepest part of the slope of the ICC. 

For the 1-PL model the point of inflection will always correspond to a probability of 

correct response equal to 0.50. All items in a 1-PL model will have the same ICC slopes 

therefore the curves will never intersect though the curves will eventually converge. The 

ICCs for the 1-PL model are asymptotic as the probability of the responses at the less 

proficient end of the ability continuum will become zero to indicate zero probability of 

guessing. 
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 Two-parameter logistic IRT model. The two-parameter logistic model (2-PL) 

(Birnbaum, 1968) provides estimates of two item parameters. As with the 1-PL model, 

the item difficulty is represented by the b value. The second parameter estimated by the 

2-PL model is the a parameter, also referred to as the discrimination parameter or power 

of the item. With the 2-PL, the probability of examinee j with a given ϴ, where theta 

represents the examinee’s ability level, correctly responding to an item is defined as 
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where bi represents the difficulty level, or location of the item along the trait continuum, 

of item i, ai represents the discrimination power of item i, and D is a scaling constant 

used to closely align the logistic function with the standard normal ogive. Figure 2 

depicts ICCs for 3 items calibrated with the 2-PL model. 
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Figure 2:    Three item characteristic curves estimated with the 2-PL model. 

 The value of the a parameter is proportional to the slope at the point of inflection; 

therefore, as the slope of the ICC increases so does the discrimination power of the item. 

A higher a parameter value indicates that the item is better able to distinguish between 

different levels of examinee ability close to the difficulty level of the item. Similar to the 

1-PL model, the 2-PL model does not estimate a parameter to model the probability of 

guessing the correct response option and therefore has a lower asymptote of zero. The b 

parameter for an item is the ability level that corresponds with point of inflection. The 

point of inflection of the ICC again is at a probability of 0.50 for correctly responding to 
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the item. The ICCs for items calibrated with the 2-PL model may cross as the model 

allows for the discrimination parameters to vary across items. 

 Three-parameter logistic IRT model. The three-parameter logistic model (3-PL) 

(Birnbaum, 1968) provides estimates of three item parameters. Building on the previous 

models, the b parameter and the a parameter are estimated for each item as well as a c 

parameter which represents a pseudo-guessing parameter. With the 3-PL model, the 

probability of examinee j with a given ϴ, where theta represents the examinee’s ability 

level, correctly responding to an item is defined as 
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where bi represents the difficulty level, or location of the item along the trait continuum, 

of item i, ai represents the discrimination power of item i, and ci is a pseudo-guessing 

parameter to represent the probability of examinee j guessing the correct response option 

for the item. Figure 3 depicts ICCs for two items calibrated with the 3-PL model.  For 

item 1 b = -0.50, a = 0.60 and c = 0.20. For item 2 b = 0.00, a = 0.38 and c = 0.10. 
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Figure 3:    Two item characteristic curves estimated with the 3-PL model. 

 Unlike the previous models, the 3-PL model includes an estimate of the 

probability of guessing the correct response. The pseudo-guessing parameter, c, is 

defined as the lower asymptote of the ICC. As the lower asymptote may be greater than 

zero, the point of inflection will no longer correspond to a probability of correct response 

being equal to .50, but will be greater. The point of inflection for item i, where ci 

represents the pseudo-guessing parameter may be defined as 
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 The discrimination parameter is still proportional to the slope at the point of 

inflection, and the b value, or difficulty parameter, is still defined as the ϴ value that 

corresponds to the point of inflection for the 3PL model. However by incorporating the 

pseudo-guessing parameter with the 3PL, the point of inflection of the ICC differs from 

the point of inflection produced by using the 1PL and 2PL models. The 3-PL model may 

reduce into a 2-PL model when the pseudo-guessing parameter for each item is equal to 

zero. Similarly, the 2-PL model may reduce into the 1-PL model when the discrimination 

parameters for each item are held constant. 

 Standard Error and Information for Dichotomous IRT Models. The degree of 

certainty regarding an individual’s estimated ability may be quantified by two related 

statistics, the standard error (SE) and the item’s information conditional on the estimated 

ability. The standard error of the ability estimate will vary across the ability continuum 

with smaller values indicating greater confidence in the ability estimates and conversely 

where larger SE indicates less confidence in the ability estimates. The standard error may 

be calculated as 
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where SE(ϴ) represents the standard error for a given ϴ and 𝐼(ϴ) represents the amount 

of information for the given ϴ (Birnbaum, 1968). A small standard error means the 
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greater is the precision of measurement or information for a given ability level than a 

large standard error. 

 The SE represents the level of uncertainty while the information represents the 

level of accuracy of the measurement. Each item contributes information to the overall 

ability estimate. The amount of information provided by an item may be calculated as 
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where Ii (ϴ) represents the information provided by the item, 𝑃 𝑖
′(𝛳) represents the first 

derivative of 𝑃𝑖(𝛳) conditional on ϴ, 𝑃𝑖  (𝛳) represents the probability of a correct 

response to item i, and Qi (ϴ) represents the probability of an incorrect response to item i 

(Birnbaum, 1968). A major advantage of IRT is that the information can be summed 

across items to produce the total test information function (TIF) as 
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where TI(ϴ) represents the total test information across all items. Larger information 

values indicate greater precision of measurement for a given level of ability. 
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COMPUTERIZED ADAPTIVE TESTING 

 A computerized adaptive test provides several advantages over a traditional fixed-

form test. The hallmark advantage of a CAT is the increase in the precision of 

measurement that may be gained through the adaptive selection of items administered in 

the test while being able to maintain or decrease test length compared to a traditional 

linear test format. Through the use of ability estimation procedures and item selection 

methods, items are selected to improve the precision of measurement in the region of the 

ability continuum where the examinee’s ability is being estimated. Along with the 

increased precision of estimated examinee ability, CATs offer the ability to terminate a 

test administration when a pre-specified level of precision pertaining to the examinee’s 

ability estimate has been obtained or a specified number of items have been administered. 

Either way the test length reduces the testing burden on the examinee while also 

improving the item exposure of the item pool because only appropriate items are being 

administered. Items that are too hard or too easy are not administered.  

 Additionally CAT procedures allow for prompt scoring and reporting as examinee 

ability is continually recalculated after each item has been administered to the examinee. 

While some assessments may not have an expressed need for rapid scoring and reporting, 

other assessments with high-stakes outcomes such as licensure, certification, and 

assessments for advancement through education may require shorter soring and reporting 

timeframes as retest opportunities are essential in these settings. Computer-based 
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assessments also have the ability to improve item security as items can be secured in 

computer servers while a paper-and-pencil administration allows for the opportunity to 

have the physical test forms stolen. 

 Reckase (1989) outlined four major components of CAT procedures that are 

essential for the development and maintenance of a CAT system: 1) item pool; 2) item 

selection procedures; 3) ability estimation procedures; and 4) stopping rules. 

Additionally, content balancing and exposure control methods will also be discussed as 

they are significant factors of testing programs. 

 Item Pool.   Analogous to the development of items for traditional linear tests, 

item pools designed for CAT administrations are developed in accordance with the test 

specifications including all constraints imposed to control item security. Item calibration 

can be achieved in several different maximum likelihood estimation manners including 

marginal maximum likelihood, joint maximum likelihood, and conditional maximum 

likelihood estimation. The most common calibration method, marginal maximum 

likelihood (Bock & Aitkin, 1981), calibrates items by assuming a standard normal 

distribution for the theta scale thus enabling score interpretations relative to a distribution 

with a mean of zero and a standard deviation of 1.0 (Embretson & Reise, 2000). The 

average likelihood of item parameters is then estimated based on the response strings of 

the individual examinees and an ability distribution where ability is treated as a known 

variable (DeMars, 2010).  
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 When developing and maintaining an item pool to obtain the test information, the 

additive property of item information functions to ensure the measurement of precision at 

each ability level. For example, when retiring and replacing items from an item pool, new 

items are selected based on their information function to maintain or increase 

measurement precision after the appropriate equating of new item parameter estimates 

has been performed. 

 Traditional fixed-form norm-referenced test item pools are developed to enable 

the assembly of fixed test forms which measure across the full range of the ability 

continuum. These tests will measure ability most accurately around the average ability 

level so as to place individuals along the ability continuum relative to one another 

(Wainer, et al., 1990). This results in an optimal TIF being approximately normally 

distributed about the average ability level of the examinees. Traditional fixed-form 

criterion-referenced test item pools are developed to facilitate the assembly of fixed item 

test forms to measure most accurately at a pre-specified cutscore. The purpose of 

designing test forms around a cutscore is to best determine whether examinees’ abilities 

are estimated to be above or below the cutscore. The specific shape of the TIF for the 

item pool would depend on the number of cutscores and the location of the cutscores 

along the ability continuum. For example, a traditional criterion-referenced assessment 

designed to facilitate classification into three categories using two cutscores would have a 
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TIF that is bimodal with each mode being leptokurtic with little to no positive/negative 

skew. 

 In contrast to the traditional fixed-form assessment format, which utilizes items 

organized into pre-established test forms, computerized adaptive tests select individual 

items for administration based on estimated examinee ability. Previous research provides 

guidelines suggesting that when implementing CAT procedures with a dichotomous IRT 

model the item pool should be at least 8 to 12 times the size of the number of expected 

items per test (Stocking, 1994; Way, 1998). The exact number of items required in the 

item pool to adequately support the test administration is dependent on several factors 

including the type of scoring model used such as a dichotomous or polytomous IRT 

model, the item selection method, content balancing procedures, and the exposure control 

methods. For example, item selection methods may affect the size of the item pool 

required due to the imposition of strict exposure control constraints. Content balancing 

within the same item pool requires items spanning multiple content areas providing a 

sufficient number of items within each content area to satisfy the requirements of the test 

specifications. Additionally, consideration must be given to item difficulties within each 

of the content areas that span the pre-specified range of the ability continuum being 

assessed. CAT item pools have typically been designed to have item difficulty uniformly 

distributed to provide appropriate items spanning the ability continuum while also 
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maintaining suitable psychometric properties to meet the assumptions of the IRT model 

used to calibrate, administer, and score the assessment (Wainer, et al., 1990; Way, 2006). 

 Testing Algorithm.  The testing algorithms involved in CAT procedures require 

three fundamental processes which include: 1) the commencement of the assessment 

which includes the specification of the initial ability estimate and initial item selection 

procedures; 2) the continuation process of the test including item selection procedures 

based on interim ability estimates and other constraints such as content balancing and 

exposure control of the items; and 3) options for the termination of the assessment 

through pre-specified criteria such as maximum test length or maximum standard error 

(Thissen & Mislevy, 2000). 

 Ability Estimation.  Typically the purpose of using a CAT is to obtain an estimate 

of an examinee’s ability. The examinee’s ability estimate is utilized for item selection 

procedures as well as for providing a final ability estimate. An ability estimation 

procedure incorporates the examinee’s pattern of responses to items in conjunction with 

the item parameters in order to produce an ability estimate. Individual item parameters 

must already have been estimated by means of field testing procedures for item pool 

development and maintenance. When item parameter estimates are used to determine the 

examinee’s ability estimate, the item parameters are no longer treated as estimates but as 

known item parameters while the examinee’s ability is treated as unknown and estimable. 
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 Upon obtaining an initial ability estimate, successive items are selected to provide 

maximal information at the current or interim ability estimate. The interim ability 

estimate of each examinee is updated after the examinee responds to each item and 

subsequently used to select the next item. Three common trait estimation procedures are 

the Maximum Likelihood Estimation (MLE), Maximum A Posteriori (MAP) and the 

Expected A Posteriori (EAP) methods which are discussed in the subsequent sections in 

the context of a dichotomously scored unidimensional item response theory model. 

 The MLE procedure uses the examinee’s response string to a given set of 

calibrated items to find the ϴ value which maximizes the likelihood function. For any 

response string to a given set of items a likelihood value in log units can be computed for 

every ϴ value along the ability continuum. The maximum likelihood ability estimate is 

obtained by aggregating the likelihoods conditional on each ϴ value and then 

determining the mode of the likelihood function through a Newton-Raphson iteration 

procedure (Lord, 1980; Embretson & Reise, 2000). 

 MLE provides the advantages of less biased ability estimates when compared to 

the ability estimates provided by the MAP and EAP estimation procedures (Lord, 1986). 

One problem with the MLE procedure is that it is incapable of providing an ability 

estimate when the responses to a series of items are all correct or incorrect. In either case 

all that is known about the ability estimate of the examinee is that it is more extreme than 

the difficulties of the items that have been administered thus far in the test. The inability 
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to obtain an ability estimate is problematic especially at the beginning of an exam where 

examinees may have strings of all correct or incorrect responses and thus MLE ability 

estimation is not possible. 

 Two common approaches, the fixed and variable step procedures, have been 

implemented to ameliorate the issue of adaptive item selection before an initial ability 

estimate has been established. The fixed step procedure selects subsequent items based 

on a predetermined step size value until at least one correct and one incorrect response 

have been obtained. One problem with the fixed step procedure is that individuals may 

respond in a single category, correct or incorrect, for a series of responses such that the 

fixed step procedure would attempt to select an item in one of the extreme regions where 

there are no items with difficulties as extreme as the procedure requires. The variable step 

size procedure avoids the issue of attempting to select items which are more extreme than 

those available in the item pool by varying the step size based on the most recently 

administered item and the item with the appropriate most extreme b value. Items are 

selected by finding the midpoint between the item previously administered and the item 

with the most extreme difficulty parameter depending on whether the examinee’s 

responses have been correct or incorrect (Dodd, 1990; Koch & Dodd, 1989). For 

example, when an examinee has been answering all the questions correctly the variable 

stepsize procedure will select a more difficult item than the previously administered item 

by taking half the distance from the last 𝛳 estimate and the most difficult item and using 
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this point of the ability continuum to select an item for administration to the examinee 

without stepping out of the item pool.  

 Unlike the MLE method, the MAP and EAP estimation procedures have the 

advantage of being capable of providing an ability estimate after a single item or based 

on a response string of all correct or incorrect responses. This is especially advantageous 

for item selection early in the testing procedure when response strings may be all correct 

or incorrect as MAP and EAP are able to estimate ability and then use the ability estimate 

to select items. MAP and EAP methods both make use of a prior distribution when 

estimating examinee ability by incorporating the prior distribution with the log-likelihood 

function, given the examinee’s response to administered items, to produce an ability 

estimate. A prior distribution is a hypothetical distribution of randomly sampled 

examinee abilities which is most commonly assumed to be a standard normal distribution 

(Embretson & Reise, 2000). 

 Both MLE and MAP involve iterative processes for ability estimation while the 

EAP procedure (Bock & Mislevy, 1982) is noniterative. The calculations involved in the 

EAP ability estimation procedure can be performed more rapidly than the MLE and MAP 

procedures because they require iterative processes for ability estimation. The faster 

calculation may be especially important in the CAT context to expedite the estimation of 

the examinee’s ability as items are adaptively selected to match interim ability estimates. 
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 MAP and EAP do, however, have a distinct disadvantage in that the ability 

estimates produced will be biased. Because the mean of the prior distribution is used as 

the estimator the ability estimates are biased towards the mean of that prior (de Ayala, 

2009). The bias due to the regression towards the mean affects values near the extremes 

more than values which are nearer to the mean of the ability estimates (Lord, 1986). The 

problem of regression to the mean may be exacerbated when the prior distribution 

incorporated is not particularly accurate regarding the distribution of true ability in 

population of interest. Additionally, Parshall, et al. (2002) recommend not using 

Bayesian estimation for the final ability estimate as there may be an effect based on the 

order in which the items were administered such that examinees who take the same set of 

items and provide the same responses to each item but the order of the presentation of the 

items varied may have differing ability estimates. While MAP and EAP do present some 

advantages over MLE for provisional ability estimates, it is important that the prior 

integrated into the calculations be accurate. It is very difficult for MAP or EAP to 

overcome a misspecified prior unless the test is very long. 

 Item Selection.  The item selection procedure is the fundamental component of a 

CAT which provides the “tailored testing” ability. The purpose of the adaptability is to 

provide the most precise measurement regarding the examinee’s ability. The precision of 

measurement is achieved by selecting items which are most informative conditional on 

the interim ability estimates of the examinee. Depending on the specifications of the 
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assessment, item selection procedures may operate while incorporating several 

constraints such as the balancing of the content required by the test specifications as well 

as providing some degree of security by managing item exposure. 

 When no prior information regarding the examinee’s ability is being taken into 

account the initial item selected for an examinee is commonly selected at the mean of the 

theta distribution or the peak of the item pool distribution. When it is reasonable to 

assume that the ability being assessed is normally distributed, selecting an item with a 

difficulty corresponding with the mean of the theta distribution is reasonable as one’s 

best guess regarding the ability of examinee with no prior information. 

 If prior information about an examinee’s ability is available, such as a test score 

relating to the constructs of interest, this information may be used to inform the selection 

of the initial item. Otherwise, the initial item is selected using an item selection procedure 

to produce maximal information at the mean of the ability distribution when using MLE 

estimation procedures. When using EAP or MAP estimation procedures, items are 

selected to minimize the expected posterior standard deviation which may result in 

selecting different items when compared to the items which would be selected for MLE 

estimation (Embretson & Reise, 2000). Upon obtaining an initial estimate of the 

examinee’s ability level, one of the two following common item selection procedures, 

Fisher’s information (Lord F. M., 1980) and Owen’s Bayesian procedure (Owen, 1969), 

are used for the item selection procedure. 
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 The Fisher maximum information procedure selects items to provide the largest 

amount of psychometric information for examinees given their interim ability estimates. 

After each item response is obtained, the CAT algorithm calculates a new provisional 

ability estimate which is used for the selection of the subsequent item. The procedure 

repeats by calculating provisional ability estimates and selecting items to maximize 

information after each item is administered until a stopping rule is invoked to terminate 

the assessment. 

 When utilizing Bayesian estimation, the procedure is designed to minimize the 

expected posterior standard deviation or maximize the precision of the posterior ability 

estimate. After each item response is obtained the CAT algorithm calculates the expected 

posterior distribution of the trait which distribution is then used to select an item which 

will then minimize the expected posterior standard deviation or maximize the precision of 

the posterior ability estimate. This procedure repeats by recalculating the expected 

posterior distribution of the ability estimate after each item administration until the 

stopping rule criteria have been satisfied. 

 Content Balancing.  When a test covers multiple content areas it becomes 

necessary to ensure that all possible forms of the test are unbiased in representing the 

content areas. One method to manage multiple content areas is to separate the content 

areas completely and to estimate an examinee’s ability for each content area 

independently. This is appropriate when the test measures multiple dimensions. When the 
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test measures a single dimension the content areas are not separated but sampled together 

to form tests which cover all content areas, using content balancing procedures to 

conform to test specifications. Traditional linear tests follow the test specifications when 

building the multiple forms to achieve the appropriate sampling of content areas for their 

fixed forms. 

 Content balancing for computerized adaptive testing becomes more challenging 

as the test adapts to the examinee’s ability and thereby presents a somewhat unique series 

of questions to each examine. To ensure equity across examinees and to satisfy the test 

specifications for each examinee, the CAT program must employ some content balancing 

procedure. A common content balancing procedure is the constrained CAT proposed by 

Kingsbury and Zara (1989). The constrained CAT operates by comparing the proportions 

of the items administered by content area to the target proportion values for each content 

area. The content area with the largest discrepancy between the actual administered value 

and the target value is used to select the item for administration. Once a content area is 

identified, an item is selected to provide maximum information when using MLE or to 

minimize the expected posterior standard deviation for Bayesian estimation procedures 

given the current provisional examinee ability estimate. The constrained CAT procedure 

repeats by calculating the discrepancies between the administered value and target values 

for each content area, identifying the content area for item selection and selecting the 
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most efficient item based on the ability estimation procedure until a stopping rule is 

invoked. 

 Exposure Control.  Item exposure must be given consideration for CATs, 

otherwise the Fisher maximum information and Bayesian item selection procedures 

would constantly select the same item for a given ability level due to its maximally 

informative psychometric properties. The continual selection of the same item, or set of 

items, would overexpose the maximally informative items and underutilize or possibly 

fail to ever select certain items. Items that would fail to be selected when exposure 

control methods are not incorporated into the CAT algorithm are not items with poor 

psychometric qualities, but rather are simply ranked behind the most useful items. 

Additionally, exposure control methods may discourage and decrease the effects of 

examinees banking and sharing items. A general guideline regarding maximum exposure 

rate of 20%, referring to the percentage of examinees to whom the item is administered, 

was suggested by Spray (Parshall, et al., 2002). 

 Way (1998) used two categories, randomization procedures and conditional 

selection procedures, to describe some of the more common strategies for item exposure 

control. Randomization procedures seek to control item exposure by using a random 

selection component in determining which items will be available to be administered to 

the examinee. The rationale for randomization-type methods is that the random selection 

provides a means whereby the chances that examinees with the same or similar ability 
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estimates will be administered the same items or series of items is purely random. It is 

reasonable that items selected for possible administration will differ even for examinees 

with the same interim ability estimates (Geeorgiadou, Triantanfillou, & Economides, 

2007). The Randomesque procedure proposed by Kingsbury and Zara (1989) is an 

example of a well-known randomization procedure. The Randomesque procedure selects 

a prespecified set of items (i.e. five items) which are selected to maximize information at 

the current ability estimate of the examinee. From the set of items, one item is randomly 

selected to be administered to the examinee. 

 Conditional procedures rely less on a random component in item selection and 

make use of an exposure control parameter to restrict which items are available for 

administration. A set of items are selected to provide maximum information or to 

minimize the expected posterior distribution based on the provisional ability estimate. An 

item is then selected from the set for administration based on the exposure control 

parameter. The value of the exposure control parameter is predetermined through an 

iterative simulation process whereby each item is assigned an appropriate value given the 

frequency at which it is expected to be selected for administration. Two well-known 

conditional strategies are the Sympson-Hetter (Sympson & Hetter, 1985) and the 

Sympson-Hetter Conditional (Chang, 1998). 

 Combination procedures also have been developed to take advantage of the 

benefits of both the randomization procedures and the conditional procedures. A well-
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known combination procedure is the Progressive-Restrictive procedure developed by 

Revuelta and Ponsoda (1998). The Progressive-Restrictive procedure combines a random 

component with an exposure control limit (Revuelta & Ponsoda, 1998). 

 Stopping Rules.  One of the fundamental benefits of CAT is the ability to 

terminate the test when a desired level of precision regarding the ability estimate has been 

obtained (variable-length) or after a specified amount of time has expired (Thissen & 

Mislevy, 2000). The adaptive item selection based on interim ability estimates enables 

CATs in some situations to provide tests which are half the length of traditional fixed-

form tests while maintaining or improving the precision of the ability estimate 

(Embretson & Reise, 2000). Often a combination of the maximum number of items and 

the precision of measurement, SE(θ), are used to terminate CATs (Davis, 2002; Thissen 

& Mislevy, 2000; Wainer, et al., 1990; Weiss & Kingsbury, 1984). 

 Fixed-length exams can be less cumbersome when implementing constraints such 

as content balancing since the forms are predetermined and fixed as pertaining to the 

number of items and which items in each content category will be administered given the 

test specifications. Generally, fixed-length tests do not provide equivalent levels of 

precision of measurement for examinees across all levels of the ability continuum 

(Wainer, et al., 1990). Fixed-form assessments terminate upon reaching the maximum 

number of items. 
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 Variable length CATs are designed to terminate the test once an acceptable level 

of precision for the ability estimate has been achieved. The logic behind the variable 

length test is that when examinees respond consistently for their ability level, the standard 

error of their estimate can be reduced until it achieves a specified SE(𝛳) value and 

terminate the test providing a reasonably accurate ability estimate. When using the MLE 

estimation procedure the stopping rule uses maximum information to select items to 

reduce the standard error. The Bayesian procedures result in the stopping rule focusing on 

achieving a target posterior distribution to achieve the pre-specified level of measurement 

precision to terminate the assessment. Variable length tests conserve items by 

administering items which are efficient for estimating examinee ability and terminating 

the test before reaching the maximum test length. Problems may arise when item 

selection is inefficient or when examinee responses are inconsistent thereby producing 

longer exams and exposing more items to achieve the specified level of precision of 

measurement to satisfy the level of precision needed to stop the assessment. In that case a 

maximum number of items may be used along with a prescribed standard error to stop the 

CAT. Adaptive variable length assessments have the advantage of providing final ability 

estimates with similar levels of precision across all levels of the ability continuum. 
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COMPUTERIZED CLASSIFICATION TESTING 

 Typically achievement and aptitude assessments have been developed with the 

purpose of determining a point estimate of an examinee’s ability while classification 

testing is comprised of a unique set of testing procedures and test specifications where the 

target outcome is a classification decision. Computer-based testing may be preferred to 

paper-and-pencil methods for making classification decisions especially when the results 

of the assessment are high stakes in nature. Computerized classification adaptive tests 

based on larger item pools with reasonable exposure control and content balancing 

procedures provide improved item exposure and security measures when compared to 

fixed-form assessments. When the classification procedure requires an ability estimate to 

determine classification status, CAT methodology can provide improved ability estimates 

while utilizing fewer items than a fixed form. Additionally, some computerized adaptive 

classification testing procedures which do not require an examinee ability estimate for 

classification, namely the sequential probability ratio test (SPRT), have been found to 

provide accurate classification while utilizing fewer items than typical CATs (Parshall, et 

al., 2002). 

 The purpose of classification testing procedures is to evaluate an examinee in 

relation to a pre-specified cutscore and provide a categorical outcome. In past research 

classification testing has been referred to as criterion-referenced measurement (CRM), 

mastery testing, and adaptive mastery testing (AMT) (Weiss, 1983; Wainer, 1990). The 
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purpose of implementing an adaptive mastery testing procedure is to maximize the 

percent of correct classifications while reducing the number of items required to a 

classification decision (van der Linden & Glas, 2010). The term ‘mastery testing’ implies 

that a dichotomous decision (i.e., pass/fail) is the outcome of the procedure. It has 

become more common to refer to testing procedures used for categorical decisions as 

classification testing which allows for classification into more than two categories (i.e. 

below average/average/above average). Using a CAT as opposed to a fixed-form test to 

produce classification for multicategorical decisions provides the unique ability to select 

items with optimal properties to achieve classification. It has been demonstrated that 

accurate classifications can be achieved with as few as half the number of items used for 

ability estimation tests in a typical CAT (Lewis & Sheehan, 1990). Based on the purposes 

of the testing and the importance of the classification outcome, different methods may be 

employed to provide the most accurate and useful classifications. 

 Computerized classification testing procedures are capable of handling the 

complex requirements that are imposed on typical CAT procedures. While some of the 

issues such as content balancing and item exposure are the same as typical CAT 

procedures, other components and operations of a classification CAT differ with respect 

to the item pool, the item selection and testing algorithm, scoring, and termination 

criteria. Additionally, depending on whether the tests are used for simple dichotomous 
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(e.g. pass/fail) decisions or for multiple categorical classifications (e.g. 

advanced/pass/fail) the procedures may vary. 

 Classification testing procedures can be loosely organized according to whether or 

not the procedure achieves a classification decision based on ability estimation. When 

using MLE estimation procedures a CAT algorithm developed for classification testing 

selects individual items based on maximum information as a typical CAT used for ability 

estimation would. The ability confidence interval (ACI) method is considered an 

estimation-based classification method. The ACI functions identically to typical CAT 

procedures in all respects with the exception of the stopping rule. The stopping rule for an 

ACI requires a confidence interval to be calculated for the provisional ability estimate of 

the examinee. ACI testing procedures terminate the assessment when the confidence 

interval no longer contains the cutscore which results in a classification. In cases when 

the maximum number of items have been administered, the examinee’s final ability 

estimate is compared to the cutscore to determine classification status. The ACI method 

is useful especially when a final ability estimate is needed. The main drawback when 

using the ACI method is that it tends to produce longer test lengths than competing 

classification testing procedures. 

 The computerized master testing (CMT) proposed by Sheehan and Lewis is a 

testlet-based procedure used for classification testing (Lewis & Sheehan, 1990; Sheehan 

& Lewis, 1992; Parshall, et al., 2002). Testlets are a grouping of items that “may be 



39 

 

 

developed as a single unit that is meant to be administered together” (Wainer, Bradlow, 

& Wang, 2007). Though testlet selection is not based on estimated examinee ability, but 

rather random selection of the testlets, the procedure does compute a final ability estimate 

for the examinee. 

 Finally, some classification testing procedures do not base item selection or 

classification decision on ability estimates. For example, the likelihood ratio-based 

procedures utilize a point-hypothesis approach with an accompanying statistical test 

instead of an ability estimate to determine classification. The sequential probability ratio 

test procedure is considered a statistical testing procedure as after each item is 

administered, a set of hypotheses are evaluated with a likelihood ratio. Item selection for 

SPRT and other likelihood ratio testing procedures is based on maximum information at 

the cutscore. Typically an ability level has not been estimated for examinees when 

likelihood ratio-based testing has been used to determine classification. The lack of a 

final ability level estimate has been regarded as a disadvantage of the SPRT procedure. 

The advantage of the SPRT procedure has been the conservation of items as classification 

decisions have been consistently reached with fewer items when compared to the ACI 

method (Spray & Reckase, 1996; Eggen & Straetsmans, 2000; Thompson, 2011). The 

SPRT procedure operates quite differently than typical CAT and ACI procedures and as 

this study is based on a likelihood ratio testing procedure, namely the sequential 

probability ratio test, the following sections will focus on the SPRT-based methodology. 
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Sequential Probability Ratio Testing 

 The sequential probability ratio test (SPRT) procedure was developed by 

Abraham Wald (1947) as a means of conserving supplies in the quality control testing 

procedures during the Second World War. As part of the quality control measures large 

samples were drawn from the supply lines to be tested to examine the quality of the 

product. Initially the whole sample, or batch, was used in the testing and thereby rendered 

unserviceable. This presented a problem in that supplies during the war were already 

difficult to come by and the quality control procedures were consuming part of the 

products that could have been otherwise used by the military. Wald recognized an 

opportunity to conserve products by sequentially sampling single products until the 

likelihood of the batch passing or failing the quality control testing could be determined. 

Upon determining the likelihood of passing/failing, the remainder of the batch could then 

be returned to the supply lines for use by the soldiers. 

 SPRT was eventually suggested for use in psychological testing and extended to 

computerized classification testing (Ferguson, 1969; Epstein & Knerr, 1977; Reckase, 

1983; Kingsbury & Weiss, 1983; Spray & Reckase, 1987, 1994, 1996). In 1969 Ferguson 

studied the utility of the SPRT procedure in evaluating student mathematics ability. 

Ferguson’s procedure proved to be useful in reducing testing time and test length. Epstein 

and Knerr applied the SPRT procedure to military testing in 1977 resulting in similar 

improvements in test lengths as Ferguson’s studies. Kingsbury and Weiss (1983) 
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examined the classification accuracy of traditional classification testing methods and 

SPRT procedures. When optimal items pools were used where the majority of items have 

maximal information proximate to the cutscore, the classification accuracy rates for the 

traditional classification procedures and the SPRT procedures produced very similar 

results, 87% and 86% respectively. When a less than optimal item pool was used for the 

SPRT procedure the classification accuracy dropped significantly emphasizing the 

importance of an appropriate item bank for the procedure. It is important to note that 

theoretically the SPRT procedure does not terminate a test when it has reached a 

prespecified number of items though it is often considered to do so in research. The 

truncated SPRT (TSPRT) procedure however does include the criteria of a maximum 

number of items to terminate a test and has been used in research (Eggen, 1999; Spray & 

Reckase, 1996; Vos, 2000). 

 Outlined by Parshall, et al. (2002) are the steps of an TSPRT computerized 

classification test procedure including (1) specifying the TSPRT parameters, (2) item 

pool development for selection and administration, (3) item administration, (4) 

calculation of the likelihood ratio, and (5) the classification status. Steps 3 through 5 will 

continually repeat until an examinee is given a final classification resulting in the 

termination of the test or until the maximum test length is reached at which time a 

classification decision made. 
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Specification of TSPRT Parameters 

 TSPRT procedures continually test a set of basic hypotheses for an examinee with 

an ability level (𝛳) which results in a classification decision. The hypotheses are 

structured as 

𝐻0 ∶  𝛳𝑗 =  𝛳𝑐 −  𝛿 =  𝛳0 

𝐻1 ∶  𝛳𝑗 = 𝛳𝑐  +  𝛿 =  𝛳1 

where 𝛳𝑗 represents the ability level of the examinee, 𝛳𝑐 represents the passing score, δ 

represents the indifference region, 𝛳0 represents the maximum lower bound decision 

value for classification, and 𝛳1represents the minimum upper bound decision value for 

classification and thus 𝛳0 <  𝛳𝑐 <  𝛳1 (Parshall, et al., 2002). The null hypothesis, 𝐻0, 

states that the examinee’s ability level, 𝛳𝑗, is equal to lower-bound point of the 

indifference region, 𝛳0, which results in a classification status below the cutscore. The 

alternative hypothesis, 𝐻1, states that the examinee’s ability is equal the upper-bound 

point of the indifference region, 𝛳1, resulting in a classification status above the cutscore.  

 To begin the TSPRT procedure a cutscore, 𝛳𝑐, must first be defined as the upper 

and lower bound of the indifference region, 𝛳1 and 𝛳0, are both dependent on the 

cutscore value. An appropriate standard setting procedure should be used to obtain the 

cutscore based on the nature of the stakes involved in passing and failing the assessment. 

Because the indifference region is dependent on the cutscore, in certain circumstances it 



43 

 

 

may be useful to choose values for the indifference region during the standard setting. 

Assessment programs may elect to set indifference regions after simulation studies have 

been used to explore various allowable passing and failing scores based on error rates. 

Otherwise, the indifference region values are set to balance efficiency and accuracy based 

on the characteristics of the item pool. Commonly an indifference region is selected to be 

symmetrical around the cutscore (e.g. 𝛿 = 1.0, 𝛳𝑐 = 0.0, 𝛳0 = −0.5, 𝛳1 = 0.5) but this 

is not a requirement. As the consequences of false-positives and false-negatives may 

differ based on the purposes of the test, indifference region boundaries may be selected to 

be asymmetrical. Selecting the indifference region involves balancing the trade-offs 

between test length and classification error. Typically the larger the indifference region 

the shorter the test will be especially for individuals with abilities further from the 

cutscore. Individuals near the cutscore will have somewhat longer tests as well as 

increases in classification errors. Smaller indifference regions are better able to maintain 

classification accuracy but typically produce lengthier tests.  

 As with any classification procedure, there are inherent errors in classification. 

TSPRT procedures require that the error rates, α and β, be specified before the procedure 

is implemented. The false positive classification error rates, errors in which the examinee 

is classified as passing when their true ability level is less than the cutscore, are 

represented with α. The false negative classification error rates, errors in which the 

examinee was classified as failing when their true ability level is actually greater than the 
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cutscore, are represented by β. Both types of error rates may range from 0 to 1, but are 

typically fixed at .05 or .10 (Parshall, et al., 2002). The Type I and Type II error rates, A 

and B respectively, are used to calculate the upper and lower boundaries for the 

classification decision. 

 Upper boundary: A = (1 – β) / α     (8) 

Lower boundary: B = β / (1 – α)     (9) 

 TSPRT for multiple categorizations is similar to the procedure for dichotomous 

categorization with the exception that multiple sets of hypotheses are being evaluated 

simultaneously (Eggen, 2000). For example, when two cutscores are used to classify 

examinees into three categories (e.g. below/average/advanced) there are two sets of 

hypotheses. 

The hypotheses may be represented as: 

𝐻01 ∶  𝛳𝑗 =  𝛳𝑐1 −  𝛿01 =  𝛳01  (level 1) 

𝐻11 ∶  𝛳𝑗 =  𝛳𝑐1 + 𝛿11 =  𝛳11  (above level 1) 

𝐻02 ∶  𝛳𝑗 =  𝛳𝑐2 −  𝛿02 =  𝛳02  (below level 3) 

𝐻12 ∶  𝛳𝑗 =  𝛳𝑐2 + 𝛿12 =  𝛳12  (level 3). 
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where 𝛳𝑐1 represents the lower of two cutscores with the accompanying indifference 

region boundaries, 𝛿01 𝑎𝑛𝑑 𝛿11, and 𝜃𝑐2 represents the higher of two cutscores with the 

accompanying indifference region boundaries, 𝛿02 𝑎𝑛𝑑 𝛿12. A set of boundaries for each 

hypothesis must be specified and for the purposes of the current research it can be 

assumed that  𝛼0 =  𝛼1 =  𝛽0 =  𝛽1 =  𝛼,  𝛿01 =  𝛿11 =  𝛿02 =  𝛿12 =  𝛿, and ln(1 −

𝛼)/𝛼 =  𝐴.  

Item Pool Development for Selection and Administration 

 The TSPRT procedure is more efficient with an item pool where the difficulty of 

the items closely match the cutscore or cutscores used for evaluating the examinees. This 

is markedly different from typical CAT item pools where items are developed to span the 

full range of the ability scale. TSPRT procedures are efficient with item pools the 

distribution of item difficulty has minimal skewness and minimal dispersion around the 

cutscore or around each of cutscores being used to classify examinees. The further an 

item’s difficulty is from the cutscore, the less efficient the item is in providing 

information for classification procedure. Similar to typical CAT procedures, items with a 

higher discrimination value and a lower guessing parameter are more useful for TSPRT 

procedures. Items with higher discrimination and lower guessing parameters are more 

efficient for the scoring method as the probabilities associated with the examinee’s 

response are disparate and thereby more informative. Once the item pool is developed, by 

calculating the probabilities of correct and incorrect responses for both 𝜃0 and 𝜃1 for each 
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cutscore, the individual items can be prepared for a more rapid scoring process before the 

actual test administration. It has been generally accepted that classification testing items 

pools for SPRT procedures do not require item pools that are as large as typical CAT 

items pool. Parshall, et al. (2002) found that it has been conventional to use an exposure 

rate of approximately 20% resulting in functional item pools which contain five times 

that maximum number of items. 

Item Administration 

 For dichotomous categorization the item selection procedure is straightforward as 

there is only a single cutscore and the item pool should be closely distributed around the 

cutscore. Provisional ability estimates are not used to select items. Selecting items to 

provide maximum information at the cutscore has proven to be useful for TSPRT 

procedures (Spray & Reckase, 1994; Thompson, 2007, 2009). Without additional 

constraints the item selection procedure would continually select the same series of items 

so as to most closely match the cutscore and have high discrimination parameter values. 

Exposure controls are employed to manage overexposure of items while content 

balancing ensures that the test specifications are met. 

 Multiple category classification mimics typical CAT procedures while adjusting 

to accommodate the TSPRT procedure. When using multiple cutscores the TSPRT 

procedure does not employ an ability estimation procedure but rather selects items based 
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on the maximum item information for the cutscore deemed closest to the examinee’s 

ability. To determine which cutscore is closest to an examinee’s ability when an 

examinee’s interim score is between two cutscores the following are used: 

the minimum of 
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where 𝑎𝑖 and 𝑥𝑖 represent item discrimination and item responses respectively while the 

other variables were previously defined (Eggen & Straetmans, 2000). This form of 

multiple category classification using TSPRT is considered a cutscore-based item 

selection procedure for evaluating the examinee wherein items are selected to maximize 

one of the likelihood ratios being used to classify the examinee.  
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Calculation of Likelihood Ratio 

 With the parameters specified and an item administered, the likelihood ratio test is 

calculated to determine the likelihood of classification. The likelihood ratio, LR, is the 

ratio of the likelihoods of the response given both 𝛳0 and 𝛳1 for each cutscore (Parshall, 

et al., 2002; Thompson, 2007), 
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or equivalently, 
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 The item characteristic curve displayed in Figure 4 can be used to demonstrate 

where the probabilities associated with each of the indifference regions boundaries are 

obtained. 

 

Figure 4:    Probabilities of a correct response corresponding with indifference region 

boundaries where the item difficulty parameter, b = 0.0, matches the cutscore value.
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As examinees progress through the test, the likelihood ratio is continually updated where 

correct responses are incorporated as 
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and where incorrect responses are incorporated as 
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The resulting value of the calculated ratio is then compared to the decision points, A and 

B, for a classification or to continue administering test items. 

 For example, an examinee’s response string to five items where the examinee 

responded correctly to every other item (e.g. 10101) can be expressed as 
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where substituting probabilities and computing a score would be 
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When both the error rates, alpha and beta, are set to .05 the A and B values are calculated 

as 

19
05.

95.1








A

 

and 

05.
95.

05.

1








B

 

The log form of each value is used when comparing the value from the likelihood ratio to 

the A and B values so that when α and β are equal, the boundaries for classification 

decisions are symmetrical around 0. Thus, the log value of the likelihood ratio is 0.21, the 

B value is -1.28, and the A value is 1.28. As the likelihood value does not surpass either 

boundary value, -1.28 < 0.21 < 1.28, the test would continue to administer items. 

 Because the boundaries of the indifference region are fixed and unchanging with 

the TSPRT procedure, items with difficulty parameters which do not closely match the 

cutscore value are less efficient than items with difficulty parameters which closely 

match the cutscore. To illustrate the inefficiency of items where maximum information is 

not at the cutscore, Figures 5 and 6 display the probabilities of correct responses 

associated with the boundaries of the indifference region. The differences in the 

probabilities for the indifference region boundaries in Figures 5 and 6 is only 0.22 
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whereas the difference between the probabilities of the indifference region for the item in 

Figure 4 is 0.40. 

 

 

Figure 5:    Probabilities of a correct response corresponding with indifference region 

boundaries where the item difficulty parameter, b = 1.0, is above the indifference region. 
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Figure 6:    Probabilities of a correct response corresponding with indifference region 

boundaries where the item difficulty parameter, b = -1.0, is below the indifference region. 

Classification 

 As the guiding principle behind TSPRT procedures is to conserve items while 

maximizing classification accuracy, the TSPRT procedure will seek to terminate the test 

before reaching the pre-specified maximum number of items. Termination of a test using 

TSPRT for dichotomous categorization is simple and straightforward. As examinees 

progress through the test items the probability ratio is continually recalculated 
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of the likelihood ratio is compared to the A and B values to determine if the examinee can 

be classified or if another item should be administered. When the likelihood ratio value is 

greater than A the examinee is classified as passing. When the likelihood ratio value is 

less than B the examinee is classified as failing. 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛, |𝛳0, 𝛳1)  ≥ 𝐴,  reject 𝐻0, classify as passing.  (19) 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛, |𝛳0, 𝛳1)  < 𝐵, fail to reject 𝐻0, classify as failing.  (20) 

B < 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛, |𝛳0, 𝛳1) < 𝐴,  continue testing.    (21) 

In cases where examinees do not demonstrate an ability level sufficient to satisfy either 

hypothesis, a maximum test length is used to terminate the tests. Classification of the 

examinees is then achieved by calculating the difference between the likelihood ratio and 

the A and B values and selecting the classification which minimizes the difference. 

 Termination of the test when using multiple categorizations is similar to the single 

cutscore method with the exception that one or all of the statistical tests may have 

produced classifications. When using traditional TSPRT procedures for two cutscores, if 

the examinee is above the higher cutscore or below the lower cutscore it is possible that 

only the likelihood ratio for the cutscore closest to the examinee’s ability will classify the 

examinee and terminate the test. The inability of the cutscore furthest from the 

examinee’s ability to provide a classification decision is a function of the lack of 



55 

 

 

information used in calculating the likelihood ratio as items are being selected to provide 

maximum information for the cutscore closest to the examinee’s ability level. 

 Instances in which examinees are between the two cutscores would require that 

the likelihood ratio for the lower cutscore classify the examinee as above the lower 

cutscore while the likelihood ratio for the upper cutscore would have to classify the 

examinee as being below the upper cutscore to terminate the test before reaching the 

maximum test length. Otherwise the test continues until the maximum numbers of items 

have been administered. If the maximum number of items has been administered then the 

likelihood ratios for each cutscore are examined and classification status is decided by 

calculating the difference between each likelihood ratio and the A and B values and 

selecting the classification which minimizes the difference. 

Generalized Likelihood Ratio 

 Optimally item banks used for TSPRT procedures would contain items at or vary 

near the cutscore. Realistically item pools will be distributed about the cutscore to 

varying degrees. Items with difficulties that are further from the cutscore are less 

efficient. Hence the generalized likelihood ratio (GLR) (Huang, 2004; Bartroff, 

Finkelman, & Lai, 2008; Thompson, 2007, 2009) was proposed to ameliorate the 

inefficiency of items where the difficulty parameter does not closely match the cutscore 

value. 
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 The GLR is functionally equivalent to the TSPRT procedure in that the 

specification of parameters, the calculation of the likelihood ratio, and classification 

process are all the same. The sole difference between the TSPRT and GLR procedure is 

that 𝛳0 and 𝛳1 are fixed for the TSPRT procedure whereas 𝛳0 and 𝛳1 are allowed to vary 

in the GLR procedure. Based on the parameters specified for the TSPRT procedure, item 

difficulties may lie outside of the indifference region. The varying of 𝛳0 and 𝛳1 in the 

GLR procedure allows for the maximum of the likelihood function to be incorporated 

into the calculation when it does not lie within the indifference region. 

 For example, if a cutscore were 0 with a symmetrical indifference region 𝛳0 = -

0.2 and 𝛳1 = 0.2, and the item’s difficulty were 0.5, the GLR procedure would utilize the 

maximum of the likelihood function, 0.5, in place of the 0.2 value pre-specified for 𝛳1. 

When the maximum of the likelihood function is below or above the boundaries of the 

indifference region, the values of the boundaries are adjusted for that single item to 

incorporate the maximum of the likelihood function. Given the results of the research, 

Thompson (2007; 2009) advocated that the GLR procedure would never be less efficient 

than the SPRT method and that in it had in certain instances shown evidence of greater 

efficiency in terms of average test length. His results also suggested that the GLR had no 

loss in the accuracy of the classifications produced by the procedure. 

 The TSPRT maintains fixed parameter values for the indifference cutpoints, 𝛳0 

and 𝛳1, and by doing so maintains a focus on evaluating examinee ability between these 
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two cutpoints. By allowing the boundaries of the indifference region to vary as the GLR 

does, it has been demonstrated that the procedure can produce shorter tests. To illustrate 

the flexibility of the indifference region boundaries provided by the GLR procedure, 

Figures 7 and 8 include a 𝛳𝐺1 or 𝛳𝐺0 which is used in place of the original indifference 

region parameters, 𝛳1 or 𝛳0, when the difficulty parameter falls outside of indifference 

region. 

 

Figure 7:    Probabilities of a correct response corresponding with indifference region 

boundaries of the GLR where the item difficulty parameter, b = 1.0, is above the 

indifference region. 
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Figure 8:    Probabilities of a correct response corresponding with indifference region 

boundaries of the GLR where the item difficulty parameter, b = -1.0, is below the 

indifference region. 

 Unintentionally though, the GLR may also include irrelevant error by 

incorporating into the likelihood ratio calculation portions of the ability distribution 

which would be irrelevant given the correct/incorrect response of examinee. For example, 

Figure 9 illustrates the problem which arises when a correct response to a question where 

the item difficulty is greater than the upper boundary of the indifference region producing 

a penalty of sorts. The use of the more discrepant values produced by using the GLR 

indifference region boundaries has a greater negative impact on the examinee’s score 

than if the TSPRT procedure had been used. The examinee has essentially been penalized 
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for responding incorrectly to an item which is more difficult than the cutscore being used 

to classify the examinee. 

 

Figure 9:    Probabilities of an incorrect response corresponding with indifference region 

boundaries of the GLR where the item difficulty parameter, b = 1.0, is above the 

indifference region. 

 Figure 10 illustrates the problem which arises when an incorrect response to a 

question where the item difficulty is below the lower boundary of the indifference region 

resulting in a bonus to the examinee’s score. The use of the more discrepant values 

produced by using the GLR indifference region boundaries has a greater positive impact 

on the examinee’s score than if the TSPRT procedure had been used. The examinee has 
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essentially been given a bonus for responding correctly to an item which is less difficult 

than the cutscore being used to classify the examinee. 

 

Figure 10:    Probabilities of a correct response corresponding with indifference region 

boundaries of the GLR where the item difficulty parameter, b = -1.0, is below the 

indifference region. 

The new procedure being developed in this dissertation, a modification to the generalized 

likelihood ratio test, ameliorates this problem by only conditionally incorporating the 

portions of the ability distribution which are outside of the indifference region when the 

examinee response suggests that the additional information is useful. 
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Modified Generalized Likelihood Ratio 

 In the current research, one modification was proposed to the generalized 

likelihood ratio procedure to continue incorporating the efficiency of the GLR without 

including the possible additional error. To maintain the efficiency of the GLR, the newly 

proposed modified-GLR would function similar to the GLR procedure by incorporating 

the maximum of the likelihood function in instances where it does not lie within the 

indifference region.  Unlike the GLR, the modified-GLR only incorporates the maximum 

of the likelihood function conditional on whether the examinee answered the item 

correctly or incorrectly and whether the maximum of the likelihood function were above 

or below the region. When the maximum of the likelihood value is above the upper 

boundary of the indifference region the modified-GLR will only utilize the maximum of 

the likelihood when the examinee selects the correct response. Likewise, the modified-

GLR will only utilize the maximum value when it is below the indifference region when 

the examinee selects an incorrect response. Therefore, the equation for the mGLR is 
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    (22) 

where 𝛳𝑚1 and 𝛳𝑚0 represent the conditional boundaries associated with likelihood ratio 

test. The purpose of proposing the modified generalized likelihood ratio test is two-fold: 

1) to include the advantage of the GLR without the major drawback of also including 
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extraneous error into the likelihood ratio calculation and 2) utilize of ability-based item 

selection procedures. Figures 11 shows the cutscore, 𝛳𝐶, the two standard indifference 

region boundaries, 𝛳0 and 𝛳1, and the mGLR indifference region boundaries, 𝛳𝑚0 and 

𝛳𝑚1.  

 

Figure 11:    Illustration of cutscore and indifference region boundaries used with the 

mGLR procedure. 

 Figure 12 displays the indifference region boundaries with their corresponding 

probabilities when given a correct response. For the TSPRT procedure, the likelihood 

ratio would incorporate the 0.08 and 0.30 values. The GLR and mGLR would incorporate 

the 0.08 and 0.50 probabilities when calculating the likelihood ratio. Because the 
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examinee correctly answered an item which is more difficult than the cutscore, the 

examinee’s score is increased more than if the TSPRT boundaries were used. 

 

Figure 12:    Probabilities of a correct response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = 1.0, is above the 

indifference region. 

 Figure 13 displays the indifference region boundaries with their corresponding 

probabilities when an examinee has incorrectly answered the item. For both the TSPRT 

and mGLR procedures, the likelihood ratios would incorporate the 0.92 and 0.70 values. 

The GLR procedure would incorporate the 0.92 and 0.50 probabilities when calculating 

the likelihood ratio. Because the examinee incorrectly answered an item which is less 

difficult than the cutscore, the examinee’s score is decreased less than if the GLR 
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boundaries were used. Essentially a penalty has not been included in the score as the item 

difficult was greater than the indifference region. 

 

Figure 13:    Probabilities of an incorrect response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = 1.0, is above the 

indifference region. 

 To demonstrate the possible efficiency and unnecessary error produced by the 

TSPRT, GLR, and mGLR, Table 1 provides an example of the calculation of the 

likelihood ratios tests using a single response for an item where the difficulty lies above 

the indifference region. 
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Table 1:    Likelihood ratio test calculations for the TSPRT, GLR, and mGLR 

classification methods using a single item where b = 1.0, 𝜃0= 0.40, and 𝜃1= 0.60. 

Response Procedure Likelihood ratio 

correct TSPRT 𝐿𝑅 =  
0.30

0.25
= 1.2 

correct GLR 𝐿𝑅 =  
0.50

0.25
= 2.0 ∗ 

correct mGLR 𝐿𝑅 =  
0.50

0.25
= 2.0 ∗ 

incorrect TSPRT 𝐿𝑅 =  
0.70

0.75
= 0.93 

incorrect GLR 𝐿𝑅 =  
0.50

0.75
= 0.67 ∗∗ 

incorrect mGLR 𝐿𝑅 =  
0.70

0.75
= 0.93 

* Denotes the efficiency produced by incorporating the maximum of the likelihood 

function. **Denotes the error produced by utilizing the maximum of the likelihood 

indiscriminately.   

 When a correct response is given the GLR and mGLR achieve higher ratio values 

by incorporating a larger portion of the ability distribution and thereby larger 

discrepancies between the probabilities used in the calculation of the likelihood values. 
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This increase in the likelihood ratio produced by the GLR and mGLR can be sensibly 

accepted in the score as the examinee correctly answered an item which was more 

difficult than the cutscore. We may reasonably assume the examinee’s ability lies 

somewhere about or above the difficulty of the item and thereby use the probability value 

from the point of inflection in the likelihood ratio calculation. This advantage would help 

shorten test lengths when the examinee’s ability is above the cutscore. 

 When an incorrect response is observed for the same item, the TSPRT and mGLR 

produce ratio values higher than the GLR because the probabilities for 𝜃0 and 𝜃1 are less 

discrepant. Yet the GLR still uses needlessly as the point is outside and above the 

indifference region while the examinee’s response is incorrect. Extraneous error is 

incorporated into the likelihood ratio by utilizing the maximum of the likelihood function 

resulting in more discrepant probabilities in the likelihood calculation. The extraneous 

error may also be viewed as a penalty for incorrectly responding to an item which has a 

difficulty that is higher than the cutscore being used for classification. 

 The opposite occurs when the item difficulty is below the lower boundary of the 

indifference region. Figure 14 displays the indifference region boundaries with their 

corresponding probabilities when given an incorrect response. For the TSPRT procedure, 

the likelihood ratio would incorporate the 0.08 and 0.30 values. The GLR and mGLR 

would incorporate the 0.08 and 0.50 probabilities when calculating the likelihood ratio. 

Because the examinee incorrectly answered an item which is less difficult than the 
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cutscore, the examinee’s score is decreased more than if the TSPRT boundaries were 

used. 

 

Figure 14:    Probabilities of an incorrect response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = -1.0, is below the 

indifference region. 

Figure 15 displays the indifference region boundaries with their corresponding 

probabilities when an examinee has correctly answered the item. For both the TSPRT and 

mGLR procedures, the likelihood ratios would incorporate the 0.70 and 0.92 values. The 

GLR procedure would incorporate the 0.50 and 0.92 probabilities when calculating the 

likelihood ratio. Because the examinee correctly answered an item which is less difficult 

than the cutscore, the examinee’s score is increased less than if the GLR boundaries were 
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used. By not using the GLR boundaries, a bonus has not been included in the score as the 

item difficult was lower than the indifference region. 

 

 

Figure 15:    Probabilities of a correct response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = -1.0, is below the 

indifference region. 

 Table 2 provides an example of the calculation of the likelihood ratio test for the 

TSPRT, GLR, and mGLR using a single response for an item where the difficulty lies 

below the indifference region. 
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Table 2:    Likelihood ratio test calculations for the TSPRT, GLR, and mGLR 

classification methods using a single item where b = -0.50, 𝜃0= 0.40, and 𝜃1= 0.60. 

Response Procedure Likelihood ratio 

correct TSPRT 𝐿𝑅 =  
0.90

0.80
= 1.13 

correct GLR 𝐿𝑅 =  
0.90

0.50
= 1.80 ∗∗ 

correct mGLR 𝐿𝑅 =  
0.90

0.80
= 1.13 

incorrect TSPRT 𝐿𝑅 =  
0.10

0.20
= 0.50 

incorrect GLR 𝐿𝑅 =  
0.10

0.50
= 0.20 ∗ 

incorrect mGLR 𝐿𝑅 =  
0.10

0. .50
= 0.20 ∗ 

* Denotes the efficiency produced by incorporating the maximum of the likelihood 

function. **Denotes the error produced by utilizing the maximum of the likelihood 

indiscriminately.  

 When a correct response is observed for an item with a difficulty below the 

indifference region, the TSPRT and mGLR procedures use the likelihood values from 𝜃0 

and 𝜃1 to assess the performance of the examinee relative to the area about the cutscore. 
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The GLR artificially inflates the value from the likelihood ratio by incorporating the 

maximum of the likelihood thereby using more discrepant probabilities in the likelihood 

ratio calculation. The inflation of the score is not particularly useful given the item 

difficulty is below the cutscore which essentially adds a bonus to the examinee’s score 

for answering easier items correctly. Yet when an incorrect response is observed the GLR 

and mGLR procedures produce lower scores by incorporating the maximum of the 

likelihood and thereby including the portion of the ability distribution where it is 

reasonable to assume the examinee’s ability lies. The resulting probabilities are more 

discrepant rendering the item more efficient even though the item difficulty is not within 

the indifference region. This advantage would help shorten tests when the examinee’s 

ability is below the cutscore. 

 As additional items are administered under the GLR procedure the resulting 

benefits and errors will be compounded. Thus while the GLR has recently been proposed 

as a means of providing the opportunity for shorter tests while being comparable to the 

TSPRT procedure (Huang, 2004; Bartroff, Finkelman, & Lai, 2008; Thompson, 2007, 

2009), the current study sought to evaluate and provide evidence that the modified-GLR 

is a better means by producing similarly shortened tests without incorporating the 

extraneous error. 

 When multiple cutscores are used in a testing procedure each cutscore uses a 

separate set of indifference region boundaries. A likelihood ratio is calculated for each 
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classification decision point for each item that administered in the test. The cutscores and 

indifference regions shown in Figure 16 are symmetrical and equivalent for purposes of 

simplicity in the example.  

 

Figure 16:    Two cutscores with accompanying indifference region boundaries. 

 Figure 17 displays the various probabilities associated with the indifference 

region boundaries for both of the cutscores when the item difficulty is between the two 

indifference regions. For the likelihood ratio for the lower cutscore, 𝜃𝐶1, the upper 

boundary of the indifference region has been adjusted to the theta value corresponding 

with the maximum of the likelihood function, θ=0.0. Neither of the boundaries of the 

indifference region for the likelihood ratio for the upper cutscore are adjusted because the 

item difficulty is below the lower boundary of the indifference region. 
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Figure 17:    Probabilities of a correct response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = 0.0, is between the two 

indifference regions. 

 Figure 18 displays the various probabilities associated with the indifference 

region boundaries for both of the cutscores using the same item depicted in Figure 17. 

Given an incorrect response, neither of the boundaries of the indifference region of the 

lower cutscore change as the item difficulty is above the indifference region. The lower 

boundary of the higher cutscore, does adjust down to the theta value corresponding with 

the maximum of the likelihood function. 
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Figure 18:    Probabilities of an incorrect response corresponding with indifference region 

boundaries of the mGLR where the item difficulty parameter, b = 0.0, is between the two 

indifference regions. 

 The second purpose of proposing the mGLR procedure is to be able to use ability-

based item selection procedures which would then allow for an ability estimate to be 

determined for examinees and to enable test lengths to be shortened while maintaining a 

high degree of classification accuracy. As previously discussed, classification procedures 

based on TSPRT become inefficient when ability estimates are used to select items. The 

inefficiency of the procedures is due to the inflexibility of the indifference region 

boundaries. The GLR procedure could work more efficiently by switching from a 

cutscore-based item selection method to selecting items based on the examinee’s interim 
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ability estimates, but as discussed, the GLR method includes extraneous error. Therefore, 

the mGLR procedure was developed to provide a flexible TSPRT-based procedure which 

could utilize ability estimates to select items while still achieving an accurate 

classification decision more rapidly than the typical ability estimate based classification 

procedures (e.g. ACI). 

 Additionally the use of ability-based item selection enables the mGLR to provide 

an estimate of the examinee’s ability. The ability estimate allows examinees and other 

stakeholders the opportunity to examine how far above or below the examinee’s ability is 

estimated to be. This information could be useful in tracking examinee progress across 

time. In other circumstances, stakeholders such as potential employers would also be able 

to rank candidates based on their ability estimates.  

Statement of Problem 

 Over the last two decades studies have investigated various aspects of utilizing 

TSPRT procedures in educational testing including item selection methods, the number 

of cutscores used, variations in indifference regions, IRT models 

(dichotomous/polytomous/mixed models), and the implementation of TSPRT in 

computerized adaptive testing. Recently variants of the TSPRT procedure have been 

proposed such as the GLR procedure. Procedurally, TSPRT and GLR are highly similar 

and thereby it is reasonable that some of what is known about TSPRT would generalize 
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to GLR as well, but little is known about the extent to which GLR is more efficient and 

accurate when the procedures are used in CATs when considering multiple cutscores. 

Additionally, the currently proposed modified-GLR procedure was used in a CAT setting 

to provide for comparison with the GLR procedure.  

 To date, research on TSPRT-type and GLR procedures had been relegated to 

cutscore-based item selection methods. The proposed modified-GLR procedure was 

developed with the intent to enable a more efficient classification process including the 

use of ability-based item selection. As a result, the procedure is anticipated to maintain 

the high classification accuracy of TSPRT procedure while reducing the number of items 

that are used to classify the examinees. By adopting the ability-based item selection 

method with the modified-GLR procedure, more efficient items can be selected for 

administration as well as providing for a final ability level that can be estimated for each 

examinee. 

 This dissertation was designed to enable comparison between the classification 

accuracy rates and average test length across three classification testing procedures, 

namely TSPRT, GLR, and modified-GLR. Differences between accuracy rates and test 

length were examined within the context of variations in number of cutscores and the 

maximum number of items. The modified-GLR procedure was also examined when using 

two item selection procedures for differences between accuracy rates, average test 
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lengths, and to examine the recovery of ability estimates. Specifically, this dissertation 

was developed to examine the following research questions: 

1. How do the three classification testing procedures, TSPRT, GLR, and mGLR, 

using cutscore-based item selection compare to each other in terms of average test 

length and percent correct classification in the context of multiple cutscore and 

test length conditions? 

2. How does the implementation of an ability-based item selection method with the 

mGLR procedure compare with the cutscore-based item selection mGLR 

procedure in terms of average test length and percent correct classification?  

3. How well can ability levels be recovered as assessed using bias and root mean 

square error when an ability-based item selection method is implemented with the 

mGLR procedure? 

 To examine these questions, single-cutscore, two-cutscore, and three-cutscore 

conditions have been simulated for each classification testing method using two different 

maximum test lengths. Comparisons have been made across classification procedures 

using the same number of cutscores. Additionally, bias and root mean squared error were 

calculated to examine the recovery of the ability estimate parameter in mGLR conditions 

using the ability-based item selection method. 
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CHAPTER III: METHODOLOGY 

Design Overview 

 A simulation study was performed to evaluate the efficiency and effectiveness of 

multiple termination procedures in the context of computerized adaptive classification 

testing. The three classification procedures—the truncated sequential probability ratio 

test, the generalized likelihood ratio test, and the modified generalized likelihood ratio 

test—were implemented using items calibrated according to the 3-PL IRT model. The 

study design was a 3 (classification procedure) x 3 (number of cutscores) x 2 (test length) 

design yielding 18 conditions. An additional 6 conditions were also included in the study 

in which the modified-GLR procedure was implemented using an ability-based item 

selection procedure. Parallel to the cutscore-based item selection conditions, the mGLR 

with ability-based item selection was examined using variations in the number of 

cutscores and test lengths. The complete study yielded a total of 24 conditions—18 

conditions were simulated using the traditional SPRT-type item selection method which 

selects items to maximize information at the cutscore while 6 conditions using the mGLR 

method were simulated using the traditional CAT item selection method which selects 

items to maximize information at the current ability estimate. It is important to note that 

comparisons could only be made between classification procedures with the same 

number of cutscores and with the same maximum number of items. Additionally only the 
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mGLR procedure was simulated using the ability-based item selection method as 

previous research has demonstrated the inefficiency of TSPRT procedure when using this 

item selection method (Spray & Reckase, 1994; Thompson N. A., 2007, 2009). Due to 

the similarity of the rigid indifference region parameters of the TSPRT, no simulation 

using ability estimate-based item selection with the GLR was performed. Therefore, only 

the results from the mGLR with cutscore-based item selection was compared with the 

results from the mGLR with ability-based item selection. 

Item Pool 

The item pool used in this dissertation is taken from a national test consisting of 540 

multiple choice items calibrated with the 3-PL model. The item pool contains items from 

six content domains. Table 3 presents descriptive statistics for the item parameter 

estimates by content domain. 
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Table 3:    IRT item statistics for item pool. 

Content 

Domain 

 
a parameter b parameter c parameter 

Content I 

n=127 

Mean (SD) 0.839 (0.242) -0.544 (1.093) 0.204 (0.080) 

Min 0.266 -3.106 0.066 

Max 1.490 5.543 0.489 

     

Content II 

n=89 

Mean (SD) 1.010 (0.302) 0.030 (0.937) 0.190 (0.066) 

Min 0.561 -2.114 0.065 

Max 1.783 2.198 0.352 

     

Content III 

n=81 

Mean (SD) 1.120 (0.322) 0.411 (0.929) 0.187 (0.072) 

Min 0.449 -2.125 0.039 

Max 2.149 3.277 0.382 

     

Content IV 

n=81 

Mean (SD) 1.105 (0.324) 0.552 (0.879) 0.189 (0.086) 

Min 0.465 -2.362 0.056 

Max 1.838 2.807 0.500 

     

Content V 

n=126 

Mean (SD) 1.050 (0.319) 0.552 (0.879) 0.19 (0.087) 

Min 0.481 -2.171 0.058 

Max 1.186 2.428 0.447 

     

Content VI 

n=36 

Mean (SD) 1.286 (0.357) 1.024 (0.745) 0.183 (0.068) 

Min 0.720 -0.193 0.054 

Max 2.317 2.264 0.298 

     

TOTAL 

n=540 

Mean (SD) 1.028 (0.327) 0.161 (1.048) 0.192 (0.079) 

Min 0.266 -3.106 0.039 

Max 2.137 5.543 0.500 
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Data Generation 

  A single simulation data set was generated from a uniform distribution 

ranging from -3.0 to 3.0. A uniform distribution was selected for use in this study to 

ensure a sufficient number of simulees in the extreme regions of the ability distribution so 

that classification accuracy, test length, and ability level recovery can be examined across 

the full range of ability. The same dataset was used in all CAT simulation conditions to 

enable comparisons to be made between procedures. For the single data set 1,000 

simulees with accompanying response strings were generated for each theta value in 

discrete 0.10 logit increments resulting in a total of 61,000 simulees. 

 Responses to all 540 items for each individual examinee were generated using the 

dichotomous 3-PL IRT model. To simulate examinee responses for each of the 24 

conditions, an ability level was assigned to each examinee based on a uniform 

distribution ranging from -3.0 to 3.0—this ability level value will be referred to as the 

simulated ability level. The probability of responding correctly was calculated for each 

simulee based on their simulated ability level and the item parameters for the 540 items. 

Item responses were generated by comparing the probability of a correct response to a 

random number drawn from a uniform distribution with a minimum of 0 and a maximum 

of 1. Probability values greater than the randomly drawn number were recorded as correct 

responses (1) while probability values less than the randomly drawn number were 

recorded as incorrect responses (0). This procedure was repeated for all items and 
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simulees until item responses had been generated to build a single simulated response 

data set. The SAS macro program IRTGEN was used to create the data set (Whittaker, 

Fitzpatrick, Williams, & Dodd, 2003) by utilizing simulated ability levels based on a 

uniform distribution and the item parameters from the 540 items into the SAS macro 

program. 

CAT Simulations  

 The CAT simulations were performed using SAS computer programs that were 

written to utilize the cutscore-based item selection method proposed by Eggen and 

Straetsman (2000) for the multiple-cutscore conditions using the TSPRT, GLR, and 

modified-GLR procedures. An additional CAT simulation program was written for SAS 

wherein the modified-GLR procedure was designed to operate using an ability-based 

item selection method. All CAT simulations were programmed to incorporate the same 

Randomesque exposure control and content balancing constraints. The Randomesque 

procedure was programmed to draw five items for possible administration each time the 

simulees was to be administered another item. Content balancing was designed to select 

items to be proportional to the content category as they were present in the item pool. For 

conditions using cutscore-based item selection methods where a single cutscore was 

being used, the initial item selected for administration was selected to maximize 

information at the cutscore. For conditions using cutscore-based item selection where two 

cutscores were to be used, the initial item selected for administration was selected so that 
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the item information was maximized at the midpoint between the two cutscore theta 

levels. In the study conditions using cutscore-based item selection where three cutscores 

were to be used, the initial item selected for administration was selected to maximize 

information at the middle cutscore, the same cutscore used in the single-cutscore 

conditions. As is common practice for typical CAT simulations, the conditions using the 

modified-GLR with ability-based item selection were programmed to select the initial 

item which maximized the information at the mean of the ability distribution. 

 Type I and Type II error rates were defined by α and β, respectively. Following 

previous research (Parshall et al., 2002; Lin, 2010), for all single cutscore conditions   

𝛼 =  𝛽 =  .05 resulting in lower- and upper-bound decision values of A=19, B=.052632, 

lnA=2.944, and lnB=-2.944. For conditions in which there were two cutscores 𝛼0 =  𝛼1 =

 𝛽0 =  𝛽1 =  .05 resulting in identical values for each parameter as described for the 

single cutscore conditions. 

Classification Testing Procedures 

Three test termination procedures, TSPRT, GLR, and modified-GLR, have been 

examined to evaluate the effectiveness and efficiency of the 24 conditions in the 

proposed study. The TSPRT procedure has been considered a baseline condition as both 

the GLR and modified-GLR function very similarly but should have been no less 

advantageous in regards to both average test length and percent correct classification. 
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Because the procedures are very similar in functionality, a common set of test parameters 

were used throughout the study to ensure comparability across conditions. 

Test conditions in which a single cutscore were used to classify examines utilized a 

cutscore, 𝛳𝑐, located at the peak of the test information function. Conditions which 

implemented two cutscores, 𝛳𝑐1 and 𝛳𝑐2, to classify examinees into one of three 

classifications had cutscores placed one-half standard deviation below and above the 

peak of the test information function. For the test conditions implementing three 

cutscores, the lowest cutscore, 𝛳𝑐1, was placed one-half standard deviation below the 

peak of the test information function, the middle cutscore, 𝛳𝑐2, was placed at the peak of 

the test information function, and the highest cutscore, 𝛳𝑐3, was placed one-half standard 

deviation above the peak of the test information function. The locations of the cutscores 

were determined so that indifference region boundaries for the TSPRT conditions would 

not overlap. Previous research has commonly used indifference widths ranging from 0.00 

to 0.50 in increments ranging from 0.02 to 0.10 (Spray J. A., 1993; Spray & Reckase, 

1994; Thompson, 2009).The width of the indifference region, δ, will be fixed for all 

conditions and be symmetrical with δ = 0.20. 

 Termination of CATs. Individual tests were terminated when the A or B boundary 

test parameters had been surpassed by the value of the likelihood ratio or when the 

maximum test length had been reached. A maximum number of items per test was set 

based on the condition, 40 or 60. Examinees which were not classified before reaching 
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the maximum number of items were classified based on the final value of the likelihood 

ratio being compared to the cutscore theta, 𝛳𝑐. 

Item Selection Method 

 The cutscore-based item selection method was implemented with the TSPRT, 

GLR, and mGLR classification methods. Items were selected to provide maximum 

information at the cutscore for the single cutscore conditions. For the test conditions with 

more than one cutscore, the method proposed by Eggen and Straetsman (2000) which 

selects items to maximize the likelihood ratio of the cutscore nearest the examinee’s 

ability was implemented. Fisher’s information was used for the conditions using the 

ability-based item selection method for the modified-GLR procedure. The 

aforementioned Randomesque procedure (Kingsbury & Zara, 1989) using a set of 5 items 

was incorporated into the item selection methods to control item exposure in all 

conditions. Additionally, the constrained CAT (CCAT) developed by Kingsbury and Zara 

(1989) was used to provide content balancing. 

Number of Cutscores 

 Ideally, item pools for classification testing would be developed so that item 

difficulties would match the intended cutscore. As this study used a previously developed 

item pool, a cutscore was selected for use based on the characteristics of the existing 

items. For the single cutscore conditions the cutscore was placed at the peak of the test 
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information function, 𝛳𝑐 = 1.0. Conditions which implemented two cutscores had a 

cutscores placed 0.50 standard deviations below and above the mean item difficulty for 

the item pool. The lower cutscore was 𝛳𝑐1 = 0.50 and the upper cutscore was 𝛳𝑐2 = 1.50. 

For the conditions which utilized three cutscores, the three aforementioned cutscores 

were combined into a single procedure. The lowest cutscore was 𝛳𝑐1 = 0.50, the middle 

cutscore was 𝛳𝑐2 = 1.00, and highest cutscore was 𝛳𝑐3 = 1.50. 

Test Length 

 The maximum test lengths, 40 and 60 items, were selected based on the length of 

the original test form, as well as previous research using likelihood ratio-based 

procedures (Spray & Reckase, 1994; Eggen & Straetmans, 1996; Spray & Reckase, 1996; 

Lau & Wang, 2000; Finkelman, 2008, 2009; Wouda & Eggen, 2009). Selected test 

lengths also ensure that, given the constraints of the exposure control procedure and 

content balancing, items would be selected for administration from content domains 

proportional to the 6 content domains in the item pool. Consideration was also given to 

the SE of the ability estimates produced by the mGLR procedure using the ability-based 

item selection, thus a longer test, 60 item test, will enable a comparison to the SE of the 

ability estimates to the shorter test length. A minimum test length of 20 items was 

selected based on previous research (Thompson, 2010, 2011). 
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Data Analyses 

 To evaluate the performance of the procedures the average test length (ATL) and 

the percent of correct classification (PCC) was compared across comparable conditions. 

Both outcome measures, ATL and PCC, were calculated conditional on the simulated 

theta values in increments of 0.10 for each study condition. These two methods of 

evaluation are consistent with previous methods (Finkelman, 2008, 2010; Parshall et al., 

2002; Spray, 1993, Spray & Reckase, 1994; Wouda & Eggen, 2009).  

 The evaluation of the ATL and PCC was a comparison of the descriptive statistics 

for each variable. For each theta value in each of the 24 conditions for the average test 

length variable a mean and standard deviation, and minimum and maximum test length 

were calculated. The percent of correct classification was calculated for each theta level 

in each of the 24 conditions. To examine the recovery of the simulee’s known ability 

level, conditional bias and root mean squared error (RMSE) plots have been developed 

for the 6 modified GLR conditions using the ability-based item selection method.  The 

following equations were used to calculate Bias and RMSE: 
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where 𝛳̂𝑘 is the estimated ability level of simulee k and 𝛳𝑘 is the known ability level of 

simulee k. 
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CHAPTER IV: RESULTS 

 This study was designed to compare three classification procedures (TSPRT, 

GLR, and mGLR) in the context of multiple cutscore conditions (one, two, and three 

cutscores) using two test lengths (40 and 60 item maximum) in a CAT setting. 

Additionally, the mGLR procedure was programmed using an ability estimation item 

selection methodology. The results from the second part of the study are a comparison 

between the mGLR procedures using cut-based item selection and ability-based item 

selection. Results of ability estimate parameter recovery from the mGLR procedures 

using an ability-based item selection method are also discussed. 

Cutscore-based Item Selection Procedures  

Average Test Length 

 This study uses three classification procedures and two maximum test lengths in 

CAT simulations. All of the classification methods compared in this section used a 

cutscore-based item selection method. Tables 4, 5, and 6 present the conditional means 

and standard deviations for all three classification procedures using two maximum test 

lengths. The accompanying plots, Figures 19 through 24, display conditional average test 

lengths for each procedure based on the number of cutscores and maximum test length. 

Table 4 provides the conditional means and standard deviations for the TSPRT, GLR, 
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and mGLR procedures when a single cutscore was used. The cutscore for the single-

cutscore conditions was placed at the peak of the test information function at the theta 

value of 1.00. 

 As evidenced in Table 4 and accompanying conditional plots, Figures 19 and 20, 

the resulting means and standard deviations for both test length conditions are highly 

similar. For the conditions with the 40 item maximum test length, ATL range from 37.34 

to 37.62. Similarly, for the conditions with the 60 item maximum test length, ATL range 

from 49.50 to 50.94. Figures 19 presents the conditional ATL plots for the procedures 

using a single cutscore with a 40 item maximum test length while Figure 20 presents the 

plots for the 60 item maximum test length. 
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Table 4:    Conditional average test length (ATL) and standard deviation (SD) for the single-cutscore item maximum test 

length conditions. 

 

40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.16 0.84  20.15 0.80  20.15 0.85  20.12 0.77  20.12 0.72  20.16 0.81 

-2.5  20.23 1.02  20.25 1.14  20.22 1.09  20.26 1.13  20.20 0.92  20.24 1.04 

-2.0  20.34 1.50  20.30 1.18  20.29 1.22  20.28 1.15  20.28 1.42  20.27 1.26 

-1.5  20.48 1.66  20.47 1.77  20.45 1.60  20.40 1.52  20.47 1.87  20.47 1.69 

-1.0  21.00 2.75  20.88 2.45  20.84 2.53  20.96 2.66  20.92 2.55  20.80 2.45 

-0.5  22.15 4.17  22.00 3.92  21.90 3.98  22.27 4.98  22.16 4.52  22.16 4.61 

0.0  25.67 6.84  25.42 6.83  25.45 6.75  26.21 8.91  26.02 8.53  25.84 8.04 

0.5  32.28 7.96  32.61 7.95  31.88 8.02  37.92 14.53  36.85 13.71  36.43 13.59 

1.0  37.34 5.60  37.50 5.50  37.62 5.43  50.94 13.12  49.50 13.52  50.27 13.17 

1.5  33.10 7.73  32.56 7.81  33.33 7.73  39.08 14.74  38.39 14.45  39.89 14.75 

2.0  25.94 6.78  25.88 6.54  26.32 6.86  26.24 8.04  26.47 8.09  26.64 8.46 

2.5  21.49 3.19  21.41 2.94  21.80 3.80  21.56 3.17  21.50 3.02  21.76 3.55 

3.0  20.48 1.55  20.44 1.52  20.54 1.67  20.44 1.54  20.37 1.21  20.55 1.63 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized 

Likelihood Ratio.
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 19:    Conditional average test length (ATL) for the single-cutscore 40 item 

maximum test length conditions.  
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 20:    Conditional average test length (ATL) for the single-cutscore 60 item 

maximum test length conditions.  

  

0

10

20

30

40

50

60

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

A
T

L

𝛳

TSPRT GLR mGLR



93 

 

 

 Table 5 presents the conditional means and standard deviations for the TSPRT, 

GLR, and mGLR procedures when two cutscores were used. The lower cutscore for the 

two-cutscore conditions was placed 0.50 standard deviations below the peak of the test 

information function at the theta value of 0.50 while the upper cutscore for the two-

cutscore conditions was placed 0.50 standard deviations above the peak of the test 

information function at the theta value of 1.50. 

 ATL results for the lower cutscore in the conditions with the 40 item maximum 

test length range from 38.16 to 34.38. The mGLR procedure has the lowest ATL 

followed by the GLR and TSPRT procedures. Similarly, for the upper cutscore the 

mGLR has the lowest ATL at 34.31 followed closely by the GLR. For the theta values 

between the two cutscores, the mGLR yields the best results with lower ATL than both 

the TSPRT and GLR procedures.  

 For the conditions with the 60 item maximum test length, the mGLR outperforms 

the TSPRT and GLR procedures. ATL for the lower cutscore range from 44.91 to 52.12. 

The upper cutscore yields ATLs ranging from 48.86 to 41.97. The theta levels between 

the two cutscores also show that the mGLR procedure results in lower ATLs. Figure 21 

presents the conditional ATL plots for the procedures using two cutscores with a 40 item 

maximum test length while Figure 22 presents the plots for the 60 item maximum test 

length. 
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Table 5:    Conditional average test length (ATL) and standard deviation (SD) for the two-cutscore item maximum test length 

conditions. 

 

40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.42 1.62  20.17 0.95  20.62 2.19  20.36 1.75  20.19 1.04  20.51 2.01 

-2.5  20.55 1.97  20.26 1.35  20.69 2.42  20.45 1.70  20.31 1.39  20.70 2.30 

-2.0  20.78 2.49  20.59 2.12  20.93 2.69  20.79 2.46  20.46 1.67  21.16 3.46 

-1.5  21.51 3.48  20.74 2.29  21.63 3.69  21.41 3.45  20.83 2.39  21.78 4.28 

-1.0  23.01 5.25  22.02 4.24  22.91 5.21  22.92 5.71  21.81 4.01  23.46 6.07 

-0.5  26.66 7.43  24.71 6.68  26.15 7.43  27.85 10.88  25.31 8.76  27.56 10.46 

0.0  33.14 8.11  30.65 8.50  32.27 8.31  39.99 15.11  34.97 14.66  37.56 15.23 

0.5  38.16 4.58  36.53 6.41  34.38 7.87  52.12 11.81  48.16 14.67  44.91 16.34 

1.0  38.15 3.42  37.60 5.09  33.62 7.46  47.28 10.72  48.37 12.74  38.78 13.78 

1.5  37.74 4.75  34.94 7.28  34.31 7.09  48.86 12.81  43.89 14.57  41.97 14.95 

2.0  32.33 8.13  28.19 8.02  31.37 8.32  38.20 15.12  30.89 12.53  36.68 15.41 

2.5  24.59 6.43  22.23 4.84  24.47 6.56  24.89 8.25  22.29 4.92  25.09 8.70 

3.0  20.88 2.68  20.35 1.65  21.15 3.12  20.86 2.46  20.38 1.71  21.22 3.62 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood Ratio; mGLR = Modified 

Generalized Likelihood Ratio. 
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 21:    Conditional average test length (ATL) for the two-cutscore 40 item 

maximum test length conditions.  
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 22:    Conditional average test length (ATL) for the two-cutscore 60 item 

maximum test length conditions.  
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 Table 6 presents the conditional means and standard deviations for the TSPRT, 

GLR, and mGLR procedures when three cutscores were used. The lowest cutscore for the 

three-cutscore conditions was placed 0.50 standard deviations below the peak of the test 

information function at the theta value of 0.50. The middle cutscore was placed at the 

peak of the test information function at the theta value of 1.00. The highest cutscore was 

placed 0.50 standard deviations above the peak of the test information function at the 

theta value of 1.50. 

 The ATL results for the lowest cutscore in the 40 item maximum test length range 

from 38.96 to 37.80. The GLR procedure yields the lowest ATL followed closely by the 

mGLR and TSPRT procedures. The ATL results for the middle cutscore range from 

39.80 to 38.16 with the mGLR providing the lowest ATL. Analogous to the results from 

the lowest cutscore, the results from the highest cutscore range from 38.43 to 37.29 with 

the GLR slightly outperforming the mGLR. For the theta values between the two 

cutscores, the mGLR yields the best results with lower ATL than both the TSPRT and 

GLR procedures.  

 For the conditions with the 60 item maximum test length, the mGLR and GLR 

were highly similar, outperforming the TSPRT procedure at the lowest cutscore with 

ATLs ranging from 54.81 to 49.57. ATL for the middle cutscore range from 56.65 to 

50.16 with the mGLR producing the lowest ATL. The highest cutscore yields ATLs from 

53.52 to 47.34 where the GLR slightly outperformed the mGLR. The theta levels 
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between the three cutscores also show that the mGLR procedure results in lower ATLs. 

Figures 21 presents the conditional ATL plots for the procedures using a single cutscore 

with a 40 item maximum test length while Figure 22 presents the plots for the 60 item 

maximum test length. 
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Table 6:    Conditional average test length (ATL) and standard deviation (SD) for the three-cutscore item maximum test length 

conditions. 

 

40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.48 2.00  20.22 1.09  20.68 2.43  20.48 1.87  20.27 1.45  20.81 2.97 

-2.5  20.64 2.45  20.21 1.05  20.77 2.49  20.54 1.86  20.31 1.50  20.81 2.84 

-2.0  20.83 2.61  20.51 1.98  21.22 3.40  21.00 2.92  20.56 2.17  21.34 3.82 

-1.5  21.36 3.16  20.90 2.68  22.10 4.39  21.54 3.92  20.90 2.54  21.87 4.42 

-1.0  23.11 5.41  21.92 4.21  23.51 5.75  23.33 6.45  22.11 4.62  24.33 7.15 

-0.5  27.02 7.73  24.70 6.60  27.37 7.71  28.41 10.66  25.84 9.32  28.83 10.96 

0.0  33.69 7.81  31.14 8.41  33.16 7.93  41.30 15.51  35.70 14.58  39.77 14.93 

0.5  38.96 3.84  37.39 5.77  37.80 4.90  54.81 10.39  50.29 13.85  49.57 12.80 

1.0  39.80 1.77  38.93 3.62  38.16 3.92  56.65 6.63  54.12 10.36  50.16 11.53 

1.5  38.43 4.87  36.29 6.77  37.29 5.28  53.52 10.67  47.34 14.57  48.00 12.89 

2.0  32.84 8.02  28.66 8.33  32.13 8.23  38.94 15.54  31.31 13.02  38.66 15.24 

2.5  24.68 6.43  22.32 4.90  24.83 6.91  24.53 7.85  22.25 5.02  25.72 8.85 

3.0  20.99 2.88  20.40 1.77  21.33 3.56  21.02 2.96  20.31 1.39  21.37 3.60 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood Ratio; mGLR = Modified 

Generalized Likelihood Ratio. 
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 23:    Conditional average test length (ATL) for the three-cutscore 40 item 

maximum test length conditions.  
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 24:    Conditional average test length (ATL) for the three-cutscore 60 item 

maximum test length conditions.  
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Percent Correct Classification 

 All of the classification methods compared in this section used a cutscore-based 

item selection method. Tables 7, 8, and 9 present the conditional percent correct 

classification and an overall accuracy percentage at the bottom of the tables for all three 

classification procedures using the two maximum test lengths. The accompanying plots, 

Figures 25 through 30, display conditional percent correct classification for each 

procedure based on the number of cutscores used and maximum test length for each study 

condition. Table 7 provides the conditional percent correct classification for the TSPRT, 

GLR, and mGLR procedures when a single cutscore was used. The cutscore for the 

single-cutscore conditions was placed at the theta value of 1.00.  

 For the conditions with the 40 item maximum test length, at the cutscore the PCC 

ranges from 45.1% to 49.9%. The mGLR has the poorest performance at the cutscore but 

exhibits similar PCCs to the other procedures at the remaining theta values. The overall 

accuracy of classifications is highly similar across procedures. 

 Similarly, for the conditions with the 60 item maximum test length, at the 

cutscore the PCC ranges from 40.8% to 49.3%. Here again, the mGLR performs the 

poorest at the cutscore but provides similar PCC results across the remainder of the theta 

scale. Figures 25 presents the conditional PCC plots for the procedures using a single 

cutscore with a 40 item maximum test length while Figure 26 presents the plots for the 60 

item maximum test length.  
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Table 7:    Conditional percent correct classification for the single-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  100%  100%  100%  100%  100%  100% 

-2.5  100%  100%  100%  100%  100%  100% 

-2.0  100%  100%  100%  100%  100%  100% 

-1.5  100%  100%  100%  100%  100%  100% 

-1.0  100%  100%  100%  100%  100%  100% 

-0.5  100%  99.9%  100%  100%  100%  100% 

0.0  99.4%  99.2%  99.8%  100%  100%  100% 

0.5  94.7%  92.7%  93.6%  96.6%  97.1%  97.9% 

1.0  49.9%  49.5%  45.1%  49.3%  46.3%  40.8% 

1.5  91.3%  92.6%  91.8%  96.1%  94.4%  93.2% 

2.0  99.9%  99.8%  99.6%  100%  100%  100% 

2.5  100%  100%  100%  100%  100%  100% 

3.0  100%  100%  100%  100%  100%  100% 

Overall  95.4%  95.5%  95.3%  96.2%  96.0%  95.9% 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized 

Likelihood Ratio; mGLR = Modified Generalized Likelihood Ratio. 



104 

 

 

 

PCC = Percent Correct Classification; TSPRT = Truncated Sequential Probability Ratio 

Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized Likelihood 

Ratio. 

Figure 25:    Conditional percent correct classification (PCC) for the single-cutscore 40 

item maximum test length conditions.  
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PCC = Percent Correct Classification; TSPRT = Truncated Sequential Probability Ratio 

Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized Likelihood 

Ratio. 

Figure 26:    Conditional percent correct classification (PCC) for the single-cutscore 60 

item maximum test length conditions.  
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 Table 8 provides the conditional percent correct classification for the TSPRT, 

GLR, and mGLR procedures when two cutscores were used. The lower cutscore for the 

two-cutscore conditions was placed 0.50 standard deviations below the peak of the test 

information function at the theta value of 0.50 while the upper cutscore for the two-

cutscore conditions was placed 0.50 standard deviations above the peak of the test 

information function at the theta value of 1.50. 

 For the conditions with the 40 item maximum test length, at the lower cutscore 

the PCC ranges from 41.9% to 60.8%. The mGLR has the best performance at the lower 

cutscore and exhibits similar PCCs to the other procedures at the majority of the 

remaining theta values. The overall accuracy of classifications at the lower cutscore are 

similar across procedures ranging from 87.7% to 90.4%.For the upper cutscore using a 40 

item maximum test length the mGLR exhibits the poorest performance with a PCC of 

30.0% while the PCC for the TSPRT and GLR are 40.6% and 53.5% respectively. The 

PCC for the theta levels between the cutscores show that the mGLR and TSPRT, 90.8% 

and 92.5%, outperform the GLR procedure, 76.2%. 

 Similar to the results of the 40 item maximum test length, the conditions with the 

60 item maximum test length the mGLR performs the best at the lower cutscore, but the 

poorest at the upper cutscore. Even with the poor performance at the upper cutscore the 

mGLR provided similar PCC results across the remainder of the theta scale. At the lower 

cutscore PCC ranges from 43.9% to 60.1%. The PCC results at the upper cutscore range 
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from 25.4% to 51.8% with the GLR performing the best. Again, the PCC for the theta 

levels between the two cutscores show that the mGLR and TSPRT outperform the GLR 

procedure by at least 8.7%. Figures 27 and 28 present the conditional PCC plots for the 

40 and 60 item maximum test lengths. 

  



108 

 

 

Table 8:    Conditional percent correct classification for the two-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  100%  99.9%  99.2%  100%  100%  99.1% 

-2.5  100%  99.7%  98.7%  100%  100%  99.0% 

-2.0  100%  99.6%  98.1%  100%  100%  98.5% 

-1.5  100%  99.4%  98.4%  100%  100%  97.7% 

-1.0  99.8%  99.4%  96.5%  100%  100%  97.9% 

-0.5  99.0%  98.6%  92.4%  100%  99.1%  94.1% 

0.0  89.4%  91.8%  80.4%  94.0%  93.9%  83.9% 

0.5  52.8%  41.9%  60.8%  51.5%  43.9%  60.1% 

1.0  90.8%  76.2%  92.5%  95.0%  86.3%  96.5% 

1.5  40.6%  53.5%  30.0%  36.8%  51.8%  25.4% 

2.0  88.1%  91.2%  79.5%  92.3%  93.2%  81.2% 

2.5  99.6%  99.2%  96.7%  100%  99.0%  97.2% 

3.0  100%  99.9%  98.8%  100%  100%  99.1% 

Overall  90.4%  89.3%  87.7%  91.9%  91.0%  88.7% 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized 

Likelihood Ratio; mGLR = Modified Generalized Likelihood Ratio. 
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PCC = Percent Correct Classification; TSPRT = Truncated Sequential Probability Ratio 

Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized Likelihood 

Ratio. 

Figure 27:    Conditional percent correct classification (PCC) for the two-cutscore 40 item 

maximum test length conditions.  
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PCC = Percent Correct Classification; TSPRT = Truncated Sequential Probability Ratio 

Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized Likelihood 

Ratio. 

Figure 28:    Conditional percent correct classification (PCC) for the two-cutscore 60 item 

maximum test length conditions.  
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 Table 9 presents the conditional PCC for the TSPRT, GLR, and mGLR 

procedures when three cutscores were used. The lowest cutscore for the three-cutscore 

conditions was placed 0.50 standard deviations below the peak of the test information 

function at the theta value of 0.50. The middle cutscore was placed at the peak of the test 

information function at the theta value of 1.00. The highest cutscore was placed 0.50 

standard deviations above the peak of the test information function at the theta value of 

1.50. 

 The PCC results for the lowest cutscore in the 40 item maximum test length range 

from 33.6% to 53.5%. The GLR procedure has the highest PCC, 53.5%, at the lowest 

cutscore while the GLR has the lowest PCC, 33.6. The PCC results for the middle 

cutscore range from 38.3% to 45.9%. The mGLR provides the highest PCC followed 

closely by the TSPRT while the GLR performs the poorest. For the highest cutscore, the 

GLR performs the best with a PCC of 53.7% while the mGLR yields the poorest 

performance with 28.4% correct classification. 

 The results for the conditions with the 60 item maximum test length follow a 

similar pattern as the conditions with a 40 item maximum test length. At the lowest 

cutscore the GLR procedure has the highest PCC, 58.5%, while the GLR has the lowest 

PCC, 35.0%. The PCC results for the middle cutscore are similar across procedures 

ranging from 44.2% to 46.5%. For the highest cutscore, the GLR performs the best with a 

PCC of 49.8% while the mGLR performed the poorest with 21.4% correct classification. 
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Figure 29 presents the conditional PCC plots for the procedures using three cutscores 

with a 40 item maximum test length while Figure 30 presents the plots for the 60 item 

maximum test length conditions.  
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Table 9:    Conditional percent correct classification for the three-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

TSPRT  GLR  mGLR  TSPRT  GLR  mGLR 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  100%  99.9%  99.8%  100%  100%  99.7% 

-2.5  100%  100%  99.6%  100%  99.7%  99.3% 

-2.0  100%  99.8%  99.5%  100%  99.7%  99.1% 

-1.5  99.9%  99.7%  99.3%  100%  99.4%  98.9% 

-1.0  99.7%  99.3%  98.1%  100%  99.3%  97.6% 

-0.5  97.9%  97.7%  91.2%  99.5%  98.8%  94.0% 

0.0  86.3%  91.6%  77.1%  90.6%  93.4%  81.5% 

0.5  48.7%  33.6%  53.5%  49.1%  35.0%  58.5% 

1.0  44.2%  38.3%  45.9%  45.8%  44.2%  46.5% 

1.5  39.3%  53.7%  28.4%  35.3%  49.8%  21.4% 

2.0  88.1%  91.7%  78.8%  91.7%  93.3%  79.1% 

2.5  99.7%  99.7%  97.0%  99.8%  98.9%  97.1% 

3.0  100%  100%  99.7%  100%  99.8%  99.0% 

Overall  86.2%  85.7%  82.9%  88.0%  87.1%  84.0% 

TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized 

Likelihood Ratio; mGLR = Modified Generalized Likelihood Ratio. 
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TSPRT = Truncated Sequential Probability Ratio Test; GLR = Generalized Likelihood 

Ratio; mGLR = Modified Generalized Likelihood Ratio. 

Figure 29:    Conditional percent correct classification (PCC) for the three-cutscore 40 

item maximum test length conditions.  
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PCC = Percent Correct Classification; TSPRT = Truncated Sequential Probability Ratio 

Test; GLR = Generalized Likelihood Ratio; mGLR = Modified Generalized Likelihood 

Ratio. 

Figure 30:    Conditional percent correct classification (PCC) for the three-cutscore 60 

item maximum test length conditions.  
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Modified-GLR Procedures  

Average Test Length 

 Results presented in this section are provided to enable comparisons between the 

mGLR procedures under two item selection methods. The results from the mGLR 

procedure using cutscore-based item selection method which were presented in the 

previous section are also presented in this section for comparisons against the mGLR 

procedure using ability-based item selection. Tables 10, 11, and 12 present the 

conditional means and standard deviations of the test lengths for the two classification 

procedures using two maximum test lengths. The accompanying plots, Figures 31 

through 36, display conditional average test lengths for each procedure based on the 

number of cutscores and maximum test length. 

 Table 10 provides the conditional means and standard deviations for the mGLR 

procedures when a single cutscore was used. The cutscore for the single-cutscore 

conditions was placed at the peak of the test information function at the theta value of 

1.00. For the 40 item maximum test length conditions, the mGLR procedure using the 

ability-based item selection method produced a shorter average test length at the cutscore 

of 29.55 items compared to the mGLR using the cutscore-based item selection average 

test length of 37.62. Additionally, the majority of the conditional standard deviation 



117 

 

 

values for the mGLR using the ability-based item selection are much lower than the 

standard deviation values produced by the cutscore-based method. 

 For the conditions with a maximum test length of 60 items, the average test length 

at the cutscore for the ability-based item selection method was 34.38 while the cutscore-

based item selection approach results in an average test length of 50.27. Similar to 40 

item test length conditions, the majority of the conditional standard deviations produced 

by the ability-based method are much lower compared to the cutscore-based method. 

Figures 31 and 32 present the plots for the conditional average test length for the 40 and 

60 item tests lengths. 
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Table 10:    Conditional average test length (ATL) and standard deviation (SD) for the single-cutscore conditions using the 

mGLR procedures with different item selection methods. 

 40 Item Maximum  60 Item Maximum 

mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

 mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

Theta  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.15 0.85  20.00 0.00  20.16 0.81  20.00 0.06 

-2.5  20.22 1.09  20.01 0.24  20.24 1.04  20.00 0.03 

-2.0  20.29 1.22  20.03 0.40  20.27 1.26  20.01 0.19 

-1.5  20.45 1.60  20.01 0.16  20.47 1.69  20.03 0.33 

-1.0  20.84 2.53  20.08 0.71  20.80 2.45  20.05 0.62 

-0.5  21.90 3.98  20.25 1.59  22.16 4.61  20.43 2.24 

0.0  25.45 6.75  21.11 3.56  25.84 8.04  21.02 3.62 

0.5  31.88 8.02  24.10 7.04  36.43 13.59  25.37 10.02 

1.0  37.62 5.43  29.55 8.98  50.27 13.17  34.38 15.77 

1.5  33.33 7.73  28.45 8.75  39.89 14.75  31.91 15.21 

2.0  26.32 6.86  22.67 5.59  26.64 8.46  22.46 6.66 

2.5  21.80 3.80  20.28 1.65  21.76 3.55  20.43 2.38 

3.0  20.54 1.67  20.04 0.43  20.55 1.63  20.03 0.34 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 31:    Conditional average test length (ATL) for the one-cutscore 40 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 32:    Conditional average test length (ATL) for the one-cutscore 60 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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 Table 11 provides the conditional means and standard deviations for the mGLR 

procedures when two cutscores were used. The lower cutscore for the two-cutscore 

conditions was placed 0.50 standard deviations below the peak of the test information 

function at the theta value of 0.50 while the upper cutscore for the two-cutscore 

conditions was placed 0.50 standard deviations above the peak of the test information 

function at the theta value of 1.50. 

 For the 40 item maximum test length conditions, the mGLR procedure using the 

ability-based item selection method produced a shorter average test length at the lower 

cutscore of 28.45 items compared to the mGLR using the cutscore-based item selection 

average test length of 34.38. The mGLR procedure with ability-based item selection also 

produced a lower average test length at the upper cutscore, 29.71, compared to the 

cutscore-based procedure average test length of 34.31. The average test length for the 

theta values between the cutscores for the ability-based item selection method was also 

superior to the cutscore-based item selection method. Additionally, the majority of the 

conditional standard deviation values for the mGLR using the ability-based item selection 

are much lower than the standard deviation values produced by the cutscore-based 

method. 

 For the conditions with a maximum test length of 60 items, the average test length 

at the lower cutscore for the ability-based item selection method is 34.08, while the 

cutscore-based item selection approach produced an average test length of 44.91. The 
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mGLR procedure with ability-based item selection also produced a lower average test 

length at the upper cutscore of 34.67 items compared to the cutscore-based procedure 

average test length of 44.91 items. The average test length for the theta values between 

the two cutscores for the ability-based item selection method was also superior to the 

cutscore-based item selection method.  Similar to 40 item test length conditions, the 

majority of the conditional standard deviations produced by the ability-based method are 

lower compared to the cutscore-based method. Figures 33 and 34 present plots of the 

conditional average test lengths for the 40 and 60 item maximum test lengths.
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Table 11:    Conditional average test length (ATL) and standard deviation (SD) for the two-cutscore conditions using the 

mGLR procedures with different item selection methods. 

 40 Item Maximum  60 Item Maximum 

mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

 mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

Theta  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.62 2.19  20.01 0.15  20.51 2.01  20.03 0.51 

-2.5  20.69 2.42  20.04 0.51  20.70 2.30  20.02 0.37 

-2.0  20.93 2.69  20.06 0.63  21.16 3.46  20.06 0.89 

-1.5  21.63 3.69  20.11 0.87  21.78 4.28  20.21 1.32 

-1.0  22.91 5.21  20.53 2.43  23.46 6.07  20.63 2.99 

-0.5  26.15 7.43  21.95 4.94  27.56 10.46  22.13 6.12 

0.0  32.27 8.31  25.24 7.97  37.56 15.23  28.09 13.33 

0.5  34.38 7.87  28.45 8.66  44.91 16.34  34.08 16.21 

1.0  33.62 7.46  28.44 8.25  38.78 13.78  31.40 13.00 

1.5  34.31 7.09  29.71 8.73  41.97 14.95  34.67 15.70 

2.0  31.37 8.32  25.92 7.99  36.68 15.41  27.70 12.18 

2.5  24.47 6.56  21.56 4.25  25.09 8.70  21.63 4.85 

3.0  21.15 3.12  20.18 1.19  21.22 3.62  20.28 1.54 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 33:    Conditional average test length (ATL) for the two-cutscore 40 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 34:    Conditional average test length (ATL) for the two-cutscore 60 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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 Table 12 presents the conditional means and standard deviations for the mGLR 

procedures when three cutscores were used. The lowest cutscore for the three-cutscore 

conditions was placed 0.50 standard deviations below the peak of the test information 

function at the theta value of 0.50. The middle cutscore was placed at the peak of the test 

information function at the theta value of 1.00. The highest cutscore was placed 0.50 

standard deviations above the peak of the test information function at the theta value of 

1.50. 

 The results for the lowest cutscore in the 40 item maximum test length 

demonstrate that the average test length for the ability-based item selection mGLR 

procedure, 32.00 items, was better than the cutscore-based item selection method average 

test length of 37.80. At the middle cutscore, the average test length for the ability-based 

item selection is 34.37 while the cutscore-based method average test length is 38.16. For 

the highest cutscore the average test length for the ability-based item selection procedure 

is 33.08 while the cutscore-based item selection method average test length is 37.29. As 

presented in the conditional plot, Figure 35, for the theta values between the cutscores, 

the ability-based item selection method yielded lower test lengths on average when 

compared to the cutscore-based item selection method. In regards to the conditional 

standard deviations, the ability-based item selection method produced larger values at the 

theta values associated with the cutscores. Otherwise, the conditional standard deviations 



127 

 

 

for the ability-based item selection method are noticeably lower than cutscore-based item 

selection method. 

 Similar to the results from the 40 item maximum test length, the mGLR procedure 

using the ability-based item selection method outperformed the mGLR procedure using 

the cutscore-based item selection at all three cutscores and at the theta values between the 

cutscores which can be seen in Figure 36. At the lowest cutscore the average test length 

for the ability-based procedure is 38.90 while the cutscore-based procedure average test 

length is 49.57. At the middle cutscore the ability-based procedure is 41.68 while the 

cutscore-based procedure produced an average test length of 50.16. The ATL results for 

the highest cutscore is 39.77 for the ability-based procedure and 48.00 for the cutscore-

based procedure. As seen with the 40 item maximum test length results, the conditional 

standard deviations of the ability-based item selection methods for the 60 item maximum 

test length were larger at the theta values associated with the cutscores when compared to 

the cutscore-based item selection method. The conditional standard deviations for the 

ability-based item selection method improve so as to be lower than the cutscore-based 

method when theta values are not equal to the cutscore values. Figures 35 and 36 display 

plots of the average test lengths for the 40 and 60 item maximum test lengths.
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Table 12:    Average test length (ATL) and standard deviation (SD) for the three-cutscore conditions using the mGLR 

procedures with different item selection methods. 

 40 Item Maximum  60 Item Maximum 

mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

 mGLR with cutscore-

based item selection 

 mGLR with ability-

based item selection 

Theta  ATL SD  ATL SD  ATL SD  ATL SD 

-3.0  20.68 2.43  20.01 0.19  20.81 2.97  20.01 0.27 

-2.5  20.77 2.49  20.02 0.28  20.81 2.84  20.04 0.39 

-2.0  21.22 3.40  20.10 0.91  21.34 3.82  20.07 0.72 

-1.5  22.10 4.39  20.18 1.19  21.87 4.42  20.26 1.68 

-1.0  23.51 5.75  20.51 2.23  24.33 7.15  20.58 2.69 

-0.5  27.37 7.71  22.00 4.95  28.83 10.96  22.43 6.35 

0.0  33.16 7.93  25.64 7.89  39.77 14.93  28.85 12.95 

0.5  37.80 4.90  32.00 8.75  49.57 12.80  38.90 16.28 

1.0  38.16 3.92  34.37 7.45  50.16 11.53  41.68 14.34 

1.5  37.29 5.28  33.08 8.14  48.00 12.89  39.77 15.35 

2.0  32.13 8.23  26.56 8.04  38.66 15.24  28.92 12.92 

2.5  24.83 6.91  21.69 4.35  25.72 8.85  21.72 4.95 

3.0  21.33 3.56  20.25 1.54  21.37 3.60  20.30 1.72 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 35:    Conditional average test length (ATL) for the three-cutscore 40 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 36:    Conditional average test length (ATL) for the three-cutscore 60 item 

maximum test length conditions using the mGLR with multiple item selection methods.  
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Percent Correct Classification 

 The results in this section are provided to enable comparisons between the mGLR 

procedures using two item selection methods. The results from the mGLR procedure using 

cutscore-based item selection method which were presented in the previous Percent Correct 

Classification section are also presented in this section for comparisons against the mGLR 

procedure using ability-based item selection. Tables 13, 14, and 15 present the conditional 

percent correct classification for the two classification procedures using two maximum test 

lengths. The accompanying plots, Figures 37 through 42, display conditional percent correct 

classification for each procedure based on the number of cutscores and maximum test length. 

 Table 13 provides the conditional percent correct classification for the mGLR procedures 

when a single cutscore was used. The cutscore for the single-cutscore conditions was placed at 

the theta value of 1.0. For the conditions with the 40 item maximum test length, the percent 

correct classification at the cutscore for the ability-based procedure is 21.2% while the cutscore-

based procedure results in 45.1% correct classification. The mGLR has the poorest performance 

at the cutscore but exhibits similar PCCs to the other procedures at the remaining theta values. 

The overall accuracy of classifications for the cutscore-based method is 95.3% while the ability-

based method yields 92.9% correct classification. 

 Similarly, for the conditions with the 60 item maximum test length, the PCC at the 

cutscore is 21.9% for the ability-based item selection while the cutscore-based procedure is 

40.8%. Here again, the ability-based procedure performed the poorest at the cutscore but 
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provided similar PCC results across the remainder of the theta scale. Figures 25 presents the 

conditional PCC plots for the procedures using a single cutscore with a 40 item maximum test 

length while Figure 26 presents the plots for the 60 item maximum test length. 
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Table 13:    Conditional percent correct classification for the single-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

 mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  100%  100%  100%  100% 

-2.5  100%  100%  100%  100% 

-2.0  100%  100%  100%  100% 

-1.5  100%  100%  100%  100% 

-1.0  100%  99.9%  100%  100% 

-0.5  100%  99.9%  100%  99.7% 

0.0  99.8%  99.6%  99.9%  99.5% 

0.5  93.6%  96.8%  97.9%  98.1% 

1.0  45.1%  21.2%  40.8%  21.9% 

1.5  91.8%  71.4%  93.2%  73.6% 

2.0  99.6%  96.7%  100%  97.1% 

2.5  100%  99.6%  100%  99.4% 

3.0  100%  100%  100%  99.8% 

Overall  95.3%  92.9%  95.9%  93.3% 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 37:    Conditional percent correct classification (PCC) for the single-cutscore 40 

item maximum test length conditions using the mGLR with multiple item selection 

methods. 
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 38:    Conditional percent correct classification (PCC) for the single-cutscore 60 

item maximum test length conditions using the mGLR with multiple item selection 

methods. 
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 Table 14 provides the conditional percent correct classification for the mGLR procedures 

when two cutscores were used. The lower cutscore for the two-cutscore conditions was placed 

0.50 standard deviations below the peak of the test information function at the theta value of 0.50 

while the upper cutscore for the two-cutscore conditions was placed 0.50 standard deviations 

above the peak of the test information function at the theta value of 1.50. 

 For the conditions with the 40 item maximum test length, at the lower cutscore the PCC 

is 52.0% for the ability-based procedure while the cutscore-based method correctly classifies 

60.8%. At the upper cutscore the ability-based procedure, 41.1% correct classification, performs 

better than the cutscore-based procedure with 30.0% correct classification. Figure 39 shows that 

the cutscore-based method outperforms the ability-based method in PCC for the majority of the 

theta values between the cutscores. 

 For the conditions with the 60 item maximum test length, at the lower cutscore the PCC 

is 50.3% for the ability-based procedure while the cutscore-based method correctly classifies 

60.1%. At the upper cutscore the ability-based procedure, 35.3% correct classification, performs 

better than the cutscore-based procedure with 25.4% correct classification. In terms of PCC, 

Figure 40 shows that the cutscore-based method outperforms the ability-based method for the 

majority of the theta values between the cutscores. 
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Table 14:    Conditional percent correct classification for the two-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

 mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  99.2%  99.8%  99.1%  99.4% 

-2.5  98.7%  99.7%  99.0%  99.4% 

-2.0  98.1%  99.1%  98.5%  99.7% 

-1.5  98.4%  99.2%  97.7%  99.0% 

-1.0  96.5%  98.2%  97.9%  97.3% 

-0.5  92.4%  95.4%  94.1%  95.8% 

0.0  80.4%  83.2%  83.9%  86.0% 

0.5  60.8%  52.0%  60.1%  50.3% 

1.0  92.5%  80.9%  96.5%  82.8% 

1.5  30.0%  41.1%  25.4%  35.3% 

2.0  79.5%  82.8%  81.2%  84.6% 

2.5  96.7%  96.6%  97.2%  96.3% 

3.0  98.8%  98.5%  99.1%  99.3% 

Overall  87.7%  87.2%  88.7%  88.1% 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 
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Figure 39:    Conditional percent correct classification (PCC) for the two-cutscore 40 item 

maximum test length conditions using the mGLR with multiple item selection methods. 

 

mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 40:    Conditional percent correct classification (PCC) for the two-cutscore 60 item 

maximum test length conditions using the mGLR with multiple item selection methods. 
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 Table 15 presents the conditional PCC for the mGLR procedures when three cutscores 

were used. The lowest cutscore for the three-cutscore conditions was placed 0.50 standard 

deviations below the peak of the test information function at the theta value of 0.50. The middle 

cutscore was placed at the peak of the test information function at the theta value of 1.00. The 

highest cutscore was placed 0.50 standard deviations above the peak of the test information 

function at the theta value of 1.50. 

 For the conditions with the 40 item maximum test length, the PCC at the lowest cutscore 

is 38.3% for the ability-based procedure while the cutscore-based method correctly classified 

53.5%. The PCC at the middle cutscore is 44.1% for the ability-based procedure while the PCC 

for the cutscore-based procedure is 45.9%. At the upper cutscore the PCC for the ability-based 

procedure, 39.8%, is better than the cutscore-based procedure with 28.4% correct classification. 

The overall PCC for the cutscore-based method is 82.9% while the overall PCC for the ability-

based method is 83.0%. Figure 41 shows that the cutscore-based method outperforms the ability-

based method in PCC for the theta values between the lowest cutscore and the middle cutscore 

while the ability-based procedure performes better for the theta values between the middle 

cutscore and the highest cutscore. 

 For the conditions with the 60 item maximum test length, the PCC at the lowest cutscore 

for the ability-based procedure is 38.0% while the cutscore-based method correctly classified 

58.5%. The PCC at the middle cutscore is 44.9% for the ability-based procedure while the PCC 

for the cutscore-based procedure is 46.5%. At the upper cutscore the PCC for the ability-based 
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procedure, 38.8%, is better than the cutscore-based procedure with 21.4% correct classification. 

The overall PCC for the cutscore-based method is 84.0% while the PCC for the ability-based 

method is 84.2%. Figure 42 shows that the cutscore-based method outperformed the ability-

based method in PCC for the theta values between the lowest cutscore and the middle cutscore 

while the ability-based procedure performs better for the theta values between the middle 

cutscore and the highest cutscore. 
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Table 15:    Conditional percent correct classification for the three-cutscore conditions. 

 40 Item Maximum  60 Item Maximum 

mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

 mGLR with 

cutscore-based 

item selection 

 mGLR with 

ability-based 

item selection 

Theta  Percent Correct Classification  Percent Correct Classification 

-3.0  99.8%  99.8%  99.7%  99.6% 

-2.5  99.6%  99.4%  99.3%  99.7% 

-2.0  99.5%  99.4%  99.1%  99.2% 

-1.5  99.3%  99.0%  98.9%  98.9% 

-1.0  98.1%  97.4%  97.6%  98.5% 

-0.5  91.2%  94.7%  94.0%  94.8% 

0.0  77.1%  85.6%  81.5%  84.7% 

0.5  53.5%  38.3%  58.5%  38.0% 

1.0  45.9%  44.1%  46.5%  44.9% 

1.5  28.4%  39.8%  21.4%  38.8% 

2.0  78.8%  84.3%  79.1%  83.6% 

2.5  97.0%  95.9%  97.1%  96.9% 

3.0  99.7%  98.3%  99.0%  98.1% 

Overall  82.9%  83.0%  84.0%  84.2% 

mGLR = Modified Generalized Likelihood Ratio.
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 41:    Conditional percent correct classification (PCC) for the three-cutscore 40 

item maximum test length conditions using the mGLR with multiple item selection 

methods. 
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mGLR EB = Modified Generalized Likelihood Ratio Estimate-Based item selection; 

mGLR CB = Modified Generalized Likelihood Ratio Cutscore-Based item selection. 

Figure 42:    Conditional percent correct classification (PCC) for the three-cutscore 60 

item maximum test length conditions using the mGLR with multiple item selection 

methods. 
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Bias 

 To examine the accuracy of the final ability estimates, conditional bias was 

calculated for the six study conditions in which items for the mGLR procedure were 

selected based on interim ability estimates. Figures 43, 44, and 45 present conditional 

bias plots for each condition. The figures are grouped by the number of cutscores which 

were used by the conditions for both 40 and 60 item maximum test lengths. The three 

conditional bias plots appear seemingly identical with minor differences around the 

cutscores. 
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Figure 43:    Conditional bias for the single-cutscore mGLR procedure using ability-

based item selection conditions using 40 and 60 item maximum test lengths. 
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Figure 44:    Conditional bias for the two-cutscore mGLR procedure using ability-based 

item selection conditions using 40 and 60 item maximum test lengths. 
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Figure 45:    Conditional bias for the three-cutscore mGLR procedure using ability-based 

item selection conditions using 40 and 60 item maximum test lengths. 
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RMSE 

 Additionally, in order to examine the accuracy of the final ability estimates, 

conditional RMSE was calculated for the six study conditions in which items for the 

mGLR procedure were selected based on interim ability estimates. Figures 46, 47, and 48 

present conditional RMSE plots for each condition. The figures are grouped by the 

number of cutscores which were used by the conditions for both 40 and 60 item 

maximum test lengths. Similar to the conditional bias plots, the three conditional RMSE 

plots are highly similar with only minor differences. 
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Figure 46:    Conditional RMSE for the single-cutscore mGLR procedure using ability-

based item selection conditions using 40 and 60 item maximum test lengths. 
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Figure 47:    Conditional RMSE for the two-cutscore mGLR procedure using ability-

based item selection conditions using 40 and 60 item maximum test lengths. 
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Figure 48:    Conditional RMSE for the three-cutscore mGLR procedure using ability-

based item selection conditions using 40 and 60 item maximum test lengths. 
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CHAPTER V: DISCUSSION 

 This study examined the functionality of three classification procedures under 

varying conditions. Three cutscore conditions (1, 2, or 3 cutscores) and two maximum 

test lengths conditions (40 or 60 items) were used to examine the ability of the 

classification procedures to succinctly and accurately classify examinees. An additional 

set of conditions were used to investigate the utility of implementing an ability-based 

item selection method with the mGLR procedure. All conditions were studied using 

conditional average test length for item efficiency and conditional percent correct 

classification for precision of classification. Conditional bias and conditional RMSE were 

calculated in order to evaluate final ability estimates produced by mGLR procedure 

which used ability-based item selection methodology. Based on real item parameters, a 

single data set was simulated with 1,000 simulees at each theta value ranging from -3.0 to 

3.0 in discrete 0.10 logit increments resulting in 61,000 total simulees. 

 In the following sections each of the three research questions presented in the 

second chapter of this dissertation are specifically addressed. Following the discussion of 

the research questions, consideration is given to the application of this research in a 

practical setting. Finally, limitations of the current research and recommendations for 

future research are presented. 
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Research Questions 

 How do the three classification testing procedures, TSPRT, GLR, and mGLR, 

using cutscore-based item selection compare to each other in terms of average test length 

and percent correct classification in the context of multiple cutscore and test length 

conditions? 

 In general, the mGLR procedure using cutscore-based item selection produced 

conditional ATLs at the cutscores that are equal to or less than the ATL results produced 

by the TSPRT and GLR procedures. There are only five exceptions when the GLR 

procedure yielded a smaller ATL than the mGLR. In all of the instances in which the 

ATL for the GLR was better than mGLR, the modified procedure produced ATLs that 

were within 1.0 items of the ATL for the GLR. The results of the GLR procedures are 

consistent with previous research which demonstrated that the GLR was capable of 

producing shorter tests lengths than the TSPRT procedure (Thompson, 2007, 2009). 

 Conditional average test lengths at the cutscores for the TSPRT procedures range 

from 37.34 to 39.80 in the 40 item maximum test length conditions and from 48.86 to 

56.65 in the 60 item maximum test length conditions. For the GLR procedure, maximum 

test lengths at the cutscores range from 36.29 to 38.93 in the 40 item maximum test 

length and from 47.34 to 54.12 in the 60 item maximum test length conditions. Finally 

for the mGLR procedure, ATL range from 34.31 to 38.16 for the 40 item maximum test 

length and from 41.97 to 50.23 in the 60 item maximum test length conditions. 
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 Overall, in terms of PCC the mGLR procedure did not perform as well as the 

TSPRT and GLR procedures at all of the cutscores. When the mGLR selected items 

based on the cutscores the overall accuracy of classification for the mGLR was 

reasonably similar to the other procedures, within 1% to 2%, in most conditions. The 

greatest discrepancy in PCC between the mGLR and the other procedures was in the 

three-cutscore condition where the difference was 4%. 

 When examining the conditional PCC at the cutscores for each of the conditions, 

there is an unusual pattern of performance among the procedures. For the conditions 

using a single cutscore, the PCCs at the cutscores with the 40 item maximum test length 

conditions are slightly better than the results from the conditions with the 60 item 

maximum test length. In both instances the mGLR yielded lower results. 

 For the conditions using two cutscores, overall, the procedures performed 

reasonable similar. The PCC results for the lower cutscore indicate that the mGLR was 

most accurate, approximately 60% for both test lengths, while the GLR had the poorest 

results, 41.9% and 43.9%, for the two test lengths. At the upper cutscore, the mGLR 

performed poorer than the GLR. The mGLR procedure resulted in a PCC as low as 

25.4% in the 60-item test length condition. For the theta values between the cutscores, the 

mGLR produced the highest PCC results, 92.5% and 96.5% for the 40- and 60-item test 

lengths, while the GLR produced the lowest PCC. 
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 For the conditions using three cutscores, the overall PCC for each of the 

procedures range from 82.9% to 88%. The mGLR produced the poorest overall results, 

82.9% and 84.0%, but outperformed the TSPRT and GLR procedures at the lower and 

middle cutscores for both test lengths. At the highest cutscore the GLR outperformed 

both the TSPRT and mGLR procedures with 53.7% and 49.8% for the 40- and 60-item 

maximum test length conditions. This unusual pattern of results, where there are sizable 

differences in classification accuracy across the cutscores but within a classification 

procedure, may be due to the major difference in items selected for administration. 

 Because each method has a unique scoring method and items are selected to 

maximize the information at the cutscore that is deemed to be closest to the examinee’s 

ability, the procedures routed simulees through rather different item sets in the 

simulations. In the three cutscore conditions for example, where the TSPRT procedure 

tended to select multiple items from a cutscore before switching to a different cutscore 

for item selection, the GLR procedure would switch to the other cutscore having 

administered fewer items due to the more aggressive scoring method. Additionally, the 

mGLR procedure would switch between cutscores for item selection even more rapidly 

than the GLR procedure because of the nature of the mGLR scoring method. In other 

words, the more aggressive the scoring procedure, the more often item selection would 

switch between cutscores. 
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Additional Analyses 

 As some of the PCC results were unexpectedly poor, a set of brief additional 

analyses were performed to examine the issue. The additional analyses were performed 

for all classification procedures in the conditions where three cutscores were used and the 

maximum number of items was set to 60. Tables 16 through 19 display the results of the 

additional analyses. Each table shows the conditional classification results at each of the 

cutscores. Classification accuracy is typically lowest at the cutscores where it is expected 

that approximately 50% of simulees would be classified above and below the cutscore.  

 Tables 16 through 19 are included to display the proportion of examinee 

classification into a four-category classification system. Hence each row in the tables will 

sum to 100%. This analysis is helpful in understanding where misclassification was 

occurring in the simulations—whether the simulees were classified above or below the 

cutscore. Given this method of examining classification accuracy, all of the classification 

procedures appear to have achieved reasonable accuracy rates at each cutscore. 
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Table 16. Conditional classification percentages at cutscores for the TSPRT condition 

with 60 item maximum test length with three cutscores. 

  TSPRT 60 Item Maximum Test Length using Three Cutscores 

  Classification Percentages at Cutscores 

Theta  

Below 

Basic  Basic  Proficient  Advanced 

0.5  45.0%  49.1%  5.9%  0.0% 

1.0  3.3%  49.5%  45.8%  1.4% 

1.5  0.0%  3.8%  60.9%  35.3% 

 

Table 17. Conditional classification percentages at cutscores for the GLR condition with 

60 item maximum test length with three cutscores. 

  GLR 60 Item Maximum Test Length using Three Cutscores 

  Classification Percentages at Cutscores 

Theta  
Below 

Basic 
 Basic  Proficient  Advanced 

0.5  58.2%  35.0%  6.6%  0.2% 

1.0  7.2%  43.2%  44.2%  5.4% 

1.5  0.2%  7.2%  42.8%  49.8% 
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Table 18. Conditional classification percentages at cutscores for the cutscore-based 

mGLR condition with 60 item maximum test length with three cutscores. 

  
mGLR Cutscore-based Item Selection 

60 Item Maximum Test Length using Three Cutscores 

  Classification Percentages at Cutscores 

Theta  
Below 

Basic 
 Basic  Proficient  Advanced 

0.5  32.2%  58.5%  9.3%  0.0% 

1.0  2.5%  50.4%  46.5%  0.6% 

1.5  0.0%  8.5%  70.1%  21.4% 

 

Table 19. Conditional classification percentages at cutscores for the ability-based mGLR 

condition with 60 item maximum test length with three cutscores. 

  
mGLR using Ability-based Item Selection 

60 Item Maximum Test Length using Three Cutscores 

  Classification Percentages at Cutscores 

Theta  
Below 

Basic 
 Basic  Proficient  Advanced 

0.5  50.8%  38.0%  10.2%  1.0% 

1.0  10.5%  40.7%  44.9%  3.9% 

1.5  2.6%  9.8%  48.8%  38.8% 
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 How does the implementation of an ability-based item selection method with the 

mGLR procedure compare with the cutscore-based item selection mGLR procedure in 

terms of average test length and percent correct classification? 

 When comparing the mGLR procedure using cutscore-based item selection to the 

mGLR using ability-based item selection, the ability-based procedure produced shorter 

tests at all of the cutscores. More specifically, the smallest difference in ATL between the 

two mGLR procedures was in the two- and three-cutscore conditions where the 

difference in ATL was 4 items. The largest difference between the two mGLR procedures 

was in the single-cutscore condition where the maximum test length was 60 items with a 

difference in ATL of 16 items. 

 Conditional average test lengths at the cutscores for the mGLR procedures using 

cutscore-based item selection range from 34.31 to 38.16 in the 40 item maximum test 

length conditions and from 44.91 to 50.27 in the 60 item maximum test length conditions. 

For the mGLR procedures using ability-based item selection, maximum test lengths at the 

cutscores range from 28.45 to 34.37 in the 40 item maximum test length and from 34.38 

to 41.68 in the 60 item maximum test length conditions. The mGLR using the ability-

based item selection method resulted in lower ATLs at all cutscores in all conditions. 

 The results from comparing the two mGLR procedures indicate that the overall 

accuracy of classification does not always improve by implementing an ability-based 

item selection method. In the single-cutscore conditions the overall accuracy for both 
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procedures was above 90% for both test lengths. The conditional PCCs at the cutscore 

show that the cutscore-based item selection was superior to the ability-based method. 

 For the conditions using two cutscores, again, the overall PCCs for both 

procedures and both test lengths are highly similar. In fact, the ability-based method was 

1% better than the cutscore-based method. The conditional PCCs at the lower cutscores 

indicate that the cutscore-based methods are more accurate with approximately 60% 

accuracy while the ability-based method produced approximately 50% accuracy. At the 

upper cutscores the ability-based methods are more accurate, 41.1% and 35.3%, 

compared to the cutscore-based methods with PCCs, 30.0% and 25.4%.  

 For the conditions using three cutscores, the two mGLR procedures yielded the 

same degree of accuracy overall. At the lowest cutscore the cutscore-based method was 

more accurate. The conditional PCC at the cutscore for the ability-based method resulted 

in approximately 38% correctly classified for both test length conditions while the 

cutscore-based method resulted in 53.5% and 58.5% for the 40 and 60 item maximum 

test length conditions. The PCCs for the middle cutscore were similar, but again, the 

cutscore-based method produced slightly improved results. The cutscore-based procedure 

PCCs are 45.9% and 46.5% whereas the PCCs for the ability-based method are 44.1% 

and 44.9%. Finally, the PCCs for the highest cutscores show the ability-based method 

yielded the best PCC results. The cutscore-based method produced PCCs of 28.4% and 

21.4% while the ability-based method produced PCCs of 39.8% and 38.8%. 



 162 

 Again, the differences in PCC between the procedures may be due to the 

differences in the set of items which were selected for the simulees. In this case, the 

scoring for each item would have been the same which suggests that the item selection 

methods produced rather different sets of items which were administered to the simulees. 

 How well can ability levels be recovered as assessed using bias and root mean 

square error when an ability-based item selection method is implemented with the mGLR 

procedure? 

 Recall that the conditional bias plots, Figures 43-45, are virtually identical across 

test length and the multiple cutscore conditions. For the theta values ranging from 

approximately -1.5 to 2.0, the conditional bias values are very close to 0.0 for all 

conditions. The conditional bias results seem promising as the theta range that 

corresponds with the low bias values spans the theta values where the cutscores and 

accompanying indifference regions were placed. Similarly, the conditional RMSE plots, 

Figures 46-48, are exceptionally similar across test length and the multiple cutscore 

conditions. The conditional RMSE values for the theta values that span the region where 

the cutscore were placed are some of the lowest levels of RMSE produced. 

Implications and Future Research 

 It has become commonplace for many high-stakes assessment programs to be 

delivered, or at least have an option to be delivered, through a computer-based platform. 

As previously mentioned, the computer-based delivery of an assessment provides some 
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greater degrees of flexibility for examinees in terms of location, testing windows, and 

personalized adaptability. As the movement to deliver assessments through computers is 

becoming a more widespread reality, such as with the initiatives of the PARCC and 

SBAC consortiums, there is also now an increased need to understand the capabilities and 

limitations of computer-based methodologies. 

 Results from this study expand the psychometric knowledge regarding the 

capacity of these methods for use in classification testing settings. Additionally this 

research provides a basis for future improvements and explorations of likelihood ratio 

based classification methods as the fundamental purpose of this study is to examine a 

newly proposed scoring procedure. The features in this study, such as multiple cutscores, 

test lengths, item selection methodologies, and ability estimation, are all variables and 

judgments which stakeholders and test designers would have to examine when 

developing an assessment. 

 Most importantly, this study demonstrated that the GLR and mGLR procedures 

were both capable of producing shorter tests than the TSPRT method with adequately 

similar classification accuracy in most of the single-cutscore and two-cutscore conditions. 

This was a key element of the study as the explicit purpose of the development of both 

procedures was to improve upon the original TSPRT method. While some of the 

conditional PCCs for some of the conditions were inappropriately low, this was the initial 

attempt to study the newly proposed mGLR procedure. It should be noted that all 
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procedures displayed poorer accuracy results as the number of cutscores increased. 

Future studies should give adequate consideration to item selection methodologies to 

improve the classification accuracy. Additionally, other dependent variables, such as 

adjacent classification and cutscore selection evaluations, could also be used to assess the 

feasibility of implementing one of classification procedures in an assessment program. 

Future studies should also give ample consideration to the number of and placement of 

the cutscores as well as the amount of item information that is available at each of the 

selected cutscores to ensure that classification decisions can be achieved. Hence, the item 

pool and cutscore selections need to be balanced through simulation studies to reach test 

expectations for efficiency and accuracy. 

 Next, this study demonstrated that by giving flexibility to the indifference region 

boundaries, the likelihood ratio based methods are able to use ability-based item selection 

methods. The flexibility of the indifference region boundaries enable the procedures to 

use each item more efficiently thereby reducing the number of items required to make a 

classification decision. By allowing items to be selected based on interim ability 

estimates, a final ability estimate can be established for tracking improvement over time 

or inform examinees of their ability relative to cutscores used to classify their 

performance on the assessment. 

 Two general limitations to this study are the item pool and thus the ability of these 

results to generalize to other item pools developed for classification purposes. The peak 
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of the test information function for the item pool used in this study corresponded with a 

theta value of 1.0. Cutscores were selected based on the available information to ensure 

that classification decisions were attainable before reaching the maximum test length. As 

other item pools may be used in future research or in applied settings, consideration 

should be given to how well the results from this study can generalize given the 

characteristics of the item pool. 

 In addition to the aforementioned future research options, researchers may 

consider using a more aggressive classification method such as the stochastic curtailment 

procedures suggested by Finkelman (2008, 2009). Research should also study the effects 

of varying parameters such as the indifference region widths and the allowable error 

rates, α and β. Finally, as the idea for the development of the mGLR procedure was 

conceived while researching polytomous IRT CAT methods, future research could 

investigate the efficacy of the mGLR using one the polytomous models.  

 Though the newly proposed mGLR procedure did not always achieve the 

expected similar levels of accuracy that the TSPRT and GLR procedures achieved, the 

mGLR procedure was able to reduce test length compared to the other two procedures. 

The mGLR yielded even shorter results when items were selected based on the simulee’s 

interim ability estimates, but again, the accuracy rates were lower than anticipated. 

However, this study has provided an opportunity to examine how the use of more flexible 

testing parameters may improve the likelihood ratio-based classification method. 
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