8,809 research outputs found

    Probabilistic Computability and Choice

    Get PDF
    We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.Comment: Information and Computation (accepted for publication

    Products of effective topological spaces and a uniformly computable Tychonoff Theorem

    Full text link
    This article is a fundamental study in computable analysis. In the framework of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite products of effective topological spaces. For obtaining uniform results we introduce natural multi-representations of the class of all effective topological spaces, of their points, of their subsets and of their compact subsets. We show that the binary, finite and countable product operations on effective topological spaces are computable. For spaces with non-empty base sets the factors can be retrieved from the products. We study computability of the product operations on points, on arbitrary subsets and on compact subsets. For the case of compact sets the results are uniformly computable versions of Tychonoff's Theorem (stating that every Cartesian product of compact spaces is compact) for both, the cover multi-representation and the "minimal cover" multi-representation

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Instruction sequence processing operators

    Get PDF
    Instruction sequence is a key concept in practice, but it has as yet not come prominently into the picture in theoretical circles. This paper concerns instruction sequences, the behaviours produced by them under execution, the interaction between these behaviours and components of the execution environment, and two issues relating to computability theory. Positioning Turing's result regarding the undecidability of the halting problem as a result about programs rather than machines, and taking instruction sequences as programs, we analyse the autosolvability requirement that a program of a certain kind must solve the halting problem for all programs of that kind. We present novel results concerning this autosolvability requirement. The analysis is streamlined by using the notion of a functional unit, which is an abstract state-based model of a machine. In the case where the behaviours exhibited by a component of an execution environment can be viewed as the behaviours of a machine in its different states, the behaviours concerned are completely determined by a functional unit. The above-mentioned analysis involves functional units whose possible states represent the possible contents of the tapes of Turing machines with a particular tape alphabet. We also investigate functional units whose possible states are the natural numbers. This investigation yields a novel computability result, viz. the existence of a universal computable functional unit for natural numbers.Comment: 37 pages; missing equations in table 3 added; combined with arXiv:0911.1851 [cs.PL] and arXiv:0911.5018 [cs.LO]; introduction and concluding remarks rewritten; remarks and examples added; minor error in proof of theorem 4 correcte
    corecore