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Abstract Instruction sequence is a key concept in practice, but it has as yet not come prom-
inently into the picture in theoretical circles. This paper concerns instruction sequences, the
behaviours produced by them under execution, the interaction between these behaviours and
components of the execution environment, and two issues relating to computability theory.
Positioning Turing’s result regarding the undecidability of the halting problem as a result
about programs rather than machines, and taking instruction sequences as programs, we
analyse the autosolvability requirement that a program of a certain kind must solve the halting
problem for all programs of that kind. We present novel results concerning this autosolvabil-
ity requirement. The analysis is streamlined by using the notion of a functional unit, which
is an abstract state-based model of a machine. In the case where the behaviours exhibited by
a component of an execution environment can be viewed as the behaviours of a machine in
its different states, the behaviours concerned are completely determined by a functional unit.
The above-mentioned analysis involves functional units whose possible states represent the
possible contents of the tapes of Turing machines with a particular tape alphabet. We also
investigate functional units whose possible states are the natural numbers. This investigation
yields a novel computability result, viz. the existence of a universal computable functional
unit for natural numbers.

1 Introduction

The concept of an instruction sequence is a very primitive concept in computing. Instruction
sequence execution has always been part of computing because of the fact that it underlies
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140 J. A. Bergstra, C. A. Middelburg

virtually all past and current generations of computers. It happens that, given a precise
definition of an appropriate notion of an instruction sequence, many issues in computer sci-
ence can be clearly explained in terms of instruction sequences, from issues of a computer-
architectural kind to issues of a computation-theoretic kind. A simple yet interesting example
is that a program can simply be defined as a text that denotes an instruction sequence. Such
a definition corresponds to an appealing empirical perspective found among practitioners.

In theoretical computer science, the meaning of programs usually plays a prominent part
in the explanation of many issues concerning programs. Moreover, what is taken for the
meaning of programs is mathematical by nature. On the other hand, it is customary that
practitioners do not fall back on the mathematical meaning of programs in case explanation
of issues concerning programs is needed. They phrase their explanations from an empirical
perspective. An appealing empirical perspective is the one that a program is in essence an
instruction sequence and an instruction sequence under execution produces a behaviour that
is controlled by its execution environment: each step performed actuates the processing of an
instruction by the execution environment and a reply returned at completion of the processing
determines how the behaviour proceeds.

The work presented in this paper belongs to a line of research which started with an attempt
to approach the semantics of programming languages from the perspective mentioned above.
The first published paper on this approach is [4]. That paper is superseded by [5] with regard
to the groundwork for the approach: program algebra, an algebraic theory of single-pass
instruction sequences, and basic thread algebra, an algebraic theory of mathematical objects
that represent in a direct way the behaviours produced by instruction sequences under execu-
tion.1 The main advantages of the approach are that it does not require a lot of mathematical
background and that it is more appealing to practitioners than the main approaches to pro-
gramming language semantics: the operational approach, the denotational approach and the
axiomatic approach. For an overview of these approaches, see e.g. [32].

As a continuation of the work on a new approach to programming language semantics,
the notion of an instruction sequence was subjected to systematic and precise analysis using
the groundwork laid earlier. This led among other things to expressiveness results about the
instruction sequences considered and variations of the instruction sequences considered (see
e.g. [8,17,18,21,37]). Instruction sequences are under discussion for many years in diverse
work on computer architecture, as witnessed by e.g. [2,23,24,27,33–35,42,46], but the notion
of an instruction sequence has never been subjected to any precise analysis.

As another continuation of the work on a new approach to programming language seman-
tics, selected issues relating to well-known subjects from the theory of computation and the
area of computer architecture were rigorously investigated thinking in terms of instruction
sequences (see e.g. [7,11,13,16]). The subjects from the theory of computation, namely the
halting problem and non-uniform computational complexity, are usually investigated thinking
in terms of a common model of computation such as Turing machines and Boolean circuits
(see e.g. [1,25,40]). The subjects from the area of computer architecture, namely instruction
sequence performance, instruction set architectures and remote instruction processing, are
usually not investigated in a rigorous way at all.

This paper concerns among other things an investigation of issues relating to the halting
problem thinking in terms of instruction sequences. Positioning Turing’s result regarding
the undecidability of the halting problem (see e.g. [44]) as a result about programs rather
than machines, and taking instruction sequences as programs, we analyse the autosolvability
requirement that a program of a certain kind must solve the halting problem for all programs

1 In [5], basic thread algebra is introduced under the name basic polarized process algebra.
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of that kind. We present positive and negative results concerning the autosolvability of the
halting problem for programs. To our knowledge, these results are new and unusual.

Most work done in the line of research sketched above requires that basic thread algebra,
i.e. the algebraic theory of mathematical objects that represent in a direct way the behaviours
produced by instruction sequences under execution, is extended to deal with the interaction
between instruction sequences under execution and components of their execution environ-
ment concerning the processing of instructions. The first published paper on such an extended
theory is [19]. A substantial re-design of the extended theory presented in that paper is pre-
sented in the current paper. The changes introduced allow for the material from quite a part
of the work done in the line of research sketched above to be streamlined.

Further streamlining is achieved in this paper by introducing and using the notion of a
functional unit. In the extended theory, a rather abstract view of the behaviours exhibited
by components of execution environments is taken. The view is just sufficiently concrete
for the purpose of the theory. A functional unit is an abstract model of a machine. Under
the abstract view of the behaviours exhibited by a component of an execution environment,
the behaviours concerned are completely determined by a functional unit in the frequently
occurring case that they can be viewed as the behaviours of a machine in its different states.
The current paper also concerns an investigation of functional units whose possible states
are the natural numbers. This investigation yields a computability result that is new and
unusual as far as we know, namely the existence of a universal computable functional unit
for natural numbers.

The investigations carried out in the line of research sketched above demonstrate that
the concept of an instruction sequence offers a novel and useful viewpoint on issues relat-
ing to diverse subjects. In view of the very primitive nature of this concept, it is in fact
rather surprising that instruction sequences have never been a theme in computer science.
A theoretical understanding of issues in terms of instruction sequences will probably
become increasingly more important to a growing number of developments in computer
science. Among them are for instance the developments with respect to techniques for high-
performance program execution on classical or non-classical computers and techniques
for estimating execution times of hard real-time systems. For these and other such
developments, the abstractions usually made do not allow for all relevant details to be
considered.

Some marginal notes are in order. In this paper, we use an extension of a program notation
rooted in program algebra instead of an extension of program algebra itself. The program
notation in question has been chosen because it turned out to be appropriate. However, in
principle any program notation that is as expressive as the closed terms of program alge-
bra would do. The above-mentioned analysis of the autosolvability requirement inherent in
Turing’s result regarding the undecidability of the halting problem involves functional units
whose possible states are objects that represent the possible contents of the tapes of Turing
machines with a particular tape alphabet.

Henceforth, objects that represent in a direct way the behaviours produced by instruction
sequences under execution are called threads, objects that represent the behaviours exhib-
ited by components of execution environments are called services, and collections of named
services are called service families. In order to deal with the different aspects of the inter-
action between instruction sequences under execution and components of their execution
environment concerning the processing of instructions, three operators are added to basic
thread algebra. Because these operators are primarily intended to be used to describe and
analyse instruction sequence processing, they are loosely referred to by the term instruction
sequence processing operators.
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142 J. A. Bergstra, C. A. Middelburg

This paper is organized as follows. First, we give a survey of the program notation used
in this paper (Sect. 2) and define its semantics using basic thread algebra (Sect. 3). Next,
we introduce services and a composition operator for services families (Sect. 4), and the
three operators that are related to the processing of instructions by a service family (Sect. 5).
Then, we propose to comply with conventions that exclude the use of terms that are not
really intended to denote anything (Sect. 6). After that, we give an example related to the
processing of instructions by a service family (Sect. 7). Further, we present an interesting
variant of one of the above-mentioned operators related to the processing of instructions
(Sect. 8). Thereafter, we introduce the concept of a functional unit and related concepts
(Sect. 9). Subsequently, we investigate functional units for natural numbers (Sect. 10). Then,
we define autosolvability and related notions in terms of functional units related to Turing
machine tapes (Sect. 11). After that, we discuss the weakness of interpreters when it comes to
solving the halting problem (Sect. 12) and give positive and negative results concerning the
autosolvability of the halting problem (Sect. 13). Finally, we make some concluding remarks
(Sect. 14).

This paper consolidates material from the reports [9,10,12].

2 PGLB with Boolean termination

In this section, we introduce the program notation PGLBbt (PGLB with Boolean termination).
In [5], a hierarchy of program notations rooted in program algebra is presented. One of the
program notations that belong to this hierarchy is PGLB (ProGramming Language B). This
program notation is close to existing assembly languages and has relative jump instructions.
PGLBbt is PGLB extended with two termination instructions that allow for the execution of
instruction sequences to yield a Boolean value at termination. The extension makes it possi-
ble to deal naturally with instruction sequences that implement some test, which is relevant
throughout the paper.

In PGLBbt, it is assumed that a fixed but arbitrary non-empty finite set A of basic instruc-
tions has been given. The intuition is that the execution of a basic instruction in most instances
modifies a state and in all instances produces a reply at its completion. The possible replies
are t (standing for true) and f (standing for false), and the actual reply is in most instances
state-dependent. Therefore, successive executions of the same basic instruction may pro-
duce different replies. The set A is the basis for the set of all instructions that may appear
in the instruction sequences considered in PGLBbt. These instructions are called primitive
instructions.

PGLBbthas the following primitive instructions:

– for each a ∈ A, a plain basic instruction a;
– for each a ∈ A, a positive test instruction +a;
– for each a ∈ A, a negative test instruction −a;
– for each l ∈ N, a forward jump instruction #l;
– for each l ∈ N, a backward jump instruction \#l;
– a plain termination instruction !;
– a positive termination instruction !t;
– a negative termination instruction !f.

PGLBbt instruction sequences have the form u1 ; . . . ; uk , where u1, . . . , uk are primitive
instructions of PGLBbt.
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Instruction sequence processing operators 143

On execution of a PGLBbt instruction sequence, these primitive instructions have the
following effects:

– the effect of a positive test instruction +a is that basic instruction a is executed and
execution proceeds with the next primitive instruction if t is produced and otherwise the
next primitive instruction is skipped and execution proceeds with the primitive instruction
following the skipped one—if there is no primitive instructions to proceed with, deadlock
occurs;

– the effect of a negative test instruction −a is the same as the effect of +a, but with the
role of the value produced reversed;

– the effect of a plain basic instruction a is the same as the effect of +a, but execution
always proceeds as if t is produced;

– the effect of a forward jump instruction #l is that execution proceeds with the lth next
primitive instruction—if l equals 0 or there is no primitive instructions to proceed with,
deadlock occurs;

– the effect of a backward jump instruction \#l is that execution proceeds with the lth pre-
vious primitive instruction—if l equals 0 or there is no primitive instructions to proceed
with, deadlock occurs;

– the effect of the plain termination instruction ! is that execution terminates and in doing
so does not deliver a value;

– the effect of the positive termination instruction !t is that execution terminates and in
doing so delivers the Boolean value t;

– the effect of the negative termination instruction !f is that execution terminates and in
doing so delivers the Boolean value f.

A simple example of a PGLBbt instruction sequence is

+a ; #2 ; \#2 ; b ; !t.
On execution of this instruction sequence, first the basic instruction a is executed repeatedly
until its execution produces the reply t, next the basic instruction b is executed, and after that
execution terminates with delivery of the value t.

From Sect. 9, we will use a restricted version of PGLBbt called PGLBsbt (PGLB with strict
Boolean termination). The primitive instructions of PGLBsbt are the primitive instructions of
PGLBbt with the exception of the plain termination instruction. Thus, PGLBsbt instruction
sequences are PGLBbt instruction sequences in which the plain termination instruction does
not occur.

In Sect. 7, we will give examples of instruction sequences for which the delivery of a
Boolean value at termination of their execution is natural. There, we will write ;n

i=1 Pi ,
where P1, . . . , Pn are PGLBbt instruction sequences, for the PGLBbt instruction sequence
P1 ; . . . ; Pn .

3 Thread extraction

In this section, we make precise in the setting of BTAbt (Basic Thread Algebra with Boolean
termination) which behaviours are exhibited on execution by PGLBbt instruction sequences.
We start by introducing BTAbt. In [5], BPPA (Basic Polarized Process Algebra) is introduced
as a setting for modelling the behaviours exhibited by instruction sequences under execution.
Later, BPPA has been renamed to BTA (Basic Thread Algebra). BTAbt is BTA extended with
two constants for termination at which a Boolean value is yielded.
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144 J. A. Bergstra, C. A. Middelburg

In BTAbt, it is assumed that a fixed but arbitrary non-empty finite set A of basic actions,
with tau �∈ A , has been given. We write Atau for A ∪{tau}. The members of Atau are referred
to as actions.

A thread is a behaviour which consists of performing actions in a sequential fashion.
Upon each basic action performed, a reply from an execution environment determines how
the thread proceeds. The possible replies are the Boolean values t and f. Performing the action
tau will always lead to the reply t.

BTAbt has one sort: the sort T of threads. We make this sort explicit because we will extend
BTAbt with additional sorts in Sect. 5. To build terms of sort T, BTAbt has the following
constants and operators:

– the deadlock constant D : T;
– the plain termination constant S : T;
– the positive termination constant S+ : T;
– the negative termination constant S− : T;
– for each a ∈ Atau, the binary postconditional composition operator _�a �_ :T×T → T.

We assume that there is a countably infinite set of variables of sort T which includes x, y, z.
Terms of sort T are built as usual. We use infix notation for postconditional composition. We
introduce action prefixing as an abbreviation: a ◦ p, where p is a term of sort T, abbreviates
p �a � p.

The thread denoted by a closed term of the form p �a � q will first perform a, and then
proceed as the thread denoted by p if the reply from the execution environment is t and
proceed as the thread denoted by q if the reply from the execution environment is f. The
thread denoted by D will become inactive, the thread denoted by S will terminate without
yielding a value, and the threads denoted by S+ and S− will terminate and with that yield
the Boolean values t and f, respectively.

A simple example of a closed BTAbt term is

(b ◦ S+) �a � (c ◦ S−).
This term denotes the thread that first performs basic action a, if the reply from the execution
environment on performing a is t, next performs the basic action b and after that terminates
with delivery of the Boolean value t, and if the reply from the execution environment on
performing a is f, next performs the basic action c and after that terminates with delivery of
the Boolean value f.

BTAbt has only one axiom. This axiom is given in Table 1.
Each closed BTA term denotes a finite thread, i.e. a thread with a finite upper bound to

the number of actions that it can perform. Infinite threads, i.e. threads without a finite upper
bound to the number of actions that it can perform, can be described by guarded recursion.

A guarded recursive specification over BTAbt is a set of recursion equations E = {x =
tx | x ∈ V }, where V is a set of variables of sort T and each tx is a BTAbt term of the form
D, S, S+, S− or t �a � t ′ with t and t ′ that contain only variables from V .

We are only interested in models of BTAbt in which guarded recursive specifications have
unique solutions, such as the appropriate expansion of the projective limit model of BTA
presented in [3].

Table 1 Axiom of BTAbt

x �tau� y = x �tau� x T1
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Table 2 Approximation induction principle
∧

n≥0 πn(x) = πn(y) ⇒ x = y AIP

π0(x) = D P0

πn+1(S+) = S+ P1a

πn+1(S−) = S− P1b

πn+1(S) = S P1c

πn+1(D) = D P2

πn+1(x �a � y) = πn(x)�a �πn(y) P3

A simple example of a guarded recursive specification is the one consisting of the following
two equations:

x = x �a � y, y = y �b� S.

The x-component of the solution of this guarded recursive specification is the thread that
first performs basic action a repeatedly until the reply from the execution environment on
performing a is f, next performs basic action b repeatedly until the reply from the execution
environment on performing b is f, and after that terminates without delivery of a Boolean
value.

To reason about infinite threads, we assume the infinitary conditional equation AIP
(Approximation Induction Principle). AIP is based on the view that two threads are identical
if their approximations up to any finite depth are identical. The approximation up to depth n
of a thread is obtained by cutting it off after it has performed n actions. In AIP, the approxi-
mation up to depth n is phrased in terms of the unary projection operator πn : T → T. AIP
and the axioms for the projection operators are given in Table 2. In this table, a stands for an
arbitrary action from Atau and n stands for an arbitrary natural number.

We can prove that the projections of solutions of guarded recursive specifications over
BTAbt are representable by closed BTAbt terms of sort T.

Lemma 1 Let E be a guarded recursive specification over BTAbt , and let x be a variable
occurring in E. Then, for all n ∈ N, there exists a closed BTAbt term p of sort T such that
πn(x) = p is derivable from E and the axioms for the projection operators.

Proof In the case of BTA, this is proved in [6] as part of the proof of Theorem 1 from that
paper. The proof concerned goes through in the case of BTAbt. 
�

For example, let E be the guarded recursive specification consisting of the equation x =
x �a � S only. Then the projections of x are as follows:

π0(x) = D,

π1(x) = D �a � S,

π2(x) = (D �a � S) �a � S,

π3(x) = ((D �a � S) �a � S) �a � S,

...

Henceforth, we will write BTA+
bt for BTAbt extended with the projection operators, the

axioms for the projection operators, and AIP.
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Table 3 Defining equations for the thread extraction operation

|i, u1 ; . . . ; uk | = D if not 1 ≤ i ≤ k

|i, u1 ; . . . ; uk | = a ◦ |i + 1, u1 ; . . . ; uk | if ui = a

|i, u1 ; . . . ; uk | = |i + 1, u1 ; . . . ; uk | �a � |i + 2, u1 ; . . . ; uk | if ui = +a

|i, u1 ; . . . ; uk | = |i + 2, u1 ; . . . ; uk | �a � |i + 1, u1 ; . . . ; uk | if ui = −a

|i, u1 ; . . . ; uk | = |i + l, u1 ; . . . ; uk | if ui = #l

|i, u1 ; . . . ; uk | = |i .− l, u1 ; . . . ; uk | if ui = \#l

|i, u1 ; . . . ; uk | = S if ui = !
|i, u1 ; . . . ; uk | = S+ if ui = !t
|i, u1 ; . . . ; uk | = S− if ui = !f

The behaviours exhibited on execution by PGLBbt instruction sequences are considered to
be threads, with the basic instructions taken for basic actions. The thread extraction operation
|_| defines, for each PGLBbt instruction sequence, the behaviour exhibited on its execution.
The thread extraction operation is defined by |u1 ; . . . ; uk | = |1, u1 ; . . . ; uk |, where |_, _|
is defined by the equations given in Table 3 (for a ∈ A and l, i ∈ N)2and the rule that
|i, u1 ; . . . ; uk | = D if ui is the beginning of an infinite jump chain.3

If 1 ≤ i ≤ k, |i, u1 ; . . . ; uk | can be read as the behaviour exhibited by u1 ; . . . ; uk

on execution if execution starts at the i th primitive instruction, i.e. ui . By default, execution
starts at the first primitive instruction.

Some simple examples of thread extraction are

|+a ; #2 ; #3 ; b ; !t| = (b ◦ S+) �a � D,

|+a ; −b ; c ; !| = (S �b� (c ◦ S)) �a � (c ◦ S).

The behaviour exhibited on execution may also be an infinite thread. For example,

|a ; +b ; #2 ; #3 ; c ; #4 ; −d ; ! ; a ; \#8|
denotes the x-component of the solution of the guarded recursive specification consisting of
the following two equations:

x = a ◦ y, y = (c ◦ y) �b� (x �d � S).

4 Services and service families

In this section, we introduce service families and a composition operator for service families.
We start by introducing services.

It is assumed that a fixed but arbitrary non-empty finite set M of methods has been given.
A service is able to process certain methods. The processing of a method may involve a
change of the service. At completion of the processing of a method, the service produces a
reply value. The set R of reply values is the 3-element set {t, f, d}. The reply value d stands
for divergent.

For example, a service may be able to process methods for pushing a natural number on a
stack (push:n), testing whether the top of the stack equals a natural number (topeq:n), and

2 As usual, we write i .− j for the monus of i and j , i.e. i .− j = i − j if i ≥ j and i .− j = 0 otherwise.
3 This rule can be formalized, cf. [8].
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Instruction sequence processing operators 147

popping the top element from the stack (pop). Processing of a pushing method or a popping
method changes the service, because it changes the stack with which it deals, and produces
the reply value t if no stack overflow or stack underflow occurs and f otherwise. Processing
of a testing method does not change the service, because it does not changes the stack with
which it deals, and produces the reply value t if the test succeeds and f otherwise. Attempted
processing of a method that the service is not able to process changes the service into one
that is not able to process any method and produces the reply d.

In SF, the algebraic theory of service families introduced below, the following is assumed
with respect to services:

– a set S of services has been given together with:

– for each m ∈ M , a total function ∂
∂m : S → S ;

– for each m ∈ M , a total function ρm : S → R;

satisfying the condition that there exists a unique S ∈ S with ∂
∂m (S) = S and ρm(S) = d

for all m ∈ M ;
– a signature �S has been given that includes the following sort:

– the sort S of services;

and the following constant and operators:

– the empty service constant δ : S;
– for each m ∈ M , the derived service operator ∂

∂m : S → S;

– S and �S are such that:

– each service in S can be denoted by a closed term of sort S;
– the constant δ denotes the unique S ∈ S such that ∂

∂m (S) = S and ρm(S) = d for all
m ∈ M ;

– if closed term t denotes service S, then ∂
∂m (t) denotes service ∂

∂m (S).

When a request is made to service S to process method m:

– if ρm(S) �= d, then S processes m, produces the reply ρm(S), and next proceeds as ∂
∂m (S);

– if ρm(S) = d, then S is not able to process method m and proceeds as δ.

The empty service δ is unable to process any method.
It is also assumed that a fixed but arbitrary non-empty finite set F of foci has been

given. Foci play the role of names of services in the service family offered by an execution
environment. A service family is a set of named services where each name occurs only once.

SF has the sorts, constants and operators in �S and in addition the following sort:

– the sort SF of service families;

and the following constant and operators:

– the empty service family constant ∅ : SF;
– for each f ∈ F , the unary singleton service family operator f. _ : S → SF;
– the binary service family composition operator _ ⊕ _ : SF × SF → SF;
– for each F ⊆ F , the unary encapsulation operator ∂F : SF → SF.

We assume that there is a countably infinite set of variables of sort SF which includes u, v, w.
Terms are built as usual in the many-sorted case (see e.g. [38,45]). We use prefix notation for
the singleton service family operators and infix notation for the service family composition
operator.
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Table 4 Axioms of SF

u ⊕ ∅ = u SFC1 ∂F (∅) = ∅ SFE1

u ⊕ v = v ⊕ u SFC2 ∂F ( f.H) = ∅ if f ∈ F SFE2

(u ⊕ v)⊕ w = u ⊕ (v ⊕ w) SFC3 ∂F ( f.H) = f.H if f /∈ F SFE3

f.H ⊕ f.H ′ = f.δ SFC4 ∂F (u ⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

The service family denoted by ∅ is the empty service family. The service family denoted
by a closed term of the form f.H consists of one named service only, the service concerned
is the service denoted by H , and the name of this service is f . The service family denoted
by a closed term of the form C ⊕ D consists of all named services that belong to either
the service family denoted by C or the service family denoted by D. In the case where a
named service from the service family denoted by C and a named service from the service
family denoted by D have the same name, they collapse to an empty service with the name
concerned. The service family denoted by a closed term of the form ∂F (C) consists of all
named services with a name not in F that belong to the service family denoted by C . Thus,
the service families denoted by closed terms of the forms f.H and ∂{ f }(C) do not collapse
to an empty service in service family composition.

Using the singleton service family operators and the service family composition oper-
ator, any finite number of possibly identical services can be brought together in a service
family provided that the services concerned are given different names. In Sect. 7, we will
give an example of the use of the singleton service family operators and the service family
composition operator. The empty service family constant and the encapsulation operators are
primarily meant to axiomatize the operators that are introduced in Sect. 5.

The service family composition operator takes the place of the non-interfering combina-
tion operator from [19]. As suggested by the name, service family composition is composition
of service families. Non-interfering combination is composition of services. The non-inter-
fering combination of services can process all methods that can be processed by only one
of the services. This has the disadvantage that its usefulness is rather limited without an
additional renaming mechanism. For example, a finite number of identical services cannot
be brought together in a service by means of non-interfering combination.

The axioms of SF are given in Table 4. In this table, f stands for an arbitrary focus from F
and H and H ′ stand for arbitrary closed terms of sort S. The axioms of SF simply formalize
the informal explanation given above.

In Sect. 7, we will give an example of the use of the service family composition oper-
ator. There, we will write ⊕n

i=1 Ci , where C1, . . . ,Cn are terms of sort SF, for the term
C1 ⊕ . . .⊕ Cn .

5 Use, apply and reply

A thread may interact with the named services from the service family offered by an execu-
tion environment. That is, a thread may perform a basic action for the purpose of requesting a
named service to process a method and to return a reply value at completion of the processing
of the method. In this section, we combine BTA+

bt with SF and extend the combination with
three operators that relate to this kind of interaction between threads and services, resulting
in TAtsi

bt .
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Instruction sequence processing operators 149

The operators in question are called the use operator, the apply operator, and the reply
operator. The difference between the use operator and the apply operator is a matter of per-
spective: the use operator is concerned with the effects of service families on threads and
therefore produces threads, whereas the apply operator is concerned with the effects of threads
on service families and therefore produces service families. The reply operator is concerned
with the effects of service families on the Boolean values that threads possibly deliver at their
termination. The use operator and the apply operator introduced here are mainly adaptations
of the use operators and the apply operators introduced in [19] to service families. The reply
operator has no counterpart in [19].

The reply operator produces special values in the case where no Boolean value is deliv-
ered at termination or no termination takes place. Thus, it is accomplished that all terms with
occurrences of the reply operator denote something. However, we prefer to use the reply
operator only if it is known that termination with delivery of a Boolean value takes place (see
also Sect. 6).

For the set A of basic actions, we take the set { f.m | f ∈ F ,m ∈ M }. All three operators
mentioned above are concerned with the processing of methods by services from a service
family in pursuance of basic actions performed by a thread. The service involved in the
processing of a method is the service whose name is the focus of the basic action in question.

TAtsi
bt has the sorts, constants and operators of both BTA+

bt and SF and in addition the
following sort:

– the sort R of replies;

and the following constants and operators:

– the reply constants t, f, d,m : R;
– the binary use operator _ / _ : T × SF → T;
– the binary apply operator _ • _ : T × SF → SF;
– the binary reply operator _ ! _ : T × SF → R.

We use infix notation for the use, apply and reply operators.
The thread denoted by a closed term of the form p /C and the service family denoted by a

closed term of the form p • C are the thread and service family, respectively, that result from
processing the method of each basic action performed by the thread denoted by p by the ser-
vice in the service family denoted by C with the focus of the basic action as its name if such
a service exists. When the method of a basic action performed by a thread is processed by a
service, the service changes in accordance with the method concerned, and affects the thread
as follows: the basic action turns into the internal action tau and the two ways to proceed
reduce to one on the basis of the reply value produced by the service. The value denoted by a
closed term of the form p ! C is the Boolean value that the thread denoted by p/C delivers at
its termination if it terminates and delivers a Boolean value at termination, the value denoted
by m (standing for meaningless) if it terminates and does not deliver a Boolean value at
termination, and the value denoted by d (standing for divergent) if it does not terminate. We
are only interested in models of TAtsi

bt in which the cardinality of the domain associated with
the sort R is 4 and the elements of this domain denoted by the constants t, f, d and m are
mutually different.

A simple example of the application of the use operator, the apply operator and the reply
operator is

((nns.pop ◦ S+) �nns.topeq:0� S−) / nns.NNS(0σ),

((nns.pop ◦ S+) �nns.topeq:0� S−) • nns.NNS(0σ),

((nns.pop ◦ S+) �nns.topeq:0� S−) ! nns.NNS(0σ),
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where NNS(σ ) denotes a stack service as described in Sect. 4 dealing with a stack whose
content is represented by the sequence σ . The first term denotes the thread that performs tau
twice and then terminates with delivery of the Boolean value t. The second term denotes the
stack service dealing with a stack whose content is σ , i.e. the content at termination of this
thread, and the third term denotes the reply value t, i.e. the reply value delivered at termination
of this thread.

The axioms of TAtsi
bt are the axioms of BTA+

bt, the axioms of SF, and the axioms given
in Tables 5, 6 and 7. In these tables, f stands for an arbitrary focus from F , m stands for
an arbitrary method from M , H stands for an arbitrary term of sort S, and n stands for
an arbitrary natural number. The axioms simply formalize the informal explanation given
above and in addition stipulate what is the result of use, apply and reply if inappropri-
ate foci or methods are involved. Axioms A10 and R10 allow for reasoning about infinite
threads in the contexts of apply and reply, respectively. The counterpart of A10 and R10
for use, i.e.

∧

n≥0

πn(x) / u = πn(y) / v ⇒ x / u = y / v,

follows from AIP and U10.
We can prove that each closed TAtsi

bt term of sort T can be reduced to a closed BTAbt term
of sort T.

Lemma 2 For all closed TAtsi
bt terms p of sort T, there exists a closed BTAbt term q of sort

T such that p = q is derivable from the axioms of TAtsi
bt .

Proof In the special case of singleton service families, this is in fact proved in [6] as part of
the proof of Theorem 3 from that paper. The proof of the general case follows essentially the
same lines. 
�

In the case of TAtsi
bt , the notion of a guarded recursive specification is somewhat adapted.

A guarded recursive specification over TAtsi
bt is a set of recursion equations E = {x = tx |

x ∈ V }, where V is a set of variables of sort T and each tx is a TAtsi
bt term of sort T that can

be rewritten, using the axioms of TAtsi
bt , to a term of the form D, S, S+, S− or t �a � t ′

with t and t ′ that contain only variables from V . We are only interested in models of TAtsi
bt in

which guarded recursive specifications have unique solutions.
A thread p in a model M of TAtsi

bt in which guarded recursive specifications over TAtsi
bt

have unique solutions is definable if it is the solution in M of a guarded recursive specification
over TAtsi

bt . It is easy to see that a thread is definable if it is representable by a closed TAtsi
bt

term of sort T.
Henceforth, we assume that a model M of TAtsi

bt has been given in which guarded recursive
specifications over TAtsi

bt have unique solutions, all threads are definable, all service families
are representable by a closed TAtsi

bt term of sort SF, and all replies are representable by a
closed TAtsi

bt term of sort R.
Below, we will formulate a proposition about the use, apply and reply operators

using the foci operation foci defined by the equations in Table 8 (for foci f ∈ F
and terms H of sort S). The operation foci gives, for each service family, the set
of all foci that serve as names of named services belonging to the service fam-
ily. We will make use of the following properties of foci in the proof of the
proposition:

1. foci(u) ∩ foci(v) = ∅ iff f /∈ foci(u) or f /∈ foci(v) for all f ∈ F ;
2. f �∈ foci(u) iff ∂{ f }(u) = u.

123



Instruction sequence processing operators 151

Table 5 Axioms for the use operator

S+ / u = S+ U1

S− / u = S− U2

S / u = S U3

D / u = D U4

(tau ◦ x) / u = tau ◦ (x / u) U5

(x � f.m � y) / ∂{ f }(u) = (x / ∂{ f }(u))� f.m � (y / ∂{ f }(u)) U6

(x � f.m � y) / ( f.H ⊕ ∂{ f }(u)) = tau ◦ (x / ( f. ∂
∂m H ⊕ ∂{ f }(u))) if ρm(H) = t U7

(x � f.m � y) / ( f.H ⊕ ∂{ f }(u)) = tau ◦ (y / ( f. ∂
∂m H ⊕ ∂{ f }(u))) if ρm(H) = f U8

(x � f.m � y) / ( f.H ⊕ ∂{ f }(u)) = D if ρm(H) = d U9

πn(x / u) = πn(x) / u U10

Table 6 Axioms for the apply operator

S+ • u = u A1

S− • u = u A2

S • u = u A3

D • u = ∅ A4

(tau ◦ x) • u = x • u A5

(x � f.m � y) • ∂{ f }(u) = ∅ A6

(x � f.m � y) • ( f.H ⊕ ∂{ f }(u)) = x • ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = t A7

(x � f.m � y) • ( f.H ⊕ ∂{ f }(u)) = y • ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = f A8

(x � f.m � y) • ( f.H ⊕ ∂{ f }(u)) = ∅ if ρm(H) = d A9
∧

n≥0 πn(x) • u = πn(y) • v ⇒ x • u = y • v A10

Table 7 Axioms for the reply operator

S+ ! u = t R1

S− ! u = f R2

S ! u = m R3

D ! u = d R4

(tau ◦ x) ! u = x ! u R5

(x � f.m � y) ! ∂{ f }(u) = d R6

(x � f.m � y) ! ( f.H ⊕ ∂{ f }(u)) = x ! ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = t R7

(x � f.m � y) ! ( f.H ⊕ ∂{ f }(u)) = y ! ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = f R8

(x � f.m � y) ! ( f.H ⊕ ∂{ f }(u)) = d if ρm(H) = d R9
∧

n≥0 πn(x) ! u = πn(y) ! v ⇒ x ! u = y ! v R10

Table 8 Defining equations for the foci operation

foci(∅) = ∅
foci( f.H) = { f }
foci(u ⊕ v) = foci(u) ∪ foci(v)
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Proposition 1 If foci(u) ∩ foci(v) = ∅, then:

1. x / (u ⊕ v) = (x / u) / v;
2. x ! (u ⊕ v) = (x / u) ! v;
3. ∂foci(u)(x • (u ⊕ v)) = (x / u) • v.

Proof By the definition of a guarded recursive specification over TAtsi
bt , Lemmas 1 and 2,

and axioms AIP, U10, A10 and R10, it is sufficient to prove for all closed BTAbt term p of
sort T:

p / (u ⊕ v) = (p / u) / v;
p ! (u ⊕ v) = (p / u) ! v;
∂foci(u)(p • (u ⊕ v)) = (p / u) • v.

This is straightforward by induction on the structure of p, using the above-mentioned
properties of foci. 
�

Let p and C be TAtsi
bt terms of sort T and SF, respectively. Then p converges on C , written

p ↓ C , is inductively defined by the following clauses:

1. S ↓ u;
2. S+ ↓ u and S− ↓ u;
3. if x ↓ u, then (tau ◦ x) ↓ u;
4. if ρm(H) = t and x ↓ ( f. ∂

∂m H ⊕ ∂{ f }(u)), then (x � f.m � y) ↓ ( f.H ⊕ ∂{ f }(u));
5. if ρm(H) = f and y ↓ ( f. ∂

∂m H ⊕ ∂{ f }(u)), then (x � f.m � y) ↓ ( f.H ⊕ ∂{ f }(u));
6. if πn(x) ↓ u, then x ↓ u;

and p diverges on C , written p ↑ C , is defined by p ↑ C iff not p ↓ C . Moreover, p
converges on C with Boolean reply, written p ↓B C , is inductively defined by the clauses
2, . . . , 6 for ↓ with everywhere ↓ replaced by ↓B.

The following two propositions concern the connection between convergence and the
reply operator.

Proposition 2 Let p be a closed TAtsi
bt term of sort T. Then:

1. if p ↓ u, S+ occurs in p and both S− and S do not occur in p, then p ! u = t;
2. if p ↓ u, S− occurs in p and both S+ and S do not occur in p, then p ! u = f;
3. if p ↓ u, S occurs in p and both S+ and S− do not occur in p, then p ! u = m.

Proof By Lemma 2, it is sufficient to prove it for all closed BTAbt terms p of sort T. This is
straightforward by induction on the structure of p. 
�
Proposition 3 We have that x ↓ u iff x ! u = t or x ! u = f or x ! u = m.

Proof By the definition of a guarded recursive specification over TAtsi
bt , the last clause of the

inductive definition of ↓, Lemmas 1 and 2, and axiom R10, it is sufficient to prove p ↓ u
iff p ! u = t or p ! u = f or p ! u = m for all closed BTAbt terms p of sort T. This is
straightforward by induction on the structure of p. 
�

Because the use operator, apply operator and reply operator are primarily intended to
be used to describe and analyse instruction sequence processing, they are called instruction
sequence processing operators.

We introduce the apply operator and reply operator in the setting of PGLBbt by defining:

P / u = |P| / u, P • u = |P| • u, P ! u = |P| ! u
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for all PGLBbt instruction sequences P . Similarly, we introduce convergence in the setting
of PGLBbt by defining:

P ↓ u = |P| ↓ u

for all PGLBbt instruction sequences P .

6 Relevant use conventions

In the setting of service families, sets of foci play the role of interfaces. The set of all foci
that serve as names of named services in a service family is regarded as the interface of
that service family. There are cases in which processing does not terminate or, even worse
(because it is statically detectable), interfaces of services families do not match. In the case
of non-termination, there is nothing that we intend to denote by a term of the form p • C or
p ! C . In the case of non-matching services families, there is nothing that we intend to denote
by a term of the form C ⊕ D. Moreover, in the case of termination without a Boolean reply,
there is nothing that we intend to denote by a term of the form p ! C .

We propose to comply with the following relevant use conventions:

– p • C is only used if it is known that p ↓ C ;
– p ! C is only used if it is known that p ↓B C ;
– C ⊕ D is only used if it is known that foci(C) ∩ foci(D) = ∅.

The condition found in the first convention is justified by the fact that x • u = ∅ if x ↑ u.
We do not have x • u = ∅ only if x ↑ u. For instance, S+ • ∅ = ∅ whereas S+ ↓ ∅. Similar
remarks apply to the condition found in the second convention.

The idea of relevant use conventions is taken from [15], where it plays a central role in
an account of the way in which mathematicians usually deal with division by zero in mathe-
matical texts. According to [15], mathematicians deal with this issue by complying with the
convention that p/q is only used if it is known that q �= 0. This approach is justified by the
fact that there is nothing that mathematicians intend to denote by p/q if q = 0. It yields
simpler mathematical texts than the popular approach in theoretical computer science, which
is characterized by complete formality in definitions, statements and proofs. In this computer
science approach, division is considered a partial function and some logic of partial functions
is used. In [22], deviating from this, division is considered a total function whose value is
zero in all cases of division by zero. It may be imagined that this notion of division is the
one with which mathematicians make themselves familiar before they start to read and write
mathematical texts professionally.

We think that the idea to comply with conventions that exclude the use of terms that are
not really intended to denote anything is not only of importance in mathematics, but also
in theoretical computer science. For example, the consequence of adapting Proposition 1 to
comply with the relevant use conventions described above, by adding appropriate conditions
to the three properties, is that we do not have to consider in the proof of the proposition the
equality of terms by which we do not intend to denote anything.

In the sequel, we will comply with the relevant use conventions described above.
We can define the use operators introduced earlier in [8,14],4 the apply operators intro-

duced earlier in [19], and similar counterparts of the reply operator as follows:

x / f H = x / f.H,

4 The use operators introduced in [19] are counterparts of the abstracting use operator introduced later
in Sect. 8.
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x • f H = x • f.H,

x ! f H = x ! f.H.

These definitions give rise to the derived conventions that p • f H is only used if it is known
that p ↓ f.H and p ! f H is only used if it is known that p ↓B f.H .

7 Example

In this section, we use an implementation of a bounded counter by means of a number of
Boolean registers as an example to show that it is easy to bring a number of identical services
together in a service family by means of the service family composition operator. Accom-
plishing something resemblant with the non-interfering service combination operation from
[19] is quite involved. We also show in this example that there are cases in which the delivery
of a Boolean value at termination of the execution of an instruction sequence is quite natural.

First, we describe services that make up Boolean registers. The Boolean register services
are able to process the following methods:

– the set to true method set:t;
– the set to false method set:f;
– the get method get.

It is assumed that set:t, set:f, get ∈ M .
The methods that Boolean register services are able to process can be explained as follows:

– set:t : the contents of the Boolean register becomes t and the reply is t;
– set:f : the contents of the Boolean register becomes f and the reply is f;
– get : nothing changes and the reply is the contents of the Boolean register.

For the set S of services, we take the set {BRt,BRf,BRd} of Boolean register services.
For each m ∈ M , we take the functions ∂

∂m and ρm such that (b ∈ {t, f}):

∂
∂set:t (BRb) = BRt,
∂

∂set:f (BRb) = BRf,
∂
∂get (BRb) = BRb,

ρset:t(BRb) = t,
ρset:f(BRb) = f,
ρget(BRb) = b,

∂
∂m (BRb) = BRd if m �∈ {set:t, set:f, get},
∂
∂m (BRd) = BRd,

ρm(BRb) = d if m �∈ {set:t, set:f, get},
ρm(BRd) = d.

Moreover, we take the names used above to denote the services in S for constants of sort S.
We continue with the implementation of a bounded counter by means of a number of

Boolean registers. We consider a counter that can contain a natural number in the interval
[0, 2n − 1] for some n > 0. To implement the counter, we represent its content in binary
using a collection of n Boolean registers named b:0, . . . , b:n−1. We take t for 0 and f for 1,
and we take the bit represented by the content of the Boolean register named b:i for a less
significant bit than the bit represented by the content of the Boolean register named b: j if
i < j .
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The following instruction sequences implement set to zero, increment by one, decrement
by one, and test on zero, respectively:

SETZERO =
n−1;
i=0
(b:i.set:t) ; !t,

SUCC =
n−1;
i=0
(−b:i.get ; #3 ; b:i.set:f ; !t ; b:i.set:t) ; !f,

PRED =
n−1;
i=0
(+b:i.get ; #3 ; b:i.set:t ; !t ; b:i.set:f) ; !f,

ISZERO =
n−1;
i=0
(−b:i.get ; !f) ; !t.

Concerning the Boolean values delivered at termination of executions of these instruction
sequences, we have that:

SETZERO ! (n−1⊕
i=0

b:i.BRsi

) = t,

SUCC ! (n−1⊕
i=0

b:i.BRsi

) =
{

t if
∨n−1

i=0 si = t

f if
∧n−1

i=0 si = f,

PRED ! (n−1⊕
i=0

b:i.BRsi

) =
{

t if
∨n−1

i=0 si = f

f if
∧n−1

i=0 si = t,

ISZERO ! (n−1⊕
i=0

b:i.BRsi

) =
{

t if
∧n−1

i=0 si = t

f if
∨n−1

i=0 si = f.

It is obvious that t is delivered at termination of an execution of SETZERO and that t or f is
delivered at termination of an execution of ISZERO depending on whether the content of the
counter is zero or not. Increment by one and decrement by one are both modulo 2n . For that
reason, t or f is delivered at termination of an execution of SUCC or PRED depending on
whether the content of the counter is really incremented or decremented by one or not.

8 Abstracting use

With the use operator introduced in Sect. 5, the action tau is left as a trace of a basic action
that has led to the processing of a method, like with the use operators on services introduced
in e.g. [8,14]. However, with the use operators on services introduced in [19], nothing is left
as a trace of a basic action that has led to the processing of a method. Thus, these use operators
abstract fully from internal activity. In other words, they are abstracting use operators. For
completeness, we introduce an abstracting variant of the use operator introduced in Sect. 5.

That is, we introduce the following additional operator:

– the binary abstracting use operator _ // _ : T × SF → T.

We use infix notation for the abstracting use operator.
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Table 9 Axioms for the abstracting use operator

S+ // u = S+ AU1

S− // u = S− AU2

S // u = S AU3

D // u = D AU4

(tau ◦ x) // u = tau ◦ (x // u) AU5

(x � f.m � y) // ∂{ f }(u) = (x // ∂{ f }(u))� f.m � (y // ∂{ f }(u)) AU6

(x � f.m � y) // ( f.H ⊕ ∂{ f }(u)) = x // ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = t AU7

(x � f.m � y) // ( f.H ⊕ ∂{ f }(u)) = y // ( f. ∂
∂m H ⊕ ∂{ f }(u)) if ρm(H) = f AU8

(x � f.m � y) // ( f.H ⊕ ∂{ f }(u)) = D if ρm(H) = d AU9
∧

n≥0 πn(x) // u = πn(y) // v ⇒ x // u = y // v AU10

The axioms for the abstracting use operator are given in Table 9. Owing to the possible
concealment of actions by abstracting use, πn(x // u) = πn(x) // u is not a plausible axiom.
However, axiom AU10 allows for reasoning about infinite threads in the context of abstracting
use.

9 Functional units

In this section, we introduce the concept of a functional unit and related concepts.
It is assumed that a non-empty finite or countably infinite set S of states has been given.

As before, it is assumed that a non-empty finite set M of methods has been given. However,
in the setting of functional units, methods serve as names of operations on a state space. For
that reason, the members of M will henceforth be called method names.

A method operation on S is a total function from S to B×S. A partial method operation on
S is a partial function from S to B × S. We write MO(S) for the set of all method operations
on S. We write Mr and Me, where M ∈ MO(S), for the unique functions R : S → B and
E : S → S, respectively, such that M(s) = (R(s), E(s)) for all s ∈ S.

A functional unit for S is a finite subset H of M × MO(S) such that (m,M) ∈ H and
(m,M ′) ∈ H implies M = M ′. We write FU (S) for the set of all functional units for S. We
write I (H ), where H ∈ FU (S), for the set {m ∈ M | ∃M ∈ MO(S) • (m,M) ∈ H }.
We write mH , where H ∈ FU (S) and m ∈ I (H ), for the unique M ∈ MO(S) such that
(m,M) ∈ H .

We look upon the set I (H ), where H ∈ FU (S), as the interface of H . It looks to
be convenient to have a notation for the restriction of a functional unit to a subset of its
interface. We write (I,H ), where H ∈ FU (S) and I ⊆ I (H ), for the functional unit
{(m,M) ∈ H | m ∈ I }.

Let H ∈ FU (S). Then an extension of H is an H ′ ∈ FU (S) such that H ⊆ H ′.
The following is a simple illustration of the use of functional units. An unbounded counter

can be modelled by a functional unit for N with method operations for set to zero, increment
by one, decrement by one, and test on zero.

According to the definition of a functional unit, ∅ ∈ FU (S). By that we have a unique
functional unit with an empty interface, which is not very interesting in itself. However, when
considering services that behave according to functional units, ∅ is exactly the functional unit
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according to which the empty service δ (the service that is not able to process any method)
behaves.

The method names attached to method operations in functional units should not be con-
fused with the names used to denote specific method operations in describing functional units.
Therefore, we will comply with the convention to use names beginning with a lower-case
letter in the former case and names beginning with an upper-case letter in the latter case.

We will use PGLBsbt instruction sequences to derive partial method operations from the
method operations of a functional unit. We write L ( f.I ), where I ⊆ M , for the set of all
PGLBsbt instruction sequences, taking the set { f.m | m ∈ I } as the set A of basic instructions.

The derivation of partial method operations from the method operations of a functional
unit involves services whose processing of methods amounts to replies and service changes
according to corresponding method operations of the functional unit concerned. These ser-
vices can be viewed as the behaviours of a machine, on which the processing in question
takes place, in its different states. We take the set FU (S)× S as the set S of services. We
write H (s), where H ∈ FU (S) and s ∈ S, for the service (H , s). The functions ∂

∂m and
ρm are defined as follows:

∂

∂m
(H (s)) =

{
H (me

H (s)) if m ∈ I (H )

∅(s′) if m /∈ I (H ),

ρm(H (s)) =
{

mr
H (s) if m ∈ I (H )

d if m /∈ I (H ),

where s′ is a fixed but arbitrary state in S. In order to be able to make use of the axioms
for the apply operator and the reply operator from Sect. 5 hereafter, we want to use these
operators for the services being considered here when making the idea of deriving a partial
method operation by means of an instruction sequence precise. Therefore, we assume that
there is a constant of sort S for each H (s) ∈ S .5 In this connection, we use the following
notational convention: for each H (s) ∈ S , we write H (s) for the constant of sort S whose
interpretation is H (s). Note that the service ∅(σ ′) is the interpretation of the empty service
constant δ.

Let H ∈ FU (S), and let I ⊆ I (H ). Then an instruction sequence x ∈ L ( f.I )
produces a partial method operation |x |H as follows:

|x |H (s) = (|x |rH (s), |x |eH (s)) if |x |rH (s) = t ∨ |x |rH (s) = f,

|x |H (s) is undefined if |x |rH (s) = d,

where

|x |rH (s) = x ! f.H (s),

|x |eH (s) = the unique s′ ∈ S such that x • f.H (s) = f.H (s′).

If |x |H is total, then it is called a derived method operation of H .
The binary relation ≤ on FU (S) is defined by H ≤ H ′ iff for all (m,M) ∈ H , M is a

derived method operation of H ′. The binary relation ≡ on FU (S) is defined by H ≡ H ′
iff H ≤ H ′ and H ′ ≤ H .

5 This may lead to an uncountable number of constants, which is unproblematic and quite normal in model
theory.
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Theorem 1

1. ≤ is transitive;
2. ≡ is an equivalence relation.

Proof Property 1: We have to prove that H ≤ H ′ and H ′ ≤ H ′′ implies H ≤ H ′′. It is
sufficient to show that we can obtain instruction sequences in L ( f.I (H ′′)) that produce the
method operations of H from the instruction sequences in L ( f.I (H ′)) that produce
the method operations of H and the instruction sequences in L ( f.I (H ′′)) that produce
the method operations of H ′. Without loss of generality, we may assume that all instruction
sequences are of the form u1 ; . . . ; uk ; !t ; !f, where, for each i ∈ [1, k], ui is a positive test
instruction, a forward jump instruction or a backward jump instruction. Let m ∈ I (H ), let
M be such that (m,M) ∈ H , and let xm ∈ L ( f.I (H ′)) be such that M = |xm |H ′ . Sup-
pose that I (H ′) = {m′

1, . . . ,m′
n}. For each i ∈ [1, n], let M ′

i be such that (m′
i ,M ′

i ) ∈ H ′
and let xm′

i
= ui

1 ; . . . ; ui
ki

; !t ; !f ∈ L ( f.I (H ′′)) be such that M ′
i = |xm′

i
|H ′′ . Consider

the x ′
m ∈ L ( f.I (H ′′)) obtained from xm as follows: for each i ∈ [1, n], (i) first increase

each jump over the leftmost occurrence of + f.m′
i in xm with ki + 1, and next replace this

instruction by ui
1 ; . . . ; ui

ki
; (ii) repeat the previous step as long as their are occurrences of

+ f.m′
i . It is easy to see that M = |x ′

m |H ′′ .
Property 2: It follows immediately from the definition of ≡ that ≡ is symmetric and from

the definition of ≤ that ≤ is reflexive. From these properties, Property 1 and the definition
of ≡, it follows immediately that ≡ is symmetric, reflexive and transitive. 
�

The members of the quotient set FU (S)/≡ are called functional unit degrees. Let H ∈
FU (S) and D ∈ FU (S)/≡. Then D is a functional unit degree below H if there exists an
H ′ ∈ D such that H ′ ≤ H .

Two functional units H and H ′ belong to the same functional unit degree if and only if
H and H ′ have the same derived method operations. A functional unit degree D is below
a functional unit H if and only if all derived method operations of some member of D are
derived method operations of H .

The binary relation ≤ on FU (S) is reminiscent of the relative computability relation ≤
on algebras introduced in [28] because functional units can be looked upon as algebras of a
special kind. In the definition of this relative computability relation on algebras, the role of
instruction sequences is filled by flow charts. A more striking difference is that the relation
allows for algebras with different domains to be related. This corresponds to a relation on
functional units that allows for the states from one state space to be represented by the states
from another state space. To the best of our knowledge, the work presented in [28] and a few
preceding papers of the same authors is the only work on computability that is concerned
with a relation comparable to the relation ≤ on FU (S) defined above.

10 Functional units for natural numbers

In this section, we investigate functional units for natural numbers. The main consequences
of considering the special case where the state space is N are the following: (i) N is infinite,
(ii) there is a notion of computability known which can be used without further preparations.

An example of a functional unit in FU (N) is an unbounded counter. The method names
involved are setzero, succ, pred, and iszero. The method operations involved are the func-
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tions Setzero, Succ, Pred, Iszero : N → B × N defined as follows:

Setzero(x) = (t, 0),

Succ(x) = (t, x + 1),

Pred(x) =
{
(t, x − 1) if x > 0,
(f, 0) if x = 0,

Iszero(x) =
{
(t, x) if x = 0,
(f, x) if x > 0.

The functional unit Counter is defined as follows:

Counter = {(setzero, Setzero), (succ, Succ), (pred,Pred), (iszero, Iszero)}.
The following proposition shows that there are infinitely many functional units for natural
numbers with mutually different sets of derived method operations whose method operations
are derived method operations of a major restriction of the functional unit Counter.

Proposition 4 There are infinitely many functional unit degrees below ({pred, iszero},
Counter).

Proof For each n ∈ N, we define a functional unit Hn ∈ FU (N) such that Hn ≤
({pred, iszero},Counter) as follows:

Hn = {(pred:n,Pred:n), (iszero, Iszero)},
where

Pred:n(x) =
{
(t, x − n) if x ≥ n
(f, 0) if x < n.

Let n,m ∈ N be such that n < m. Then Pred:n(m) = (t,m − n). However, there does not
exist an x ∈ L ( f.I (Hm)) such that |x |Hm (m) = (t,m − n) because Pred:m(m) = (t, 0).
Hence, Hn �≤ Hm for all n,m ∈ N with n < m. 
�

A method operation M ∈ MO(N) is computable if there exist computable functions
F,G : N → N such that M(n) = (β(F(n)),G(n)) for all n ∈ N, where β : N → B is induc-
tively defined by β(0) = t and β(n + 1) = f. A functional unit H ∈ FU (N) is computable
if, for each (m,M) ∈ H , M is computable.

Theorem 2 Let H ,H ′ ∈ FU (N) be such that H ≤ H ′. Then H is computable if H ′
is computable.

Proof We will show that all derived method operations of H ′ are computable.
Take an arbitrary P ∈ L ( f.I (H ′)) such that |P|H ′ is a derived method operations of

H ′. It follows immediately from the definition of thread extraction that |P| is the solution
of a finite linear recursive specification over BTAbt, i.e. a finite guarded recursive specifica-
tion over BTAbt in which the right-hand side of each equation is a BTAbt term of the form
D, S+, S− or x �a � y where x and y are variables of sort T. Let E be a finite linear
recursive specification over BTAbt of which the solution for x1 is |P|. Because |P|H ′ is
total, it may be assumed without loss of generality that D does not occur as the right-hand
side of an equation in E . Suppose that

E = {xi = xl(i) � f.mi � xr(i) | i ∈ [1, n]} ∪ {xn+1 = S+, xn+2 = S−}.
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From this set of equations, using the relevant axioms and definitions, we obtain a set of
equations of which the solution for F1 is |P|eH ′ :

{Fi (s) = Fl(i)(mi
e
H ′(s)) · sg(χi (s))+ Fr(i)(mi

e
H ′(s)) · sg(χi (s)) | i ∈ [1, n]}

∪ {Fn+1(s) = s, Fn+2(s) = s},
where, for every i ∈ [1, n], the function χi : N → N is such that for all s ∈ N:

χi (s) = 0 ⇔ mi
r
H ′(s) = t,

and the functions sg, sg : N → N are defined as usual:

sg(0) = 0, sg(0) = 1,

sg(n + 1) = 1, sg(n + 1) = 0.

It follows from the way in which this set of equations is obtained from E , the fact that mi
e
H ′

and χi are computable for each i ∈ [1, n], and the fact that sg and sg are computable, that
this set of equations is equivalent to a set of equations by which |P|eH ′ is defined recursively
in the sense of [26]. This means that |P|eH ′ is general recursive, and hence computable.

In a similar way, it is proved that |P|rH ′ is computable. 
�
A computable H ∈ FU (N) is universal if for each computable H ′ ∈ FU (N), we have

H ′ ≤ H . There exists a universal computable functional unit for natural numbers.

Theorem 3 There exists a computable H ∈ FU (N) that is universal.

Proof We will show that there exists a computable H ∈ FU (N) with the property that
each computable M ∈ MO(N) is a derived method operation of H .

As a corollary of Theorem 10.3 from [39],6 we have that each computable M ∈ MO(N)
can be computed by means of a register machine with six registers, say r0, r1, r2, r3, r4,
and r5. The registers are used as follows: r0 as input register; r1 as output register for the
output in B; r2 as output register for the output in N; r3, r4 and r5 as auxiliary registers. The
content of r1 represents the Boolean output as follows: 0 represents t and all other natural
numbers represent f. For each i ∈ [0, 5], register ri can be incremented by one, decremented
by one, and tested for zero by means of instructions ri.succ, ri.pred and ri.iszero, respec-
tively. We write L (RM 6) for the set of all PGLBsbt instruction sequences, taking the set
{ri.succ, ri.pred, ri.iszero | i ∈ [0, 5]} as the set A of basic instructions. Clearly, L (RM 6)

is adequate to represent all register machine programs using six registers.
We define a computable functional unit U ∈ FU (N) whose method operations can

simulate the effects of the register machine instructions by encoding the register machine
states by natural numbers such that the contents of the registers can reconstructed by prime
factorization. This functional unit is defined as follows:

U = {(exp2,Exp2), (fact5,Fact5)}
∪ {(ri :succ,Ri :succ), (ri :pred,Ri :pred), (ri :iszero,Ri :iszero) | i ∈ [0, 5]},

where the method operations are defined as follows:

Exp2(x) = (t, 2x ),

Fact5(x) = (t,max{y | ∃z • x = 5y · z})
6 That theorem can be looked upon as a corollary of Theorem Ia from [30].
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and, for each i ∈ [0, 5]:7

Ri :succ(x) = (t, pi · x),

Ri :pred(x) =
{
(t, x/pi ) if pi | x
(f, x) if ¬(pi | x),

Ri :iszero(x) =
{
(t, x) if ¬(pi | x)
(f, x) if pi | x,

where pi is the (i+1)th prime number, i.e. p0 = 2, p1 = 3, p2 = 5, ….
We define a function rml2ful from L (RM 6) to L ( f.I (U )), which gives, for each

instruction sequence P in L (RM 6), the instruction sequence in L ( f.I (U )) by which the
effect produced by P on a register machine with six registers can be simulated on U . This
function is defined as follows:

rml2ful(u1 ; . . . ; uk)

= f.exp2 ; φ(u1) ; . . . ; φ(uk) ; − f.r1:iszero ; #3 ; f.fact5 ; !t ; f.fact5 ; !f,
where

φ(a) = ψ(a),

φ(+a) = +ψ(a),
φ(−a) = −ψ(a),
φ(u) = u if u is a jump or termination instruction,

where, for each i ∈ [0, 5]:
ψ(ri.succ) = f.ri :succ,

ψ(ri.pred) = f.ri :pred,

ψ(ri.iszero) = f.ri :iszero.

Take an arbitrary computable M ∈ MO(N). Then there exists an instruction sequence
in L (RM 6) that computes M . Take an arbitrary P ∈ L (RM 6) that computes M . Then
|rml2ful(P)|U = M . Hence, M is a derived method operation of U . 
�

The universal computable functional unit U defined in the proof of Theorem 3 has 20 method
operations. However, three method operations suffice.

Theorem 4 There exists a computable H ∈ FU (N) with only three method operations
that is universal.

Proof We know from the proof of Theorem 3 that there exists a computable H ∈ FU (N)

with 20 method operations, say M0, …, M19. We will show that there exists a computable
H ′ ∈ FU (N) with only three method operations such that H ≤ H ′.

We define a computable functional unit U ′ ∈ FU (N)with only three method operations
such that U ≤ U ′ as follows:

U ′ = {(g1,G1), (g2,G2), (g3,G3)},

7 As usual, we write x | y for y is divisible by x .
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where the method operations are defined as follows:

G1(x) = (t, 2x ),

G2(x) =
⎧
⎨

⎩

(t, 3 · x) if ¬(319 | x) ∧ ∃y, z • x = 3y · 2z

(t, x/319) if 319 | x ∧ ¬(320 | x) ∧ ∃y, z • x = 3y · 2z

(f, 0) if 320 | x ∨ ¬∃y, z • x = 3y · 2z,

G3(x) = Mfact3(x)(fact2(x)),

where

fact2(x) = max{y | ∃z • x = 2y · z},
fact3(x) = max{y | ∃z • x = 3y · z}.

We have that Mi (x) = G3(3i · 2x ) for each i ∈ [0, 19]. Moreover, state 3i · 2x can be
obtained from state x by first applying G1 once and next applying G2 i times. Hence, for
each i ∈ [0, 19], | f.g1 ; f.g2 i ; + f.g3 ; !t ; !f|U ′ = Mi .8 This means that M0, …, M19 are
derived method operations of U ′. 
�

The universal computable functional unit U ′ defined in the proof of Theorem 4 has three
method operations. We can show that one method operation does not suffice.

Theorem 5 There does not exist a computable H ∈ FU (N) with only one method opera-
tion that is universal.

Proof We will show that there does not exist a computable H ∈ FU (N) with one method
operation such that Counter ≤ H . Here, Counter is the functional unit introduced at the
beginning of this section.

Assume that there exists a computable H ∈ FU (N) with one method operation such
that Counter ≤ H . Let H ′ ∈ FU (N) be such that H ′ has one method operation and
Counter ≤ H ′, and let m be the unique method name such that I (H ′) = {m}. Take
arbitrary P1, P2 ∈ L ( f.I (H ′)) such that |P1|H ′ = Succ and |P2|H ′ = Pred. Then
|P1|H ′(0) = (t, 1) and |P2|H ′(1) = (t, 0). Instruction f.m is processed at least once if P1

is applied to H ′(0) or P2 is applied to H ′(1). Let k0 be the number of times that instruc-
tion f.m is processed on application of P1 to H ′(0) and let k1 be the number of times that
instruction f.m is processed on application of P2 to H ′(1) (irrespective of replies). Then,
from state 0, state 0 is reached again after f.m is processed k0 + k1 times. Thus, by repeated
application of P1 to H ′(0) at most k0 + k1 different states can be reached. This contradicts
with |P1|H ′ = Succ. Hence, there does not exist a computable H ∈ FU (N) with one
method operation such that Counter ≤ H . 
�

It is an open problem whether two method operations suffice.
To the best of our knowledge, there are no existing results in computability theory directly

related to Theorems 3, 4 and 5. We could not even say which existing notion from comput-
ability theory corresponds to the universality of a functional unit for natural numbers.

In Sect. 11, we will give a rough sketch of a universal functional unit for a state space
whose elements can be understood as the possible contents of the tape of Turing machines
with a particular tape alphabet. This universal functional unit corresponds to the common
part of all Turing machines with that tape alphabet. The part that differs for different Turing

8 For each primitive instruction u, the instruction sequence un is defined by induction on n as follows:
u0 = #1, u1 = u and un+2 = u ; un+1.
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machines is what is usually called their “transition function” or “program”. In the current
setting, the role of that part is filled by an instruction sequence whose instructions correspond
to the method operations of the above-mentioned universal functional unit. This means that
different instruction sequences are needed for different Turing machines with the tape alpha-
bet concerned, but the same universal functional unit suffices for all of them. In particular,
the same universal functional unit suffices for universal Turing machines and non-universal
Turing machines.

11 Functional units relating to Turing machine tapes

In this section, we define some notions that have a bearing on the halting problem in the
setting of PGLBsbt and functional units. The notions in question are defined in terms of
functional units for the following state space:

T = {v ˆw | v,w ∈ {0, 1, :}∗}.
The elements of T can be understood as the possible contents of the tape of a Turing

machine whose tape alphabet is {0, 1, :}, including the position of the tape head. Consider
an element v ˆw ∈ T. Then v corresponds to the content of the tape to the left of the position
of the tape head and w corresponds to the content of the tape from the position of the tape
head to the right—the indefinite numbers of padding blanks at both ends are left out. The
colon serves as a separator of bit sequences. This is for instance useful if the input of a
program consists of another program and an input to the latter program, both encoded as a
bit sequences. We could have taken any other tape alphabet whose cardinality is greater than
one, but {0, 1, :} is extremely handy when dealing with issues relating to the halting problem.
In fact, we could first have introduced the general notation TA, where A stands for a finite set
of tape symbols, for the set {v ˆw | v,w ∈ A∗} and then have introduced T as an abbreviation
for T{0,1,:}.

Below, we will use a computable injective function α : T → N to encode the members
of T as natural numbers. Because T is a countably infinite set, we assume that it is understood
what is a computable function from T to N. An obvious instance of a computable injective
function α :T → N is the one where α(a1 . . . an) is the natural number represented in the qui-
nary number-system by a1 . . . an if the symbols 0, 1, : and ˆ are taken as digits representing
the numbers 1, 2, 3 and 4, respectively.

A method operation M ∈ MO(T) is computable if there exist computable functions
F,G :N → N such that M(v) = (β(F(α(v))), α−1(G(α(v)))) for all v ∈ T, whereα:T → N

is a computable injection and β :N → B is inductively defined by β(0) = t and β(n +1) = f.
A functional unit H ∈ FU (T) is computable if, for each (m,M) ∈ H , M is computable.

Like in the case of FU (N), a computable H ∈ FU (T) is universal if for each comput-
able H ′ ∈ FU (T), we have H ′ ≤ H .

An example of a computable functional unit in FU (T) is the functional unit whose
method operations correspond to the basic steps that a Turing machine with tape alphabet
{0, 1, :} can perform on its tape. It turns out that this functional unit is universal, which can
be proved using simple programming in PGLBbt.

It is assumed that, for each H ∈ FU (T), a computable injective function from
L ( f.I (H )) to {0, 1}∗ with a computable image has been given that yields, for each
x ∈ L ( f.I (H )), an encoding of x as a bit sequence. If we consider the case where
the jump lengths in jump instructions are character strings representing the jump lengths in
decimal notation and method names are character strings, such an encoding function can

123



164 J. A. Bergstra, C. A. Middelburg

easily be obtained using the ASCII character-encoding. We use the notation x to denote the
encoding of x as a bit sequence.

Let H ∈ FU (T), and let I ⊆ I (H ). Then:

– x ∈ L ( f.I (H )) produces a solution of the halting problem for L ( f.I ) with respect to
H if:

x ↓ f.H (v) for all v ∈ T,

x ! f.H (ˆ y:v) = t ⇔ y ↓ f.H (ˆv) for all y ∈ L ( f.I ) and v ∈ {0, 1, :}∗ ;
– x ∈ L ( f.I (H )) produces a reflexive solution of the halting problem for L ( f.I ) with

respect to H if x produces a solution of the halting problem for L ( f.I ) with respect to
H and x ∈ L ( f.I );

– the halting problem for L ( f.I ) with respect to H is autosolvable if there exists an
x ∈ L ( f.I (H )) such that x produces a reflexive solution of the halting problem for
L ( f.I ) with respect to H ;

– the halting problem for L ( f.I ) with respect to H is potentially autosolvable if there
exists an extension H ′ of H such that the halting problem for L ( f.I (H ′))with respect
to H ′ is autosolvable;

– the halting problem for L ( f.I )with respect to H is potentially recursively autosolvable
if there exists an extension H ′ of H such that the halting problem for L ( f.I (H ′))
with respect to H ′ is autosolvable and H ′ is computable.

These definitions make clear that each combination of an H ∈ FU (T) and an I ⊆ I (H )

gives rise to a halting problem instance.
In Sects. 12 and 13, we will make use of a method operation Dup ∈ MO(T) for duplicating

bit sequences. This method operation is defined as follows:

Dup(v ˆw) = Dup(ˆvw),
Dup(ˆv) = (t, ˆv:v) if v ∈ {0, 1}∗,
Dup(ˆv:w) = (t, ˆv:v:w) if v ∈ {0, 1}∗.

Proposition 5 Let H ∈ FU (T) be such that (dup,Dup) ∈ H , let I ⊆ I (H ) be such
that dup ∈ I , let x ∈ L ( f.I ), and let v ∈ {0, 1}∗ and w ∈ {0, 1, :}∗ be such that w = v or
w = v:w′ for some w′ ∈ {0, 1, :}∗. Then ( f.dup ; x) ! f.H (ˆw) = x ! f.H (ˆv:w).
Proof This follows immediately from the definition of Dup and the axioms for ! . 
�

The method operation Dup is a derived method operation of the above-mentioned func-
tional unit whose method operations correspond to the basic steps that a Turing machine with
tape alphabet {0, 1, :} can perform on its tape. This follows immediately from the comput-
ability of Dup and the universality of this functional unit.

In Sects. 12 and 13, we will make use of two simple transformations of PGLBsbt instruc-
tion sequences that affect only their termination behaviour on execution and the Boolean
value yielded at termination in the case of termination. Here, we introduce notations for
those transformations.

Let x be a PGLBsbt instruction sequence. Then we write swap(x) for x with each occur-
rence of !t replaced by !f and each occurrence of !f replaced by !t, and we write f2d(x) for x
with each occurrence of !f replaced by #0. In the following proposition, the most important
properties relating to these transformations are stated.

Proposition 6 Let x be a PGLBsbt instruction sequence. Then:
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1. if x ! u = t then swap(x) ! u = f and f2d(x) ! u = t;
2. if x ! u = f then swap(x) ! u = t and f2d(x) ! u = d.

Proof Let p be a closed BTAbt term of sort T. Then we write swap′(p) for p with each
occurrence of S+ replaced by S− and each occurrence of S− replaced by S+, and we write
f2d′(p) for p with each occurrence of S− replaced by D. It is easy to prove by induction on
i that |i, swap(x)| = swap′(|i, x |) and |i, f2d(x)| = f2d′(|i, x |) for all i ∈ N. By this result,
Lemma 1, and axiom R10, it is sufficient to prove the following for each closed BTAbt term
p of sort T:

if p ! u = t then swap′(p) ! u = f and f2d′(p) ! u = t;
if p ! u = f then swap′(p) ! u = t and f2d′(p) ! u = d.

This is easy by induction on the structure of p. 
�
By the use of foci and the introduction of apply and reply operators on service families,

we make it possible to deal with cases that remind of multi-tape Turing machines, Turing
machines that has random access memory, etc. However, in this paper, we will only consider
the case that reminds of single-tape Turing machines. This means that we will use only one
focus ( f ) and only singleton service families.

12 Interpreters

It is often mentioned in textbooks on computability that an interpreter, which is a program
for simulating the execution of programs that it is given as input, cannot solve the halting
problem because the execution of the interpreter will not terminate if the execution of its input
program does not terminate. In this section, we have a look at the termination behaviour of
interpreters in the setting of PGLBsbt and functional units.

Let H ∈ FU (T), let I ⊆ I (H ), and let I ′ ⊆ I . Then x ∈ L ( f.I ) is an interpreter
for L ( f.I ′) with respect to H if for all y ∈ L ( f.I ′) and v ∈ {0, 1, :}∗:

y ↓ f.H (ˆv) ⇒
x ↓ f.H (ˆ y:v) ∧ x • f.H (ˆ y:v) = y • f.H (ˆv) ∧ x ! f.H (ˆ y:v) = y ! f.H (ˆv).

Moreover, x ∈ L ( f.I ) is a reflexive interpreter for L ( f.I ′) with respect to H if x is an
interpreter for L ( f.I ′) with respect to H and x ∈ L ( f.I ′).

The following theorem states that a reflexive interpreter that always terminates is impos-
sible in the presence of the method operation Dup.

Theorem 6 Let H ∈ FU (T) be such that (dup,Dup) ∈ H , let I ⊆ I (H ) be such that
dup ∈ I , and let x ∈ L ( f.I (H )) be a reflexive interpreter for L ( f.I ) with respect to H .
Then there exist an y ∈ L ( f.I ) and a v ∈ {0, 1, :}∗ such that x ↑ f.H (ˆ y:v).
Proof Assume the contrary. Take y = f.dup ; swap(x). By the assumption, x ↓ f.H (ˆ y:y).
By Propositions 3 and 6, it follows that swap(x) ↓ f.H (ˆ y:y) and swap(x) ! f.H (ˆ y:y) �=
x ! f.H (ˆ y:y). By Propositions 3 and 5, it follows that ( f.dup ; swap(x)) ↓ f.H (ˆ y)
and ( f.dup ; swap(x)) ! f.H (ˆ y) �= x ! f.H (ˆ y:y). Since y = f.dup ; swap(x), we have
y ↓ f.H (ˆ y) and y ! f.H (ˆ y) �= x ! f.H (ˆ y:y). Because x is a reflexive interpreter,
this implies x ! f.H (ˆ y:y) = y ! f.H (ˆ y) and y ! f.H (ˆ y) �= x ! f.H (ˆ y:y). This is a
contradiction. 
�
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It is easy to see that Theorem 6 goes through for all functional units for T of which Dup is a
derived method operation. Recall that the functional units concerned include the afore-men-
tioned functional unit whose method operations correspond to the basic steps that a Turing
machine with tape alphabet {0, 1, :} can perform on its tape.

For each H ∈ FU (T), m ∈ I (H ), and v ∈ T, we have ( f.m ; !t ; !f) ↓ f.H (v). This
leads us to the following corollary of Theorem 6.

Corollary 1 For all H ∈ FU (T) with (dup,Dup) ∈ H and I ⊆ I (H ) with dup ∈ I ,
there does not exist an m ∈ I such that f.m ; !t ; !f is a reflexive interpreter for L ( f.I ) with
respect to H .

To the best of our knowledge, there are no existing results in computability theory or
elsewhere directly related to Theorem 6. It looks as if the closest to this result are results
on termination of particular interpreters for particular logic and functional programming
languages.

13 Autosolvability of the halting problem

Because a reflexive interpreter that always terminates is impossible in the presence of the
method operation Dup, we must conclude that solving the halting problem by means of a
reflexive interpreter is out of the question in the presence of the method operation Dup. The
question arises whether the proviso “by means of a reflexive interpreter” can be dropped. In
this section, we answer this question in the affirmative. Before we present this negative result
concerning autosolvability of the halting problem, we present a positive result.

Let M ∈ MO(T). Then we say that M increases the number of colons if for some v ∈ T

the number of colons in Me(v) is greater than the number of colons in v.

Theorem 7 Let H ∈ FU (T) be such that no method operation of H increases the number
of colons. Then there exist an extension H ′ of H , an I ′ ⊆ I (H ′), and an x ∈ L ( f.I (H ′))
such that x produces a reflexive solution of the halting problem for L ( f.I ′) with respect to
H ′.

Proof Let halting ∈ M be such that halting /∈ I (H ). Take I ′ = I (H ) ∪ {halting}. Take
H ′ = H ∪ {(halting,Halting)}, where Halting ∈ MO(T) is defined as follows:

Halting(v ˆw) = Halting(ˆvw),
Halting(ˆv) = (f, ˆ) if v ∈ {0, 1}∗,
Halting(ˆv:w) = (f, ˆ) if v ∈ {0, 1}∗ ∧ ∀x ∈ L ( f.I ′) • v �= x,
Halting(ˆx :w) = (f, ˆ) if x ∈ L ( f.I ′) ∧ x ↑ f.H ′(w),
Halting(ˆx :w) = (t, ˆ) if x ∈ L ( f.I ′) ∧ x ↓ f.H ′(w).

Then + f.halting ; !t ; !f produces a reflexive solution of the halting problem for L ( f.I ′) with
respect to H ′. 
�

Theorem 7 tells us that there exist functional units H ∈ FU (T) with the property that
the halting problem is potentially autosolvable for L ( f.I (H )) with respect to H . Thus,
we know that there exist functional units H ∈ FU (T) with the property that the halting
problem is autosolvable for L ( f.I (H )) with respect to H .

There exists an H ∈ FU (T) for which Halting as defined in the proof of Theorem 7 is
computable.

123



Instruction sequence processing operators 167

Theorem 8 Let H = ∅ and H ′ = H ∪ {(halting,Halting)}, where Halting is as defined
in the proof of Theorem 7. Then, Halting is computable.

Proof It is sufficient to prove for an arbitrary x ∈ L ( f.I (H ′)) that, for all v ∈ T, x ↓
f.H ′(v) is decidable. We will prove this by induction on the number of colons in v.

The basis step. Because the number of colons in v equals 0, Halting(v) = (f, ˆ). It follows
that x ↓ f.H ′(v) ⇔ x ′ ↓ ∅, where x ′ is x with each occurrence of f.halting and − f.halting
replaced by #1 and each occurrence of + f.halting replaced by #2. Because x ′ is finite, x ′ ↓ ∅
is decidable. Hence, x ↓ f.H ′(v) is decidable.

The inductive step. Because the number of colons in v is greater than 0, either Halting(v) =
(t, ˆ) or Halting(v) = (f, ˆ). It follows that x ↓ f.H ′(v) ⇔ x ′ ↓ ∅, where x ′ is x with:

– each occurrence of f.halting and + f.halting replaced by #1 if the occurrence leads to the
first application of Halting and Haltingr (v) = t, and by #2 otherwise;

– each occurrence of − f.halting replaced by #2 if the occurrence leads to the first application
of Halting and Haltingr (v) = t, and by #1 otherwise.

An occurrence of f.halting, + f.halting or − f.halting in x leads to the first application of
Halting iff |1, x | = |i, x |, where i is the position of the occurrence in x . Because x is finite,
it is decidable whether an occurrence of f.halting, + f.halting or − f.halting leads to the
first processing of halting. Moreover, by the induction hypothesis, it is decidable whether
Haltingr (v) = t. Because x ′ is finite, it follows that x ′ ↓ ∅ is decidable. Hence, x ↓ f.H ′(v)
is decidable. 
�

Theorems 7 and 8 together tell us that there exists a functional unit H ∈ FU (T),
viz. ∅, with the property that the halting problem is potentially recursively autosolvable for
L ( f.I (H )) with respect to H .

Let H ∈ FU (T) be such that all derived method operations of H are computable and
do not increase the number of colons. Then the halting problem is potentially autosolvable
for L ( f.I (H )) with respect to H . However, the halting problem is not always potentially
recursively autosolvable for L ( f.I (H )) with respect to H because otherwise the halting
problem would always be decidable.

The following theorem tells us essentially that potential autosolvability of the halting
problem is precluded in the presence of the method operation Dup.

Theorem 9 Let H ∈ FU (T) be such that (dup,Dup) ∈ H , and let I ⊆ I (H ) be such
that dup ∈ I . Then there does not exist an x ∈ L ( f.I (H )) such that x produces a reflexive
solution of the halting problem for L ( f.I ) with respect to H .

Proof Assume the contrary. Let x ∈ L ( f.I (H )) be such that x produces a reflexive solu-
tion of the halting problem for L ( f.I )with respect to H , and let y = f.dup ; f2d(swap(x)).
Then x ↓ f.H (ˆ y:y). By Propositions 3 and 6, it follows that swap(x) ↓ f.H (ˆ y:y) and
either swap(x) ! f.H (ˆ y:y) = t or swap(x) ! f.H (ˆ y:y) = f.

In the case where swap(x) ! f.H (ˆ y:y) = t, we have by Proposition 6 that
(i) f2d(swap(x)) ! f.H (ˆ y:y) = t and (ii) x ! f.H (ˆ y:y) = f. By Proposition 5, it fol-
lows from (i) that ( f.dup ; f2d(swap(x))) ! f.H (ˆ y) = t. Since y = f.dup ; f2d(swap(x)),
we have y ! f.H (ˆ y) = t. On the other hand, because x produces a reflexive solution, it
follows from (ii) that y ↑ f.H (ˆ y). By Proposition 3, this contradicts with y ! f.H (ˆ y) = t.

In the case where swap(x) ! f.H (ˆ y:y) = f, we have by Proposition 6 that
(i) f2d(swap(x)) ! f.H (ˆ y:y) = d and (ii) x ! f.H (ˆ y:y) = t. By Proposition 5, it follows
from (i) that ( f.dup ; f2d(swap(x))) ! f.H (ˆ y) = d. Since y = f.dup ; f2d(swap(x)), we
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have y ! f.H (ˆ y) = d. On the other hand, because x produces a reflexive solution, it follows
from (ii) that y ↓ f.H (ˆ y). By Proposition 3, this contradicts with y ! f.H (ˆ y) = d. 
�

It is easy to see that Theorem 9 goes through for all functional units for T of which
Dup is a derived method operation. Recall that the functional units concerned include the
afore-mentioned functional unit whose method operations correspond to the basic steps that
a Turing machine with tape alphabet {0, 1, :} can perform on its tape. Because of this, the
unsolvability of the halting problem for Turing machines can be understood as a corollary of
Theorem 9.

Below, we will give an alternative proof of Theorem 9. A case distinction is needed in
both proofs, but in the alternative proof it concerns a minor issue. The issue in question is
covered by the following lemma.

Lemma 3 Let H ∈ FU (T), let I ⊆ I (H ), let x ∈ L ( f.I (H )) be such that x produces
a reflexive solution of the halting problem for L ( f.I ) with respect to H , let y ∈ L ( f.I ),
and let v ∈ {0, 1, :}∗. Then y ↓ f.H (ˆv) implies y ! f.H (ˆv) = x ! f.H (ˆ f2d(y):v).
Proof By Proposition 3, it follows from y ↓ f.H (ˆv) that either y ! f.H (ˆv) = t or
y ! f.H (ˆv) = f.

In the case where y ! f.H (ˆv) = t, we have by Propositions 3 and 6 that f2d(y) ↓ f.H (ˆv)
and so x ! f.H (ˆ f2d(y):v) = t.

In the case where y ! f.H (ˆv) = f, we have by Propositions 3 and 6 that f2d(y) ↑ f.H (ˆv)
and so x ! f.H (ˆ f2d(y):v) = f. 
�
Proof (Another proof of Theorem 9.) Assume the contrary. Let x ∈ L ( f.I (H )) be such
that x produces a reflexive solution of the halting problem for L ( f.I )with respect to H , and
let y = f2d(swap( f.dup ; x)). Then x ↓ f.H (ˆ y:y). By Propositions 3, 5 and 6, it follows
that swap( f.dup ; x) ↓ f.H (ˆ y). By Lemma 3, it follows that swap( f.dup ; x) ! f.H (ˆ y) =
x ! f.H (ˆ y:y). By Proposition 6, it follows that ( f.dup ; x) ! f.H (ˆ y) �= x ! f.H (ˆ y:y).
On the other hand, by Proposition 5, we have that ( f.dup ; x) ! f.H (ˆ y) = x ! f.H (ˆ y:y).
This contradicts with ( f.dup ; x) ! f.H (ˆ y) �= x ! f.H (ˆ y:y). 
�

Both proofs of Theorem 9 given above are diagonalization proofs in disguise.
Now, let H = {(dup,Dup)}. By Theorem 9, the halting problem for L ( f.{dup}) with

respect to H is not (potentially) autosolvable. However, it is decidable.

Theorem 10 Let H = {(dup,Dup)}. Then the halting problem for L ( f.{dup})with respect
to H is decidable.

Proof Let x ∈ L ( f.{dup}), and let x ′ be x with each occurrence of f.dup and + f.dup
replaced by #1 and each occurrence of − f.dup replaced by #2. For all v ∈ T, Dupr (v) = t.
Therefore, x ↓ f.H (v) ⇔ x ′ ↓ ∅ for all v ∈ T. Because x ′ is finite, x ′ ↓ ∅ is decidable. 
�

It follows from Theorem 10 that there exists a computable method operation by means of
which a solution for the halting problem for L ( f.{dup}) can be produced. This leads us to
the following corollary of Theorem 10.

Corollary 2 There exist a computable H ∈ FU (T)with (dup,Dup) ∈ H , an I ⊆ I (H )

with dup ∈ I , and an x ∈ L ( f.I (H )) such that x produces a solution of the halting problem
for L ( f.I ) with respect to H .
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To the best of our knowledge, there are no existing results in computability theory directly
related to Theorems 7, 8, 9 and 10. The closest to these results are probably the positive results
in the setting of Turing machines that have been obtained with restrictions on the number of
states, the minimum of the number of transitions where the tape head moves to the left and
the number of transitions where the tape head moves to the right, or the number of different
combinations of input symbol, direction of head move, and output symbol occurring in the
transitions (see e.g. [29,36]).

14 Concluding remarks

We have presented a re-design of the extension of basic thread algebra that was used in pre-
vious work to deal with the interaction between instruction sequences under execution and
components of their execution environment concerning the processing of instructions. The
changes introduced allow for the material from quite a part of that work to be streamlined.
Moreover, we have introduced the notion of a functional unit. Using the resulting setting, we
have obtained a novel computability result about functional units for natural numbers and
several novel results relating to the autosolvability of the halting problem.

The following remarks may clarify the relationship between the setting that is used in this
paper and the setting of Turing machines and the extent to which the results presented in this
paper can be transferred to the setting of Turing machines.

Each single-tape Turing machine can be simulated by means of a thread that interacts
with a service from a singleton service family. The thread and service correspond to the finite
control and tape of the single-tape Turing machine. The threads that correspond to the finite
controls of single-tape Turing machines are examples of regular threads, i.e. threads that
can only evolve into a finite number of other threads. Similar remarks can be made about
multi-tape Turing machines, register machines, multi-stack machines, et cetera.

The results about functional units can probably be transferred to the setting of Turing
machines after the notion of a functional unit has been linked with that setting. However, we
believe that the setting of Turing machines does not lend itself well to the investigation of the
universality of functional units for natural numbers. The results relating to the autosolvability
of the halting problem cannot be transferred to the setting of Turing machines because that
setting corresponds to a restriction to a single fixed functional unit in our setting. The point is
that all Turing machines have the same tape manipulation features. Because of that only the
effects of restrictions on the use of these features on the solvability of the halting problem
are open for investigation in the setting of Turing machines.

The following remarks touch on closely related previous work on the halting problem and
an interesting option for related future work on the halting problem.

The results relating to the autosolvability of the halting problem extend and strengthen the
results regarding the halting problem for programs given in [20] in a setting which looks to
be more adequate to describe and analyse issues regarding the halting problem for programs.
It happens that decidability depends on the halting problem instance considered. This is dif-
ferent in the case of the on-line halting problem for programs, i.e. the problem to forecast
during its execution whether a program will eventually terminate (see [20]).

The bounded halting problem for programs is the problem to determine, given a program
and an input to the program, whether execution of the program on that input will terminate
after no more than a fixed number of steps. An interesting option for future work is to inves-
tigate whether we can find a lower bound for the complexity of solving the bounded halting
problem for programs using an appropriate functional unit.
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The following remarks are miscellaneous ones relating to the material presented in the
current paper.

We have proposed three instruction sequence processing operators: the use operator, the
apply operator and the reply operator. The apply operator fits in with the viewpoint that pro-
grams are state transformers that can be modelled by partial functions. This viewpoint was
first taken in the early days of denotational semantics, see e.g. [31,41,43].

Pursuant to [15], we have also proposed to comply with conventions that exclude the use
of terms that can be built by means of the proposed operators, but are not really intended
to denote anything. The idea to comply with such conventions looks to be more widely
applicable in theoretical computer science.

In the case where the state space is B, the state space consists of only two states. Because
there are four possible unary functions on B, there are precisely 16 method operations in
MO(B). There are in principle 216 different functional units in FU (B), for it is useless to
include the same method operation more than once under different names in a functional unit.
This means that 216 is an upper bound of the number of functional unit degrees in FU (B)/≡.
However, it is straightforward to show that FU (B)/≡ has only 12 different functional unit
degrees. In the more general case of a finite state space consisting of k states, say Sk , there
are in principle 22k ·kk

different functional units in FU (Sk). Already with k = 3, it becomes
unclear whether the number of functional unit degrees in FU (Sk) can be determined man-
ually. Actually, we do not know at the moment whether it can be determined with computer
support either.
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