16 research outputs found

    The compound channel capacity of a class of finite-state channels

    Get PDF
    A transmitter and receiver need to be designed to guarantee reliable communication on any channel belonging to a given family of finite-state channels defined over common finite input, output, and state alphabets. Both the transmitter and receiver are assumed to be ignorant of the channel over which transmission is carried out and also ignorant of its initial state. For this scenario we derive an expression for the highest achievable rate. As a special case we derive the compound channel capacity of a class of Gilbert-Elliott channels

    The compound channel capacity of a class of finite-state channels

    Full text link

    Enhancement of Secrecy of Block Ciphered Systems by Deliberate Noise

    Full text link
    This paper considers the problem of end-end security enhancement by resorting to deliberate noise injected in ciphertexts. The main goal is to generate a degraded wiretap channel in application layer over which Wyner-type secrecy encoding is invoked to deliver additional secure information. More specifically, we study secrecy enhancement of DES block cipher working in cipher feedback model (CFB) when adjustable and intentional noise is introduced into encrypted data in application layer. A verification strategy in exhaustive search step of linear attack is designed to allow Eve to mount a successful attack in the noisy environment. Thus, a controllable wiretap channel is created over multiple frames by taking advantage of errors in Eve's cryptanalysis, whose secrecy capacity is found for the case of known channel states at receivers. As a result, additional secure information can be delivered by performing Wyner type secrecy encoding over super-frames ahead of encryption, namely, our proposed secrecy encoding-then-encryption scheme. These secrecy bits could be taken as symmetric keys for upcoming frames. Numerical results indicate that a sufficiently large secrecy rate can be achieved by selective noise addition.Comment: 11 pages, 8 figures, journa

    Slepian-Wolf Coding for Broadcasting with Cooperative Base-Stations

    Full text link
    We propose a base-station (BS) cooperation model for broadcasting a discrete memoryless source in a cellular or heterogeneous network. The model allows the receivers to use helper BSs to improve network performance, and it permits the receivers to have prior side information about the source. We establish the model's information-theoretic limits in two operational modes: In Mode 1, the helper BSs are given information about the channel codeword transmitted by the main BS, and in Mode 2 they are provided correlated side information about the source. Optimal codes for Mode 1 use \emph{hash-and-forward coding} at the helper BSs; while, in Mode 2, optimal codes use source codes from Wyner's \emph{helper source-coding problem} at the helper BSs. We prove the optimality of both approaches by way of a new list-decoding generalisation of [8, Thm. 6], and, in doing so, show an operational duality between Modes 1 and 2.Comment: 16 pages, 1 figur

    Feedback Capacity of the Compound Channel

    Full text link
    In this work we find the capacity of a compound finite-state channel with time-invariant deterministic feedback. The model we consider involves the use of fixed length block codes. Our achievability result includes a proof of the existence of a universal decoder for the family of finite-state channels with feedback. As a consequence of our capacity result, we show that feedback does not increase the capacity of the compound Gilbert-Elliot channel. Additionally, we show that for a stationary and uniformly ergodic Markovian channel, if the compound channel capacity is zero without feedback then it is zero with feedback. Finally, we use our result on the finite-state channel to show that the feedback capacity of the memoryless compound channel is given by infθmaxQXI(X;Yθ)\inf_{\theta} \max_{Q_X} I(X;Y|\theta).Comment: 34 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Universal decoding for noisy channels

    Get PDF
    Cover title.Includes bibliographical references (p. 49-51).Supported in part by the Advanced Concepts Committee, Lincoln Laboratory.Feder, M., Lapidoth, A
    corecore