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ABSTRACT

A universal decoder for a parametric family of channels is a decoder
that for any channel in the family attains the same random coding error
exponent as the best decoder for that particular channel. The existence
and structure of such decoders is demonstrated under relatively mild
conditions of continuity of the channel law with respect to the parameter
indexing the family. It is further shown that under somewhat stronger
conditions on the family of channels the convergence of the performance
of the universal decoder to that of the optimal decoder is uniform over
the set of channels. Examples of families for which universal decoding
is possible include the family of finite state channels and the family of
Gaussian intersymbol interference channels.
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1 INTRODUCTION

This paper addresses the problem of designing a receiver for digital commu-

nication over an unknown channel. The channel over which transmission is

to be carried out is unknown to the receiver designer, and the designer only

knows that the channel belongs to some family of channels

= (po(ylx), 0 E a}.
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Had the channel been known in advance, the designer could have used the
Maximum-Likelihood (ML) decoding rule to minimize the average probability
of error. This rule, however, cannot be used in our scenario as it typically
depends on the channel, and the ML decoding rule is thus typically different
for different members of the family of channels.

In spite of the above, we shall show in this paper that under fairly mild
conditions on the family of channels XF, there exists a universal decoder for
.F that performs asymptotically as well as the ML decoder and yet does not
require knowledge of the channel over which transmission is carried out. The
universal decoder that we shall describe thus not only competes favorably
with other detectors that are ignorant of the channel over which transmission
is carried out, but even performs asymptotically as well as the best decoder
that could have been designed had the channel been known in advance.

It should be stressed that no prior distribution is assumed on 0 E O,
and the universal decoder needs to perform asymptotically as well as the ML
decoder on any channel 0 E e.

Before we define asymptotic performance and in order to motivate the
definition, we shall first briefly describe the use of training sequences to facil-
itate communication over an unknown channel, a use which is very common
in many wireless systems [1, 2]. In order to help the receiver identify the
channel in use, the transmitter sends a known sequence of symbols over the
channel. This known input sequence is called "training sequence". Since the
sequence is known at the receiver, the receiver can estimate the channel law
by studying the statistics of the received symbols corresponding to the known
input sequence. The receiver then typically decodes the rest of the transmis-
sion by performing ML decoding according to the estimated channel law. It
should be stressed that the transmitter itself does not know the channel law,
and therefore cannot convey that information to the receiver.

The use of training sequences has some drawbacks. First, there is a
mismatch penalty. Because the training sequences are of limited length, the
channel estimate formed at the receiver is imprecise, and the data sequence is
thus decoded according to an incorrect likelihood function. This results in an
increase in error rates [3], [4] and in a decrease in capacity [5, 6, 7, 8, 9, 10].
Secondly, there is a penalty in throughput, because the training sequences
carry no information. This penalty is of course worse the longer the training
sequence is as compared to the length of the data stream. We thus see that
increasing the length of the training sequences results in a hit in throughput,
while decreasing its length reduces the accuracy of the channel estimation and
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thus results in a more severe loss in error rates and in the capacity due to the
decoding mismatch.

To overcome this tradeoff one might wish to choose the length of the
sequence sufficiently large to ensure precise channel estimation, and then
choose the data block sufficiently long so as to make the loss in throughput
small. This approach, however, seldom works due to delay constraints, as it
results in a large delay that the data symbols suffer. This tradeoff between
delay and error rates motivates us to define a universal decoder as one that
attains the same asymptotic tradeoff between delay and error rates as the
optimal ML receiver.

For most channels of interest, including memoryless channels and in-
decomposable finite state channels [11], the best tradeoff between achievable
error rates and delay for the ML decoder is exponential, with the error rate
Pe decreasing exponentially with the delay (blocklength) n, i.e.,

Pe e-nEO(R),

where the exponent Eo(R) depends on the channel law and on the rate of
transmission, and is typically positive for rates below channel capacity. While
finding codes that achieve this performance is typically very hard, one can
often show that the average (over codebooks and messages) probability of
error of a randomly chosen codebook can exhibit a good exponential tradeoff
between error rates and delay.

With these observations in mind, we define a universal sequence of de-
coders {us} for a family F and input sets {Bn) as a sequence of decoders
(one for every blocklength) that for any channel po(y x), 0 E O attains the
same random-coding exponential tradeoff between error rates and delay as
the ML decoder designed for that channel. We thus require that

lim log1 (P =0, VO E 0,
n-4oo n Po,o (error) J

where Po0,u(error) is the average (over codebooks and message) probability
of error incurred over the channel po(ylx) by the universal decoder u, in
decoding a random codebook of blocklength n and rate R whose codewords
are drawn independently and uniformlyl As discussed later on, this is over

1Throughout this paper we restrict ourselves to random coding where the codewords
are drawn uniformly over the input set B,, thus excluding iid random coding. However,
since Bn can be arbitrary and could, for example, be the set of all sequences of a given
type, there is no loss in optimality in this restriction, see [12].
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the set B,, and where Po,o(error) is the analogous expression for the ML
decoder. It is in this sense that we say that the universal decoder performs
asymptotically as well as the ML decoder. Later in the paper we shall refer
to such a sequence of decoders as "weak random-coding universal", and we
shall also study stronger forms of universality.

Notice that in the definition we adopt for a universal decoder we do not
require that it attain the same asymptotic performance as the maximum-
likelihood decoder for any code. This requirement is too restrictive, as there
are some codes that cannot be decoded universally even in well behaved
families of channels. For example, if F is the family of all Binary Symmetric
Channels (BSC) then, as we shall show later, a universal decoder in our sense
can be found and yet there are some singular codes that are not amenable
to universal decoding. For example, if for every codeword in the code the
codeword's Hamming complement is also a codeword, then the performance
with a ML decoder may well be good and yet the code is clearly not amenable
to reliable universal decoding.

We will, however, show that while not every code is amenable to universal
decoding, there are some very good codes that are. More specifically, we
will show that under relatively mild regularity conditions on the family of
channels one can approach the random coding error exponent (error-rate vs.
delay) with sequences of (deterministic) codes that are amenable to universal
decoding. Under these regularity conditions we can thus demonstrate that
there exists a sequence of codes C, of rate R and blocklength n such that

Il (Po,, (errorC) )IC,lim -log - =0, VO E ,
n-oo n Po,o (error)

where PO,7U (errorCn) is the average probability of error incurred when the
code Cn is used over the channel po(ylx) and is decoded using the decoder un.
This property of a universal decoder will be later referred to as deterministic-
coding (weak) universality, as opposed to random-coding (weak) universality.

It is interesting to note that even for very simple families of channels,
the training sequence approach is not universal. For example, it is shown in
Appendix 1 that even if the family of channels consists of only two channels,
say a binary symmetric channel with crossover probability 0.25 and a bin-
ary symmetric channel with crossover probability 0.75, the training sequence
approach is not universal. The reason is that unless the receiver correctly
identifies the channel in use it is almost bound to err, and for the receiver to
identify the channel with exponentially small probability of error the length

4



of training sequence must be linear in the blocklength, resulting in a loss in
the error exponent.

The issue of universal decoding is intimately related to the problem of
determining the compound channel capacity of a family JF of channels [13,
14, 15, 16]. A rate R is said to be achievable for the family of channels F if for
any e > 0 and any sufficiently large blocklength n there exists a blocklength-n
rate-R codebook Cn and a decoder COn such that

sup Po,,, (errorlCn) < e.
OEO

The compound channel capacity C(F) of the family Y is defined as the su-
premum of all achievable rates.

In a certain sense finding the sequence of decoders ,n for the compound
channel is typically easier than finding a sequence of universal decoders be-
cause in the definition of the compound channel capacity no attentions is paid
to error exponents: for example, if the family of channels X is a subset of
the class of discrete memoryless channels (DMC) then a training sequence
approach to the problem will probably work. On the other hand the require-
ments on the decoders for the compound channel are more stringent since Obn
must have uniformly good performance over all channels in the family. With
the compound channel in mind we thus define strong deterministic coding
universality as the existence of a sequence of rate-R blocklength-n codes Cn

and a sequence of decoders un such that

lim sup 1 og(P°g(err°r )) 0.
n-*oo -ogE n Po,o(error)

We refer to this stronger form of universality as strong deterministic coding
universality. We shall demonstrate in Theorem 2 that under fairly mild con-
ditions on the family of channels, one can demonstrate strong deterministic
coding universality. Once such universality is established, the achievability of
a rate R for the compound channel Y can be demonstrated by showing that

lim inf - - log sup P0,o (error) > 0.
n-j4oo n 0Eo

Notice that the above expression involves only random coding (and not spe-
cific codes), and more importantly, it only involves optimal maximum-likelihood
decoding.
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This approach to the compound channel is explored in [12] where it is
used to compute the compound channel capacity of a class of Finite State
Channels (FSC), a class of channels that, as we shall show, admits strong
deterministic coding universality.

Our various definitions of universal decoding and our approach to the
problem have been influenced by previous work on the problem, and partic-
ularly by [15] and [17]. In the former work the problem of universal decoding
is studied for memoryless channels over finite input and output alphabets,
and the definition of universality is very close in nature to what we refer
to as "strong deterministic-coding universality". It is shown there that the
maximum (empirical) mutual information (MMI) decoding rule, first sugges-
ted by Goppa [18] is strongly deterministic-coding universal for any family
of memoryless channels defined over finite input and output alphabets. The
MMI algorithm is in fact equivalent to a generalized maximum-likelihood de-
coding rule where given a received sequence y, the codeword x(i) receives
the score max0Eo po(y0x(i)).

In [17] Ziv studied universal decoding for the class of finite state channels
where the next state is a deterministic but unknown function of the previous
state, input, and output. For this family of channels Ziv proved that if random
coding is carried out by choosing the codewords independently and uniformly
over the set of sequences of a given composition (type), then one can find
what we shall later call a "strong random-coding universal decoder" for the
family2. The decoder that Ziv proposed is based on the Lempel-Ziv algorithm
from source coding. Additional work on universal decoding appeared in [19]
where weak random-coding universality was demonstrated for a family of
memoryless Gaussian channels with an unknown deterministic interference
of a special parametric form.

Our work extends the previous work on universal decoding in several
ways. First, we study universal decoding not only for DMCs, as in [15], but
also for channels with memory. Our results are fairly general and include
the family of all finite state channels [11], [20], and not only the set of finite
state channels with deterministic transitions, which was studied in [17]. In
particular our results are valid for the class of all Gilbert-Elliott channels [21],
[22], [23], [24], which have random transitions and are often used to model
time varying channels. In addition, we do not require that the benchmark

2Ziv only claimed weak random-coding universality, but his proof demonstrates strong
random-coding universality.
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random coding be done over the set of sequences of a given type as in [17]:
as long as the codewords are chosen uniformly over some set, this set can
be arbitrary. This generalization can be important for channel for which the
input distribution that achieves capacity is not iid. Also, the universality
that we demonstrate is not only strong random coding universality as in [17]
but also strong deterministic coding universality. Our results also extend
to more general families of channels, including those with infinite input and
output alphabets. For example, we show that the set of all additive Gaussian
noise Intersymbol Interference (ISI) channels with a fixed number of ISI terms
of bounded L 2 norm admits strong universal decoding, a problem that was
posed in [19].

Notice that as in [17] we only consider random coding in which the code-
words are drawn independently and uniformly over some input set. In this
respect our analysis excludes the classical random coding approach where the
components of each codeword are drawn independently according to some
marginal distribution Q(x), [11]. For most applications this is not a serious
drawback as the random coding error exponents that are achieved by choos-
ing the codewords uniformly over a type are usually no worse than those
achieved by choosing the codewords according to the product distribution
corresponding to that type, see [25] for the Gaussian case and [12] for the
more general case.

In some sense the problem of universal channel decoding is dual to the
problem of universal coding for sources of unknown law. It should, however,
be noted that no feedback link is assumed in our problem, and the transmitter
cannot therefore use a signaling scheme that depends on the channel in use.
That is why we cannot typically hope to communicate at channel capacity (of
the channel in use), since different channels in the family will typically have
different capacity-achieving input distributions.

The rest of the paper is organized as follows. In the next section we pre-
cisely define the problems addressed in this paper and state the main results.
In Section 3 we discuss how maximum-likelihood decoders can be described
using ranking functions and how every ranking naturally defines a decoder.
The main result of that section is a description of how a finite number of dif-
ferent decoders (ranking functions) can be merged to obtain a new decoder
that performs almost as well as each of those decoders, see Lemma 1. This
construction plays a crucial role in the proof of the existence of weak uni-
versal decoders, which are treated in Section 4. Strong universal decoders
are studied in Section 5. All these sections deal with the finite alphabet
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case, and in Section 6 we extend these results to the infinite alphabet case.
Section 7 contains some applications of the results to specific families of chan-
nels, particularly the family of DMCs, finite state channels, and intersymbol
interference channels. That section also describes an example of a family
of channels that admits weak universal decoding but not strong universal
decoding. The paper is concluded with a brief summary and discussion in
Section 8.

2 PRECISE STATEMENT OF THE PROBLEM AND MAIN RESULT

Consider a family of channels

F= {p0(ylx), o E , (1)

defined over common finite input and output alphabets X, Y. The function

po(ylx) maps every input sequence

X = (X1,..., X n) E Xn,

to a probability distribution on yn with po(ylx) being the probability that
given that the input sequence is x E X n the output sequence is

Y= (Y1, ..- , yn)E yn.

Notice that we are omitting the dependence on the blocklength n: strictly
speaking po(ylx) is thus a sequence of conditional distributions, one for each
blocklength n.

Given a rate-R blocklength-n codebook

C = {x(1),... ,x(2nR)} C Xn, (2)

a decoder 0 is a mapping

q5: yn - {1,... 2 nR},

that maps every received sequence y E yn to an index i of some code-
word. If all codewords of a code C are used equiprobably (as we shall
assume throughout) then the average (over messages) probability of error
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Po,o(errorlC) incurred when the codebook C is used over the channel po(ylx)
with the decoder X, is given by

2 nR

Po,a(errorlC) = 2-nR E po (yx(i)). (3)
i=1 {y:*(y)Ai}

In this paper we shall often consider random coding in which the codebook
C is drawn at random by choosing its codewords independently and uniformly
over some set Bn C Xn. The set Bn will be referred to as the input set.
We shall let Po,o(error) denote the average (over messages and codebooks)
probability of error that is incurred when such a random codebook is used
over the channel po(ylx) and is decoded using the decoder 0. In other words,
Po,o(error) is just the average of Po,p(errorlC) over the choice of codebooks C.

Given a known channel po(ylx) and a codebook C, the decoder that min-
imizes the average probability of error is the maximum-likelihood decoder
[26]. A decoder q is said to be maximum-likelihood for the channel p0(ylx) if

q(y) = i = po(yjx(i)) = max po(ylx(j)). (4)
il<j< 2nR

Notice that the maximum-likelihood decoder is not unique as different maximum-
likelihood receivers may resolve ties in the likelihood function in different
ways. All maximum-likelihood receiver, however, give rise to the same aver-
age probability of error for any code C. We denote this average probability
of error by Po,o(errorlC). Thus, Po,o(errorlC) is the average (over messages)
probability of error incurred when the codebook C is used over the chan-
nel po(ylx) and maximum-likelihood decoding tuned to 0 is employed. We
similarly use Po,o(error) to denote the analogous expression for the average
(over messages and codebooks) probability of error for a randomly chosen
codebook.

DEFINITION 1. A sequence of decoders u, is said to be random-coding uni-
versal (or random-coding weakly universal) for the family {p0(ylx), 0 E O}
and the input-set sequence {Bn}, if

n Po "n(error) =0, VOEe(lim 1 log ()0, VO C 1, n-+oo n P_,o (error)
where P0,un(error) is the average (over codebooks and messages) probability
of error incurred over the channel po(ylx) by the universal decoder un in de-
coding a random rate-R, blocklength-n codebook whose codewords are drawn

9



independently and uniformly over the set B,, and P0o,(error) is the analogous
expression for the maximum-likelihood detector.

A sequence of decoders u, is said to be deterministic-coding universal (or
deterministic-coding weakly universal) for the family {po(ylx), 0 E O} and
the input-set sequence {Bn} if there exists a sequence of rate-R blocklength-n
codebooks Cn C Bn such that

lim log 1 , ( errr )) E, (6)
n-noo n Po,o (error)

where P0,un (error Cn) is the average (over messages only) probability of error
incurred by the universal decoder un in decoding the codebook Cn over the
channel po(y x).

DEFINITION 2. A sequence of decoders Un is said to be random-coding strongly
universal for the input sets Bn if the convergence (5) is uniform over E, i.e.,

lim sup - log = eror) . (7)
n-oo 0EO n P0 ,9 (error)

The sequence is said to be deterministic-coding strongly universal if there
exists a sequence of rate-R blocklength-n codebooks Cn for which the conver-
gence in (6) is uniform over 0, i.e.,

lim sup 1 log ,u(error Cn) 0. (8)
n-+oo ocE n Pe,o (error)

DEFINITION 3. We shall say that the family of channels {po(ylx) 0 E 3} is
(weakly) separable for the input sets Bn C Xn if there exists a sequence of
channels {k}k}'=l C E) such that

inf lim sup sup - log P°(ylx) ) O E E) (9)
k nf-oo (x,y)cBnXynn POk (Y [X)

DEFINITION 4. A family of channels {po(ylx) 0 C O} defined over common
finite input and output alphabets X, y is said to be strongly separable for the
input sets Bn C Xn if there exists some M > 0 that upper bounds the error
exponents in the family, i.e., that satisfies

lim sup sup--log Po,o(error) < M, (10)
n--+oo EO n
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such that for any e > 0 and blocklength n, there exists a sub-exponential
number K(n) (that depends on M and on e) of channels 0(n)}K(n) c,

k k-1

lim 1 log K(n) = 0, (11)
n-oo n

that well approximate any 0 E 0 in the following sense: For any 0 C O there
exists a channel a(n) G 0, 1 < k* < K(n), so that

p0(y[x) < 2 np0(n)(ylx) Vx, y: po(ylx) > 2-n(M+lo g ly l) (12)

and

po(n) (ylx) < 2"np0(yIx) Vx,y: p0(") (yjx) > 2- (M + l g l). (13)

A good candidate for M is 1 + log XI as Ps, (error) is lower bounded by
the random coding pairwise error probability (the probability of error corres-
ponding to the case where the codebook consists of only two codewords) and
the latter is lower bounded by IXI-n corresponding to the probability that
the two codewords are identical. Note that we assume throughout that if the
transmitted codeword and some other codeword are identical then an error
results.

THEOREM 1. If a family of channels (1) defined over common finite input and
output alphabets X, y is separable for the input sets {Bn} , then there exists
a sequence of decoders {u } that are random-coding and deterministic-coding
universal for the family. Thus

lim 1 log (Po Un(error) 
n-+oo n P o,9 (error) 

and there exists a sequence of rate-R blocklength-n codes {Cn} such that

lim 1 log(P 0 ,Un (errorIC,) )
n-4oo n Po,o (error)

THEOREM 2. If a family of channels (1) defined over common finite input
and output alphabets X, Y is strongly separable for the input sets {Bn} ,
then there exists a sequence of decoders {un} that are random-coding and
deterministic-coding strongly universal for the family. Thus

lim sup 1 l(Po, (error)g0,
n-+oo 0EO n /P,o(error)



and there exists a sequence of rate-R blocklength-n codes {Cn} such that

lim sup log (P (err = 0.
n-co OEOE n Po,o 0(error)

Many of the families of channels arising in digital communications are
strongly separable, and thus admit strong universal decoding. We shall, for
example, show that in addition to the class of all discrete memoryless channels
over finite alphabets, the set of all finite state channels [11] defined over finite
common input, output and state alphabets X, y, S respectively, is strongly
separable. We shall thus deduce from Theorem 2 the following:

THEOREM 3. The set of all finite state channels defined over common finite
input, output, and state alphabets X, y, S and parameterized by the pair of
stochastic matrices Po(y, sIx, s') and initial states so E S where

po(ylx, so) = po (y, slx, so),
sESn

and

n

po(y' slx, so) = ]7Po(yi, silsi l, i),
i=l

admits a strong deterministic and random coding universal decoder. Here
s = (s 1,... ,Sn) and it is important to note that the receiver is assumed
ignorant of the state sequence.

If the number of states is finite but unknown, we can guarantee a weak
random coding and deterministic coding universal decoder.

Our results can be extended to infinite alphabets; see Section 6 where we
prove a theorem analogous to Theorem 2 for infinite alphabets. As a corollary,
we can prove, for example, the following:

THEOREM 4. Consider, the Gaussian intersymbol interference (ISI) channel
where the output Yi at time i is given by

J

Yi E hZXi-j + Zi,
j=0
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where Xi is the input at time i, the sequence {Zi} is a sequence of iid Normal
random variables of mean zero and unit variance, and (ho, ... , hj) are the
ISI coefficients. Suppose that the ISI coefficients are unknown at the receiver
and the only thing known about them is their number J and that

Eh < H, (14)
j=0

for some known H. If the input set B, from which the codewords are drawn
satisfies an average power constraint

n

x E Bn X2 < nP, (15)
i=l

then a strong random coding and deterministic coding universal decoder ex-
ists. If the number of ISI coefficients J or an upper bound on their norm H is
unknown then we can only guarantee weak random coding and deterministic
coding universality.

3 MERGING DECODERS

As we have pointed out in Section 2 the maximum-likelihood decoder is not
unique since ties in the likelihood function can be resolved in different ways
without changing the average probability of error. Condition (4) does not
therefore completely specify the decoding function. A more precise descrip-
tion of the maximum-likelihood decoder that also specifies the manner by
which ties are resolved is as follows. Assume that all the codewords are in
some set Bn C Xn of size IBnl,

x(i) E Bn, < i < 2nR

and consider a ranking function

Mo: Bn x yn > {1,.. IBnl},

that given any received sequence y maps the sequence x E Bn to its ranking
among all the sequences in Bn. The mapping MO(., y) thus specifies a com-
plete order from 1 to IBnl on all the sequences in Bn, i.e., for any y E yn
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we have that M 9(., y) is a one-to-one mapping of Bn onto {1,..., IB I}. It
is further assumed that MO (x, y) ranks the sequence according to decreasing
order of likelihood, i.e.,

Po(YIx) > po(ylx') => M0(X, Y) < MO(X',y), Y) (16)

where the sequence most likely (given the received sequence y) is ranked
highest, i.e., 1. Given a codebook C c Bn the maximum-likelihood decoder
0o that is determined by the ranking function Mo(', ') is defined by

00(y)= i iff Mo(x(i), y) < Mo(x(j), y) Vj ~ i, 1 < j < 2 nR. (17)

(If no such i exists, as can only happen if some of the codewords are identical,
we declare an error.) Thus, given a received sequence y, the maximum-
likelihood receiver determined by M o(., .) declares that the transmitted code-
word was x(i) if x(i) maximizes po(ylx(j)) among all the codewords x(j) in
C, and in the case that this maximum is achieved by several codewords, it
prefers the one that is ranked highest by M 0(., y)

It should be noted that any ranking function Mu (x, y), i.e., any function

MU: Bn x yn >_ 1... IBnlj,

such that for any y C yn the function M,(., y) is one-to-one and onto
{1,..., IBnl}, defines a decoder u in a manner completely analogous with
(17). Thus given a codebook C c Bn and given a received sequence y E yn

u(y) = i iff Mu(x(i),y) < MU(x(j), y) Vj f7 i, 1 < j < 2 nR. (18)

We shall find it important to study the performance that results when a
codebook C is used over a channel po(ylx) and is decoded using a mismatched
maximum-likelihood receiver that is tuned to a different channel, say po, (ylx).
Strictly speaking, the resulting average probability of error should, by (3), be
denoted by Po,o,, (errorlC), however, to simplify notation, we denote this aver-
age probability of error by Po,0 (errorIC) and the corresponding average prob-
ability of error averaged over randomly selected codebooks by Po,o,(error).
To summarize, Po,o,(errorlC) denotes the average (over messages) probability
of error incurred when the codebook C is used over the channel po(ylx) and is
decoded using a maximum-likelihood decoder tuned to the channel pa, (ylx),
i.e., a decoder that decodes y to the codeword x(i) that maximizes po, (ylx).
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Similarly Po,0, (error) is the average (over messages and codebooks) probabil-
ity of error that is incurred when a blocklength-n rate-R codebook is drawn
at random by choosing its codewords independently and uniformly over the
set Bn and is then transmitted over the channel po(ylx) and decoded using a
maximum-likelihood decoder tuned to the channel po,(Ylx).

The following construction will play a central role in this study. Given K
decoders 0 1, .... K that are based on the ranking functions Mol,... IMoK,

as in (18), we can define the merged decoder UK by constructing its ranking
function MUK(.,y) in the following way: Given a received sequence y the
ranking function MUK (., y) ranks number 1 the sequence in Bn that MO1 (., y)
ranks highest. It then ranks second the sequence that M, (., y) ranks highest
(unless it is equal to the sequence ranked highest by MO1 (., y) in which case
it skips to consider the sequence that M 3(.,y) ranks highest), followed by
the sequence that M 3,(., y) ranks highest, etc. After the first ranking of
all the decoders M1 (., y), ... , MK (., y) have been considered we return to
MO, (-, y) and consider the sequence in Bn ranked second, followed by the
sequence that MO2 (., y) ranks second etc. In all cases if we encounter a
sequence that has already been ranked we simply skip it.

This construction guarantees that if a sequence x E Bn is ranked j-th
by the k-th decoder Mk (.,y) then x is ranked (j - 1)K + k or higher by
MUK(,Y) , i.e.,

Mk (X, Y) = j =MUK(X, Y) < (j-1)K + k Vx G Bn, VI < k < K. (19)

Equation (19) can actually serve as a definition for the merging operation,
i.e., the construction of MUK (., y) from MO1 (, y),... , M'OK (, y).

Crucial to our analysis is the observation that with this construction

MUK(x,y) < KMOk(x,Y) V(x,y) C Bn x yn1, V1 < k < K, (20)

which follows immediately from (19). The following lemma demonstrates that
on any channel po(ylx) the performance of the merged decoded UK cannot
be much worse than the performance of the decoders 01,... ., 5K.

LEMMA 1. Given K decoders 01,..., 4K there exists a decoder UK (which
can be taken as the merging of these decoders) such that on any channel
po(y x)

PO,K (error) < KPo,pk (error), 1 < k < K.
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Proof. If the codewords of a codebook are drawn independently and uniformly
over the set Bn C X., and if a decoder X that is based on the ranking function
Me(., .) is used, then the average probability of error Pso,(error) incurred over
the channel po(ylx) is given by [17],

Po,O(error) = E E ]Bpo(ylx) Pr (errorlx, y, q), (21)
xEBn yEY n

where

Pr (errorlx, y, 0) = 1 - MB(x Yn (22)

is the conditional probability of error given that the transmitted codeword is
x, the received sequence is y, and the decoder being used is 0. Equation (22)
follows from the observation that the codewords are drawn independently and
uniformly over Bn and that if x is the correct codeword and y is the received
sequence then an error occurs only if some other codeword x' is ranked higher
than x, i.e., if MO(x', y) < MO(x, y). Notice that Pr (errorlx, y, 0) does not
depend on the channel Po (. .) over which transmission is carried out, but only
on the correct codeword x, the received sequence y and the decoder 0.

To continue with our proof we shall need the following technical lemma,
which is proved in Appendix 2:

LEMMA 2. The following inequalities hold:

1. The function

f(z) = 1- (1 - z)N 0 < z < 1,

satisfies

f(t) <max , Vs, tE (0,1]

2. If {a,}lIl and{b1}L 1= are two non-negative sequences then

al + ... + aL al< max (23)
bl + ... + bL - 1</<L bl'

where a/0 = oc for a > 0, and 0/0 = 1.
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3. If U and V are non-negative random variables then

E[U] < E[V] max V

where a/O = oo, unless a = 0 in which case 0/0 = 1.

Consider now two decoders q and q' that are based on the ranking func-
tions MO,(., .) and MO,(., .) respectively. It follows from (22) and from the
first part of Lemma 2 that

P(errorx, y,) < max M1, (xy (24)
P(errorlx, y, Mq) (x, y) 

and hence,

Poa,, (error) ExEBn EEyEn iB po(ylx) Pr (errorlx, y, q')

Po,¢(error) EX EByEyh1 AB1p0(yIx) Pr (error x, y, q)

•? max P(errorlx, y, q')
max

x-EB,,yEYn P(error x, y,)

< max (X) y) (25)
xEB,:,yEYyn ,/(X, Y)

The equality follows from (21), the first inequality follows by the third part
of Lemma 2 and the last inequality follows from (24) by noting that

max MO,(x,y) > 1
xEBn,yEYn MO(x,y) -

since for any y E yn the functions MO(.,y) and MO, (., y) are both one-to-
one mappings onto {1, ... , BBn}. Inequality (25) is a refined version of an
inequality given in [17]. Its importance is that it relates differences in ranking
functions to differences in random coding error performance.

The proof is now concluded by noting that if UK is obtained by merging
the decoders 01,..., qOK then by (20)

MuK (x, Y)max MUK , V1<k<K.
xEBn,yEYn Mk (X,) -)
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Lemma 1 can be used to demonstrate the existence of a weak random
coding universal decoder for the case where the family F is finite, i.e., when
® = {01,... ,OK} by choosing the universal decoder u to be the decoder
that is obtained by merging the maximum-likelihood decoders corresponding
to 01,... , OK. This approach can even work when 0 is countable: one can
consider the sequence of decoders u, where u,, is the merging of the maximum-
likelihood decoders of the first n channels in F, and n is the blocklength. The
loss in performance is at most a factor of n (i.e., sub-exponential) for all
n sufficiently large to guarantee that the true channel is among the first n
channels in F. In the next section we shall demonstrate how this approach
can be applied to non-countable families of channels.

4 WEAK UNIVERSALITY

In this section we shall build on Lemma 1 to construct a universal decoder
for families that are not countable. The idea is to construct the decoder for
blocklength n by merging the first n maximum-likelihood decoders for the
channels 01, ... , On where 01,... , 0 are the first n channels in a countable
sequence of channels {0k}k=l that is dense in 0 in the sense of (9).

A key role will be played by the following lemma that demonstrates that
if po,(ylx) is close to po(ylx) then Po,o(error) - Po,o,(error). Notice, however,
that this lemma is not trivial as even if po,(ylx) is close to po(ylx) the
maximum-likelihood decoder corresponding to 0 can be very different from
the one corresponding to 0'. This can be seen by considering the case of
the family of binary symmetric channels (BSC) parameterized by the cros-
sover probability. If 0 corresponds to crossover probability .5 + e and 0'
corresponds to a crossover probability of .5 - e then even though Po and
Po, are close, the two maximum-likelihood decoders are very different: one
maximum-likelihood decoder decodes according to minimum Hamming dis-
tance and the other according to maximum Hamming distance.

LEMMA 3. If

-log < < e)) , V(x,y) E Xn X yn,
n Po'(Y x) X)

then

P0,o," (error) < 22nPe,' 0, (error),
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and

Po',l' (error) < 2 n P0 ,o,, (error).

Proof. To make the proof of the lemma more transparent, let us break up the
assumptions of the lemma into two separate assumptions:

Po".(Y x) < Po,(y x)2n', V(x, y) E Xn X yn, (26)

and

Po,,(y x) > Po,(y x)2- ne, V(x, y) E X " x yn. (27)

We now have

Po,,o,,(error) = E Bpo,(y Ix) Pr (error x, y, o",,)
xEBn yEYn

< 2n S .- " BP0(Y x) Pr (error x, y, ~0,,)
xEBn yEY Bn I

- 2 E"P 1o,,, (error) (28)

< 2n p 0 ,,, (error)

- 2n E E IB pO, (y x) Pr (error x, y, 0o,)
xEB yEY n

< 22neE E :/ I po,(y Ix )Pr (errorix, y, Oo,)

xEBn yEy n

= 22nPp,,, (error), (29)

which completes the proof of the first claim of the lemma. Notice that the first
inequality follows from (27), the second inequality follows from the optimality
of the maximum-likelihood decoder, and the third inequality follows from
(26). All equalities follow from (21) and the fact that the conditional error
probability, which is defined in (22), depends on x, y, and X but not on the
channel po, ( I ).

The second claim of the lemma follows from (28) by noting that by the
optimality of the maximum-likelihood rule

Po,,, (error) < Po,,o,, (error).
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We are now in a position to prove Theorem 1.

Proof. Let {Ok})kI_ be the sequence of channels that satisfies (9), and let 0 be
arbitrary. It follows from (9) that for every e > 0 there exists some positive
integer k* and some no such that

sup - log ( (y )Yl) < e Vn > n0 .
(x,y)CXn xyn n Pok (Yx X)

Let the decoder un be constructed by merging the first K(n) maximum-
likelihood decoders corresponding to 01,... , OK(n) where for now K(n) = n.
For all sufficiently large blocklength n we have that K(n) > k* and the
maximum-likelihood decoder 00k* is among the decoders 001, ... , O0K(n) from
which u, is constructed. It therefore follows from Lemma 1 that for such
sufficiently large n

PO,UK(n) (error) < K(n)Po,ok* (error). (30)

If, in addition, n is sufficiently large so that n > no then by Lemma 3

PO,Ok* (error) < 22 P0,0(error). (31)

Combining (30) and (31) we have that for all sufficiently large n,

POUK(n) (error) < K(n)2 2ns,0 (error), (32)

and the first part of the theorem involving random coding universality now
follows by letting c = en tend to zero, and by noting that K(n) = n is sub-
exponential.

The second part of the Theorem establishing deterministic coding univer-
sality will now follow once we show that if the family of channels is separable
then random coding weak universality implies deterministic coding weak uni-
versality, which is the content of the following lemma, Lemma 4. D

It is interesting to note that inspecting the proof we see that some of the
conditions of Theorem 1 can be weakened. First we can replace the separab-
ility condition with a weaker form that requires that there exist a sequence
{Ok} C 3 and a sub-exponential function K(n) such that for any 0 E O

limsup min sup 1 logP(YlX) = 0.
nim-oo lIk<K(n) (x,y)EBxyn n Pk(YIx) 0.
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Such a weaker condition could be useful when studying channels with infin-
itely many internal states where the number and effect of the internal states
grows moderately with the blocklength n. This approach could be also useful
when the family of channels is more naturally parameterized with an infin-
ite number of parameters as would, for example, be the case if a natural
parameter is the autocorrelation function of some random process.

Secondly if the random coding error exponents of the channels in the
family are uniformly bounded then we may exclude some sets of pairs (x, y)
from the supremum in (9) provided that the sets have a probability that is
negligible with respect to the best error exponent in the family. We adopt
this approach in dealing with strong separability.

LEMMA 4. If the family of channels {po(ylx), 0 E e} is separable then
random-coding weak universality implies deterministic-coding weak univer-
sality.

Proof. Let lUk be random-coding weakly universal for the family {(P(ylx)}
and input-sets Bn, and let {Pok(Ylx)}kO=1 be a sequence of laws that is dense
in the sense of (9). It follows from the weak random-coding universality of
the sequence {uk} that for any K > 1 and any e(K) > 0 there exists some
n(K) such that for all n > n(K)

POk,U,((error) 2n(K)pkok (error), Vi < k < K. (33)

Let Ak denote the event that a rate-R blocklength-n randomly chosen code-
book Cn whose codewords are drawn independently and uniformly over the
set Bn satisfies

Pok,u,~ (errorl Cn) > K 2
2 ne(K) Pok ,k (error).

It follows from (33) and Markov's inequality that

Pr (Ak) < V V1 < k < K, Vn > n(K). (34)

We thus conclude from (34) and the union of events bound that

K K

Pr n = 1-Pr U Ak
k=l k=l

> 1-K - '
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> 0,

where we use Dc to denote the set complement of the set D. We can thus
conclude that for n > n(K) there exists a code C¢ such that

Pok,Un (errorlC*) < K 2 2nE(K)Pok,ok(error), VI < k < K. (35)

Choosing e(K) -X 0 and K -+ oc in a controlled way, we can construct a
sequence of codes {C¢} so that for all Ok

lim 1 log (ku (errorC) ) 0 (36)
n-oo n PlOk,Ok (error)

To concluded the proof we only need to note that the validity (36) for the
dense sequence {0k} implies its validity for any 0. This can be seen by noting
that if

sup - log P(Yx) < E, (37)
(x,y)EBn xyn X n Pok* (Y x)

then by Lemma 3

Po,o(error) > 2-n EPOk*,Ok* (error), (38)

and by noting that (37) also implies that

P,un (error Cn) < 2n uP ok jr (errorljC).

Indeed, for any C = {x(1),... ,x(2nR)} C Bn and decoder 0

2 nR

Po,q(errorlC) = 2 - nR E po(yx(i))
i=1 ycD?

2 nR

< 2- nR E E 2
ncpok* (ylx(i)) (39)

i=1 yEl cl

= 2nEPok*,(errorlC) (40)

where Di = q-l(i), i.e., the sequences in yn that are decoded by q to the i-th
message, and ZD) is its complement. []
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5 STRONG UNIVERSALITY

The following Lemma will be useful in the study of strong universality.

LEMMA 5. Let po,(ylx) and po,,(ylx), 0', 0" E E be two channels that satisfy

Po,(y x) < 2nEpo,,(ylx) Vx, y: po,(yIx) > 2-n(M+ logly l)

then for any code C and decoder 0,

Po,,0(errorjC) < 2nEpo,,,k(errorlC) + 2
- " M

and

Po,e,,(error) < 2 "P0,,O,, (error) + 2
- " M .

Proof. Given a codeword x(i) C C let

Fx(i) = {y: po,(yjx) > 2 -"(M+loglYI)},

and let Di = 0-l(i) be the set of all output sequences that the decoder X

decodes to the codeword x(i), and TD the set complement of ZDi. We now
have

2 nR

Po, ,0(error C) = 2-nR Z E Po (y x)
i=1 yEDI

< 2-nR i ( Po'(ylx) + 5, 2
- n(M+ 1og lyl)

i=1 yE~ i nFx(i) YCFxC(i )

< 2- nR 2d^ 2npO, (ylx) + 2- nM

i=1 yE) nFx(i)

< 2 (sR 2 'PO (ylx) + 2-nm
i=l y

= 2 nPo,,9,(errorjC) + 2
- "nM

It now follows by choosing 0 to be the ML decoder with respect to the law
0" and by averaging over the codebook C that

Po,,o, (error) < 2nP0,,,,, (error) + 2 -nM
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from which the second part of the lemma follows by noting that by the op-
timality of the ML decoder,

Po,,o, (error) < Po,,o, (error).

With this lemma we can now prove Theorem 2.

Proof. Let e > 0 be arbitrary but sufficiently small to guarantee that

1
lim sup sup -- log Po,o(error) < M - E,

n-+oo 0 n

where M is the constant appearing in Definition 4 (strong separability), and
thus satisfies (10). Let no be sufficiently large to guarantee that

2 -_M < 2 inf PO,(error)2-n' , Vn > no. (41)
2 o

Let 6n),... , 0() be the channels that demonstrate the strong separability ofK(n)

O, see Definition 4. Letting un denote the merging of the maximum-likelihood
decoders corresponding to 0(n), O(n) we have by Lemma 1 that

Po,un(error) < K(n)Poo) (error), VO E O, V1 < k < K(n). (42)

Given some 0 E 0 let 0(n) be a channel that satisfies (12) and (13) with
1 < k* < K(n). We now have

P0,, (error) < K(n)POO(n) (error)

< K(n) (2 0pn),(n) (error) + 2
- nM)

< 2K(n)2-EPC(.) O(n) (error)

< 2K(n)2n (2n"Po,o(error) + 2
- nM)

< 4K(n)22 n0P,0 (error).

The first inequality follows from (42); the second inequality follows from the
first part of Lemma 5 by choosing 0' = 0, ,, = 0(n), the maximum-likelihoodk*,

decoder with respect to 0(n), and by averaging over the codebook C. The third
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inequality follows from (41), the fourth from the second part of Lemma 5 with
0/ = () and 0" = 0, and the last inequality from (41). It thus follows that

P0,u. (error) < 4K(n)22nE
Po,o (error) -

and the first part of the theorem follows by noting that K(n) is sub-exponential
and by choosing e = e(n) -+ 0.

The second part of the theorem follows by noting that if 0 is strongly
separable then any random coding strong universal decoder is also a determ-
inistic coding strong universal decoder, as the next lemma demonstrates. O[

LEMMA 6. If the family of channels {po(ylx), 0 E O} is strongly separable
(see Definition 4) then random-coding strong universality implies deterministic-
coding strong universality.

Proof. Let e > 0 be arbitrary but sufficiently small to guarantee that

1 
lim sup sup - -Po,o(error) < M - e,

n-+oo 0 n

where M is the constant appearing in the definition of strong separability,
Definition 4, and that thus satisfies (10). Let no(e) be sufficiently large to
guarantee that

Po,' (error) 243sup rror < 2n Vn > no(e), (43)
o Po,o (error)

and

2-nM <2 inf Po,o(error) Vn > nO(E), (44)
2 o

where Un is the sequence of random-coding strong universal decoders. Given
a blocklength n let 0(n)," , . (n) be the channels that demonstrate the strong

separability of O. Thus, for every 0 C 0 there exists a channel kn.) such that
(12) and (13) hold, and the function K(n) is sub-exponential.

Denoting by Ak, k = 1,... , K(n), the event that a rate-R blocklength-n
random codebook Cn whose codewords are drawn independently and uni-
formly over Bn satisfies

Po(n) (error) > K 2 ( n) 2 P0(n) , (n) (error),
Dk n -- k k25
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we have by (43) and Markov's inequality that

Pr(Ak) < V1 < k < K(n),

and thus by the union of events bound,

K(n)

PrnA >O,
k=l

and there thus exists a codebook C¢ satisfying

Po?>, (errorI ¢~)
P9 ,n (error )< K2(n)2K" , V1 < k < K(n). (45)

p(n),o(n) (error)

Given 0 E 0 let 0(n) be such that (12) and (13) both hold. We now have

Poun (errorsC ) Po(l)' 1(errorlC )2nE + 2 -nM

PaO (error) P9,0 (error)
PB) u(errorlCn)2ne + 2 -nM

4Pu(n) (error!Cn)2nE

-2-ne PO()o(n) (error)

< 4K 2 (n)2 2 ,k* 

and the proof is concluded by recalling that K(n) is sub-exponential and
by choosing e = e(n) -+ O. Note that the first inequality follows from the
first part of Lemma 5 by taking 0' = 0, 0" = 0(n.) and q = un. The second
inequality follows from the second part of Lemma 5 with 9' = 0(n.) )0" = 0)

and that last inequality follows from (44). O

6 INFINITE ALPHABETS

We next consider some extensions of the results presented in previous sections
to the case where the input and output alphabets are not necessarily finite.
Once again we restrict ourselves to parametric families

po(Ylx), 0 E 0, (46)
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where for any 0 C O the channel po is a mapping that maps any input sequence
x c X n to a probability measure po(. x) defined on a common a-algebra on
yn.

As before, we shall discuss random coding in which codewords are drawn
independently and uniformly over a set Bn C X n . We are implicitly assuming
that Bn is endowed with a a-algebra, and we denote the uniform measure on
Bn by /fz (making the blocklength n implicit).

We shall assume throughout that X and y are complete separable metric
spaces (i.e., Polish), that the a-algebra on Bn is the restriction of the product
Borel a-algebra on Xn to Bn, and that the a-algebra on yn is the product
Borel a-algebra.

We shall endow the set of distributions on yn with the weak topology and
assume that for every 0 E E the mapping x X-+ po(.Ix) is Borel measurable.
This assumption is equivalent to the assumption that for any 0 E O and any
Borel set B E yn the function x -+ po(BIx) from Bn to IR is measurable, see
[27]. We can thus define the product measure 0'y on Bn x y' as the measure
that satisfies

PoY(A x B) = po(B x)d/tx(x), (47)

for any Borel sets A c Bn, B c Yn.
An additional assumption that greatly simplifies the analysis is that for

every blocklength n there exists a measure v on yn with respect to which all
the measures

{p0(.lx), x E Bn, 0 E O)

are absolutely continuous. We shall denote by fo(ylx) the Radon-Nykodim
derivative of the measure po(.lx) with respect to v at y, i.e.,

f(yx) dpo(ylx)
f0(yIx) = d ydv

This assumption is quite restrictive as it rules out channels like the channel
where the input X and output Y are real and Y = X + Z where Z is
independent noise that takes value in the integers. We shall later remark on
how such channels can be treated.

The final assumption we make is that X admits a measurable total or-
dering, i.e, a total ordering _ such that the set of all predecessors of x is a
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measurable set. A typical input alphabet that satisfies this assumption is IRd
with the ordering taken to be lexicographical with the standard ordering in
IR (i.e., x _ x' x < x').

We can define ranking functions in much the same way that we did for
finite alphabets, except that if the input sets Bn are infinite then we prefer
to deal with canonical ranking functions. We define a canonical maximum-
likelihood decoder 00 for the channel po( l.) as a decoder that given a received
sequence y and a codebook C declares that the transmitted codeword is x(i),
i.e., 0a(y) = i, if

Mo(x(i),y) < MO(x(j),y) Vj y& i,

where the ranking function M o (., ') satisfies the following conditions:

MO : B, x yn X (0, 1], (48)

for any y E yn the mapping M(., y) is measurable,

Zx (M-((0, a), y)) = c, Vc E (0,1], Vy E Y', (49)

and

fo(Y x) > fo(Y x') = MO(x,y) < M(x', y). (50)

Notice that there always exists an optimal decoder which is canonical. To
see this simply not that if - is the total ordering on X extended to B,
lexicographically then we can define

Mo(x, y) = SIx ({x' E B: fo(Y x') > fo(ylx) or fo(y x') = fo(y x), x' j x}).
(51)

We can now state the continuous alphabet counterpart of Lemma 1. Notice
that if B, is finite then Lemma 1 holds even if y is infinite: we did not assume
that Y is finite in proving that lemma. If, however, B, is infinite then the
proof needs some modification as follows.

LEMMA 7. Given K canonical decoders that are based on the ranking func-
tions M 01,... , MoK, and given any arbitrarily large number L > O, there
exists a decoder uK such that

PUK,,,(error) < KPo,ok (error) + K2 - n L , V1 < k < K, V0 E O.
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Note that when we apply this lemma we typically choose L = L(n) with
L(n) -- o00 in order to avoid a loss in the error exponent.

Proof. To prove the lemma divide the unit interval (0, 1] into 2 n(L+ R) disjoint
intervals of length 2-n(L+R),

Im = (m 2 n(L+R), (m + 1)2-n(L m = 0,... 2 n(L+R) - 1,

where R is the code rate. Consider now the decoder that forms its decision
based on the observation y in the following way: It first considers MolI (I0, y)n
C. If this is non-empty it declares that the transmitted codewords was the
codewords that ranks highest (according to M 01) among M1l (Io, y) no. Oth-
erwise, if Mj-l(Io, y) n C = 0, the decoder consider M-21 (I0, y) n C. If this
is non-empty it chooses the highest ranking codeword according to M 0 2, and
otherwise considers M3l (I0, y) nC etc. If a decision hasn't been reached after
considering M- (1 o, y) n C, the decoders considers M l(Ii,y) n C followed
by M 1(Ily) C etc.

Assume now that transmission is carried out over the channel po(yIx) and
let 1 < k < K be arbitrary. We shall now compare the performance of the
merged decoder UK with that of 00k, the maximum-likelihood decoder tuned
to Pk (ylx). We thus need to compare P0,UK(error) with P,Ok (error). Hold
the received sequence y and the correct codeword x fixed, and assume that
given y the decoder 00k ranks x in Im,, i.e.,

x E Mk (Im y).

The decoder UK makes an error only if some codeword x' lies in an interval
higher than x in one of the lists M 1,,... , MO,K i.e., if

m-1 K

x'E U U M- (Imp Y), (52)

m'=O k'=l

or if some codeword x' lies in the same interval as x in one of the lists
M91, .. . , MoK, i.e.,

K

xl E U M (Im y)
k'=l

We denote by E1 the former event, and by E 2 the latter. Notice that E 1 U E 2

is a necessary condition for an error but not sufficient, because of the order
in which the decoders are merged.
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We first analyze the probability of the event E 2 by noting that

K

Pr(E2 lx,y) < E (2 nR - 1) it (M-(Im, y))
k'=l

= K ( 2 nR _ 1) 2 -n(R +L)

< K2- n L

and hence

Pr(E2 ) < K2-n L, (53)

where the first inequality follows from the union of events bound and the
second from the fact that all the ranking functions under consideration are
canonical.

As to the event El we note that the probability that x' satisfies (52) is,
by the union of events bound and the fact that the rankings are canonical,
upper bounded by

m-1 K m-1\

Pr Ex -U U M ((Im,,y) < KPr x' U Mk1l(Imy)
m'=O k'=l m'=O

<K Pr(MOk (x', y) < Mok(X, y)),

where all probabilities are, or course, conditional on x and y. Noting that

m-l K 2nR-

Pr(Elx, y) =- 1- -Pr x' E U U M - 1 Y)
m'=O k'=Tl

and

Pr(error x,y, ¢0k) =1 - Pr(Mok(x, y) < Mk,(x, y))) 2 nR-1

we can use Lemma 2 to conclude that

Pr(E1) < KP,ok (error). (54)

Inequalities (53) and (54) now prove the lemma. []
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Note: We used the assumption that there was a measure v with respect to
which all the measures {po(.lx)} are absolutely continuous to demonstrate
that every maximum-likelihood decoder is equivalent to a decoder that is
based on a canonical ranking function. In the more general situation when
we do not have an underlying measure v with respect to which all output
distributions are absolutely continuous, one can often define a maximum-
likelihood decoder for the channel 0 in the following way. To every y E yn
one assigns a measurable set No(y) C B, with measure ,LX(No(y)) = 0 such
that the maximum-likelihood decoder operates as follows: If C n No(y) ~ 0
it declares that the codeword in C n No(y) was transmitted. Otherwise, if
C n No(y) = 0 the decoding is performed using a canonical ranking function.
Since No (y) has measure zero, the probability of an incorrect codeword being
in No(y) is zero. If this is indeed the structure of the optimal receiver then
merging of the receivers corresponding to 01,..., OK can be performed by
first checking

c n (Uk=Nl k ,

and then proceeding to merge the canonical ranking functions. A good can-
didate for No(y) is the singular part of the decomposition of the a posteriori
probability on Bn given y with respect to the uniform measure ,uL on B,.

To study strong universality for infinite alphabets we shall need the fol-
lowing Lemma which is the continuous alphabet counterpart of Lemma 5:

LEMMA 8. Let 0', 0" E 0E, and let C be a rate-R, blocklength-n codebook
such that for every codeword x E C there exists a set Fx C yn such that

fo,(ylx)dv < 2-nM

and

fo,(ylx) < 2Efo,,(ylx), Vy E Fx.

Then for any decoder 0

Po',,(errorlC) < 2nEPo,,,,(errorlC) + 2-nM

Also,

Po',,o (error) < 2nPoi,,o,, (error) + 2 -nM
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Proof. Let Di = 0-l(i) be the set of received sequences that are decoded by
q to message i, where i = 1,..., 2

h R. We then have:

2 nR

Po,,0(errorlC) = 2 -nR S f (y(Ylx(i))dv
i=1 c

< 2-nR S |Fx(i) foe(y x(i))dv + fo, (Y x(i))dv]
i:L xnFx(i)

2 nR

< 2 -nM + 2 -nR 2j 2vfo, ((yIx(i))dv
i=l nF(i)

2nR

< 2-nM + 2-nR 1 2nEfo" (y x(i))dv

= 2-nM + 2nPo,,,0(errorlC),

which proves the first part of the Lemma. The second part follows from the
first part by choosing 0 to be the maximum-likelihood decoder for 0", by
noting that by the optimality of the maximum-likelihood rule

Po,,o, (errorlC) < Po,,o,, (errorlC),

and by averaging over the codebook C. Ol

We can now define strong separability for general alphabets. Notice that,
when applied to finite alphabets, this new definition of strong separability is
slightly more inclusive than Definition 4.

DEFINITION 5. A family of channels {po(ylx) 0 E 0} defined over common
general input and output alphabets X, y is said to be strongly separable for
the input sets Bn C Xn if there exists some M > 0 that upper bounds the
error exponents in the family, i.e., that satisfies

lim sup sup -- log Po, (error) < M, (55)
n-+oo OEe n

such that for any e > 0 and blocklength n, there exists a sub-exponential
number K(n) (that depends on M and on c) of channels {0 (n)}K(n) c 0, such
that for any 0 E 3 there exists a channel 06(n) E 3, 1 < k* < K(n), that
approximates 0 in the following sense:

32



* For every x C B, there exists a measurable set Fx,o C Yn such that

AjFx, fo(ylx)dv < 2-nM, (56)

and

fo(ylx) < 2 fo(.) (ylx); (57)

* For every x C Bn there exists a measurable set F o(n) C yn such that

iF,) fo(.) (y x)dv < 2-nM (58)

and

fo(n)(ylx) < 2f0O(y x). (59)

We now state the main result on universal decoding for general alphabets:

THEOREM 5. If the family of channels {po(ylx), 0 E O} is strongly separ-
able in the sense of Definition 5 and if it satisfies the assumptions preceding
Lemma 7 then it admits a random-coding and deterministic-coding strong
universal decoder. If O can be written as a countable union of strongly sep-
arable families then the family admits a random-coding and deterministic-
coding weak universal decoder.

Proof. The first part of the Theorem follows from Lemma 7 and Lemma 8 in
much the same way that Theorem 2 follows from Lemma 1 and Lemma 5. To
prove the second part of the Theorem note that if

00

O = U E( 7),
m=1

and {u(m) }m°= is a sequence of strong random-coding universal decoders for
®(m) then the decoder u, the results from merging u),..., un) is random-
coding weakly universal for 0. Deterministic-coding universality can be
proved by methods similar to those employed in the proof of Lemma 4 by
enumerating the union of all approximating channels, where the union is over
the blocklengths n, and over the spaces E(m). O]
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7 EXAMPLES

In this section we shall consider different families of channels and study their
separability properties. We shall also demonstrate by example that there are
some families of channels that admit weak universal decoding but not strong
universal decoding.

7.1 DISCRETE MEMORYLESS CHANNELS

Consider the case where the family of channels 3F is the family of all discrete
memoryless channels (DMCs) over the finite input alphabet X of size IXI
and the finite output alphabet y of size l y. This family of channels is
parameterized naturally by the set of all IXI by [YI stochastic matrices. We
shall thus take this set of matrices as our parameter space E and have

po(ylx) = H 0(yvlx),
v=l

where 0(ylx) denotes the entry in row x and column y of the matrix 0, and
where x = (, ... ., 2 ), and y = (y, ... , y.). To simplify notation we are
thus identifying the set X with the set {1,..., IXI} and likewise for Y.

LEMMA 9. The family of all discrete memoryless channels over the finite
input and output alphabets X, y is separable in the sense of Definition 3 for
any sequence of input sets Bn.

Proof. Since the channels in the family are memoryless we have

po(yI) 0 (Y I X)

Po'(y Ix) =1'(y x.)

< max ((,y1xy ) )

where the inequality follows from Lemma 2 and, as always, we define 0/0 = 1.
We thus conclude that

- logp(y) < max log(y)
n Po(yx) - xy 0'(yx) x)

and the required separability now follows by considering the countable set of
all stochastic matrices with rational (non-negative) entries. [O
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LEMMA 10. The family of all discrete memoryless channels over finite input
and output alphabets X, y is strongly separable in the sense of Definition 4
for any input sets {Bn}.

Proof. Let M > 0 be a strict upper bound on the random coding error
exponents of all the channels in the family of DMCs over the alphabet X, y,
e.g. M = 1 + log IXI. By the discussion following Definition 4 this choice of
M guarantees that (10) hold. Let

M' = M + log IYl,

and c > 0 be given, and assume for the simplicity of notation that M'/e is
an integer. Let the blocklength under consideration n > 1 be fixed. The idea
of the proof is to quantize the set of all stochastic matrices by quantizing
each component logarithmically. Some cells will be empty, i.e., contain no
stochastic matrices. From those cells that are not empty we choose an arbit-
rary representative. Special care must be taken in treating cells in which one
of the components contains the element 0. The details follow.

Divide the interval [0, 1] into nM'/e+l disjoint intervals, Io,, .., InM,/E,where

Io0= [0, 2n1], (60)

- (2 ((nM'/E1-1+l)E 2 ((nM'/c)-I)e] I = 1, . . . , nM'/e (61)

Notice that except for the interval 1o all the other intervals have the same
ratio between their endpoints, and this ratio is e. Thus,

a,3 E I, 17 0 Xllogl < ,. (62)

Consider now the component-wise quantization induced by the partition (60)
and (61) on the set of all IXI by lYl matrices with elements in [0, 1]. This
quantization results in (nM'/E+1)IXIllYl cells, some of which contain stochastic
matrices and some of which do not. Let K(n) be the number of cells that con-
tain stochastic matrices, and let {0(n),. , O(n) be a set of K(n) stochastic
matrices representing those cells containing stochastic matrices, one from
each cell. Since the total number of cells is polynomial in the blocklength n
it follows that K(n) is sub-exponential.
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Given any stochastic matrix 0, let 90() be the stochastic matrix that rep-
resents the cell in which 0 lies. It follows from (62) and (60) that for any
(x, y) E X x Y at least one of the following conditions holds:

log O(yx) < ,
A(n)(YIX)

or

max { (yIx), 9( ) (yIx)} < 2 n M '

depending on whether 0(ylx) (and hence 0n )(y lx )) lies in Io or not. Notice

that this condition is symmetric in 0 and (n) .

We shall next verify that this condition implies that (12) holds. By sym-
metry, this will demonstrate that (13) holds too. Let x = (x 1,... ,Xn) and

Y = (Y1..., , Yn) be given. If for some xj, yj we have O(yj xj) E Io then

n

Po(Ylx) = [10(yilxi)
i=l

< 0(yjlxj)

< 2-n(M+log [Yl)

and we have nothing further to check, as (12) is satisfied trivially. If, however,
for every 1 < j < n we have 0(yj xj) ¢ Io then for every j, by (62),

0(yjlzx) < 2(n)(yjjXj),

and hence

n

i=l1

n

< 1l 2' eO?) (YilXi)
i=l

= 2n po(n) (YIX),

and (12) holds. O
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7.2 FINITE STATE CHANNELS

We next consider the family of all finite state channel that are defined over
common finite input, output and state alphabets X, Y, S respectively. The
probability law of any channel in this family is is characterized by a condi-
tional probability assignment

Po(y,s' x, S), Y E Y, x E X, s, s' S,

and an initial state so E S. Operationally, if at time n - 1 the state of the
channel is Sn-l and the input to the channel at time n is xn, then the output of
the channel y, at time n and the state Sn of the channel at time n is determined
according to the distribution

P (Yn, snl Xn, Sn-1).

For any input sequence x and output sequence y of length n we have that
conditional on the initial state so,

po(yIx, So) = E Po(y, s gx, s), (63)
sESn

where

n

PO(Y, six, so) = I Po(Yi)si IX, sii), (64)
i=1

and s = (s1,..., s,) E Sn. It is best to think of the family of finite state
channels as being parameterized by (0, so) E 3 x S because the probability of
an output sequence y given an input sequence x is determined by the initial
state so and by the probability assignment Po(y, s' x, s).

LEMMA 11. The family of all finite state channels over the finite input, output
and state alphabets X, Y, S respectively is separable in the sense of Defini-
tion 3 for any sequence of input sets Bn.

Proof. It follows from Lemma 2 and from (63), (64) that for any input se-
quence x, output sequence y, and initial state so E S

po(ylx, So) _ ESCS P(Y ,SI so)

P0' (YIX1 S0) E-ES~ P04(Y, SIX, SO)po (yfxZssPo3(Y, s x, So)
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max il= 1 Po (Yi, Si lxi, si-1)< max nj

· ( Po (y, s"IxP ', S')'\n

,,s,,,,, Po,'(y, s"lIx',s ')

Taking the logarithm of the above equation and considering the same argu-
ment applied to 0 and 0' in reverse roles we obtain

max- log P(Yx So) < max log Po(Y'st',s') (65)
x,y n Po'(Y Ix, so) - S',s,x',y' Po'(y, s" 1x', s')

The separability of the family now follows by considering the countable
family of channels (Pok (y, s'lx, s), so) consisting of conditional distributions
with (non-negative) rational components and all so E S. S1

LEMMA 12. The family of all finite state channels defined over common finite
input, output, and state alphabets X, y, S is strongly separable in the sense
of Definition 4 for any input sets {Bn}.

Proof. We shall fix the initial state so and show the existence of a sub-
exponential number of approximating channels for that initial state. Since
the number of states is finite, the general result will follow by taking the
union of the approximating channels and initial states. Let M > 0 upper
bound the error exponents in the family, say M = 1 + log IXI, and set

M' = M + log Yi + log IfS + 1. (66)

Let the blocklength n be fixed, as well as some e' > 0, and let 0 < e < e' be
such that 2. 2f < 2" ' . To simplify notation assume that M'/e is an integer.

Any conditional probability assignments Po(y, sIs', x) can be represented
by a matrix of IXIIS rows and IYIlIS columns. To simplify notation we
shall use the matrix notation 0(y, s s', x) for Po(y, sls', x). As in the proof of
the strong separability of the family of DMCs, we shall quantize this set of
matrices component-wise on a logarithmic scale, as in (60) and (61). Choos-
ing stochastic matrices to represent the cells that contain stochastic matrices
(of which there are a polynomial number) as in the proof of the strong separ-
ability of the family of DMCs, we can conclude that for any 0 c E) there exists
some 0(7) such that

log )(Y, ss',' z e V(yssx) c G, (67)
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and

max {(y, sis',), ) )(y, sis', x)} < 2- M' (y, s, s', x) ¢ G. (68)

The set G corresponds to components of the matrix 0 that do not fall in the
interval Io, i.e.,

G = {(y, s, s', x): O(y, sIs', x) ¢ lo}.

Notice that because 0 and O(7) are in the same cell we also have

G:= (y, s, , 7) : 0()(y, ss'' x) ¢ Io}

Conditions (67) and (68) are thus completely symmetric with respect to in-
terchanging 0 and 07.) and thus it suffices to show that these conditions imply
(12) since (13) will then follow by symmetry.

Given an input sequence x = (x 1 ,... ,xn), an output sequence y =

(Y1,... , Yn), and an initial state so we define

g = {S E Sn ' (yi,Si, si-l,Xi) E G, Vil i < n}.

Thus g is the set of "good" state sequences in the sense that for every com-
ponent i we have that

log 0 (yi, siSi i1, xi)

and hence, by Lemma 2

- log (y, , ) < c, Vs E , (69)
n po(.)(y,SJX,SO)

Invoking Lemma 2 again we have from (69) that

1 ZsP gp(y, slx, s )

n ilog Eg P (Y, six, S) < (70)

The complement of g, denoted 5C, is referred to as the set of "bad"
sequences. Since

po(y, six, so) < 0(yi, Sisi-1, Xi), VI < i < n,
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we have by (68)

max {po(y, six, so),Po((y, six, so)} < 2- n M' Vs ~ 8. (71)

and since the number of state sequences is ISI' it follows from (66) and (71)
that

max {E po(y, sx, So), E po(n) (y, sx, so)} < 2-n(M+log Yl+l). (72)
sEG

c sEg
c

To show that (12) holds for all sequence x, and y we treat two cases:
Case 1:

E po(y, s x, so) < 2-n(M+l +ogYlI) (73)
sEg

In this case it follows from (72) that

P(YIx, So) = E pO(y, sIx, so) +- Ep (y, sIx, so)
sEGC sE9

< 2-n(M+l+log JYl) + 2 -n(M+1+log lYl)

< 2-n(M+log lY])

and for such x, y (12) holds in the trivial sense.
Case 2: The sequences x and y are such that

E Ppo(y, slx, So) > 2 -n(M+1+ log l yl) (74)
sE9

and hence, by (70)

EPo(n) (y, six, so) > 2 -n62 -n(M+ l+ log yl I) (75)
sE9

For such sequences (12) holds because

po(Y x, So) -_ EsE p(y, s x, So) + s'Ec po(y, slx, So)

Po(n) (YIX, So) EsE pBO(n)(y, sI, So) + Es'gC po(n)(y, sx, So)

<-E sPo(Y, SIX, so) + 2 -n(M+ l +logI ly )

EsEg Po(-) (Y, SIX, So)
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2 -n(M+l1log IYl)
< 2n+ _T

2 Esg P(n) (Y ' SIX, so)

< 2n e-+ 2n e

< 2 '

where the first inequality follows from (72), the second from (70), and the
third from (75). D

7.3 INTERSYMBOL INTERFERENCE

In [19] Merhav posed the problem of designing a universal decoder for the
Gaussian channel with unknown intersymbol interference (ISI) coefficients.
The input and output alphabets are both the real line, and

J

Yt = hjxt-j + Zt,
j=O

where h = (ho,..., hj) is the vector of unknown ISI coefficients, and {Zt} is
independent of the input and is a sequence of independent Gaussian random
variables of zero mean and unit variance. We shall next demonstrate that if
the ISI coefficients satisfy an energy constraint of the form (14), and if the
input set Bn satisfy an average power constraint (15), where J, H, and P
are all known, then the family is strongly separable and a strong universal
decoder exists by Theorem 5. If J and H are unknown then we can consider
the countable union of ISI channels over all integers J and H to obtain a weak
universal decoder for the case where J and H are unknown (but finite).

In this problem the output distribution corresponding to any input x and
any ISI sequence h is absolutely continuous with respect to the Lebesgue
measure with density

fh(Y x) = (27r)- n/2 exp -- t- hjxtj (76)
t=l j-0

where we are defining xt = 0 for t < 0.
To establish strong separability first note that by analyzing the two-

codewords case one can determine that

Ph,h(error) > Q ( vnH(J + 1)P),
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where, see [28, eq. (2.3.18)],

A( )= ,I e- 2/2dz

Q( (1) 1 j e- / 2d

This follows from a simple energy calculation and the Cauchy-Schwartz in-
equality by noting that

n / J2 n J J

E tE hjxt-j < E E h2 N- _2
t=l j=O t=l j=O j=O

< nH(J + 1)P.

It follows that the error exponents of the channels in the family are bounded
and

M = -H(J + 1)Plog 2 (e) + 1, (77)

satisfies (55). Notice that we use h to parameterize the family rather than 0.
The following lemma, which is proved in Appendix 3, will be useful in

establishing strong separability.

LEMMA 13. Given two sets of ISI coefficients h' (h, . .. , h), h" = (h~,... , h.
and some x satisfying E xi < nP,

[Yt hjxtj Yt-z hxt)] <<

v/P(J 1)h - h' 1(2 (2Q + ||h - h'I2 /P(J+ 1) ),

where

h- h' 2 = h1 (h- hj) 2
j=O

Q = min{Q', Q"),

42



= Ytl (f=o ;t (78)

and

Yt ( t- hJxtj (79)
t=1 \ j=0

We are now in a position of prove the strong separability of the family.
Given M as in (77) we can find, by the Large Deviations principal [29], some
sufficiently large Q so that

Pr i Zi > Q} < 2 nM (80)

where Zi are iid Normal random variables of zero mean and unit variance.
Given any e > 0 we can find by Lemma 13 and (76) some sufficiently small
d > 0 (which depends on c, Q, J, P and H) so that

11h' - h"112 < 6, (81)

implies

- log A_ (Y I) < ,(82)
n fh,, (yIx) -

for all x such that XI 2 < nP.
We now choose the grid h(n),... ,h"(~n) to guarantee that for every h

K(n)

satisfying (14) there exists some hk), 1 < k* < K(n), such that

11h - h(n) 11 < 

with K(n) sub-exponential. This can be clearly done because any ball of
radius H in IRJ+1 can be covered by

([HJ ±+1)J+1

balls of radius 6 as can be easily verified by considering the size of the smallest
cube containing the H-ball, and the largest cube contained in the 6-ball.
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Given any ]lhll 2 < H let h(. ) be such that

Ilh - h) 112 < h

For any x of power smaller than nP let

Fx,h = Y: Yt- hjxt • Q.
nt=l

This choice guarantees that (56) holds by (80), and that (57) holds by (82).
The second requirement of Definition 5 follows by a similar argument. This
establishes the strong separability of this class of ISI channels, and Theorem 4
is thus proved.

It is interesting to note that the number of d-balls required to cover the
H-ball does not grow with the blocklength n. This leads us to suspect that
for this family the convergence of the performance of the universal decoder
to that of the maximum-likelihood decoder is very good.

7.4 A PATHOLOGICAL EXAMPLE

The following is an example that demonstrates that some families admit weak
universal decoding but not a strong one. Consider the family of channels with
binary inputs and binary outputs (i.e, X = y = {0, 1}) that is parameterized
by O, where 0 is the countable set of all half-infinite binary sequences that
have a finite number of ones. Let 0(1), (2),... denote the binary sequence
corresponding to 0 CE , and let

PS(y1X) = 0 otherwise

Thus, if the sequence x = (xl,... , ,) C Xn is transmitted through the
channel of parameter 0 = 0(1), 0(2),... then the resulting output is y E yn

where

y = x1 E 0(1),... ,Xn 0(n),

and Q denotes binary addition (exclusive or).
Every channel po(ylx) has capacity 1 bit and if random coding is carried

out uniformly over the set of input sequences with an equal number of zeros
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and ones3then the resulting error exponent is 1-R, for 0 < R < 1, see [11, 15],
because if 0 is known then for all practical purposes the channel po(ylx)
behaves like a noiseless binary symmetric channel. Since the parameter space
( is countable it is separable, and Theorem 1 guarantees the existence of
a deterministic coding and random coding weak universal decoder for the
family.

Yet one can easily show using standard techniques from the theory of ar-
bitrarily varying channels [13], [30, Appendix] that for any code C (with more
than one codeword) and any decoder X that is ignorant of the channel over
which transmission is carried out, the average probability of error, maximized
over the parameter 0, is bounded from below by 1/4. There is thus no way to
achieve uniformly good performance over all the channels in the family, and
a strong deterministic coding universal decoder does not exist for this family.

8 SUMMARY AND CONCLUSIONS

In this paper we have demonstrated that for most families of channels that
are of interest in wireless communication the ignorance of the receiver of the
channel in use is not a major impediment for reliable communication. The
receiver can employ our proposed universal decoding algorithm to asymp-
totically perform as well as the maximum-likelihood decoder tuned to the
channel in use.

The penalty for not knowing the channel seems to be in complexity. The
universal decoder proposed in this paper might, and often does, have a com-
plexity much higher than that of the maximum-likelihood decoder. Particu-
larly, since the universal decoder is based on ranking functions and the idea
of merging, it is required, for any given received sequence y, to compute the
ranking of each codeword among all the possible sequences x C B, according
to each of a polynomial number of channel laws. This can result in formidable
complexity particularly if the cost of evaluating po(y x) is high, as is the case
for finite state channels where it is exponential in the blocklength.

Given that universal decoders exist for many families of channels that
arise in applications, it is now interesting to search for decoders that are not
only universal but also computationally efficient. Some promising results in
this direction have been recently reported in [31].

3This is the choice for even blocklength n. For odd n we can take those sequences where
the number of ones exceeds the number of zeros by 1
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APPENDIX 1

In this appendix we demonstrate by a simple example that the naive training
sequence approach to communicating over unknown channels does not, in
general, yield a universal decoder. Consider the simple case where the family
of channels F consists of only two channels, a BSC with crossover probability
0.25 and a BSC with crossover probability 0.75. We denote the first law by
Pi(ylx) and the latter by p2(ylx). Clearly the maximum-likelihood decoding
rule for the first channel is minimum Hamming distance decoding, whereas the
rule for the second is maximum Hamming distance decoding. Assuming that
random coding is performed so that 2nR codewords are drawn independently
and uniformly over the set of all n-length sequences with an equal number
of zeros and ones, we have that the resulting random coding error exponents
are identical [15], and we denote them by E(R). Thus

Pl,1 (error) = P 2,2(error) e- nE (R ) .

Consider now a training sequence approach to the problem where each
block of length n begins with a training sequence of length m followed by
n - m unknown symbols that constitute a codeword of length n - m from a
random codebook with 2nR codewords. The resulting code, consisting of the
training sequence and unknown symbols is thus of rate R and blocklength
n. The decoder decides which channel in the family is in use by counting
the number of bit inversions in the training sequence, and subsequently uses
minimum or maximum Hamming distance decoding for the unknown symbols
according as to whether more than a half of the training bits were flipped or
not.

To analyze the performance of the training sequence approach, let us break
up the overall probability of error according to whether the decoder correctly
identifies the channel or not. By Bayes' rule

P, = Pr(correct id.) Pr(errorlmatched dec.)

+ Pr(incorrect id.) Pr(errorlmismatched dec.).

It is fairly straightforward to see that as n-m tends to infinity the probability
of error under mismatch conditions tends to one [6]. Likewise, as m tends to
infinity, the probability of correct identification Pr(correct id.) tends to one.
Thus

Pe w Pr(errorlmatched dec.) + Pr(incorrect id.),
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and the fact that the training sequence approach does not yield a universal
decoder now follows by noting that, by the large deviations principle [29], for
the probability of incorrect identification to decrease exponentially in n, the
length of the training sequence m must grow linearly in n.

APPENDIX 2

In this appendix we give a proof of Lemma 2. We start with the first claim
of the lemma. First note that the function f(z) is monotonically increasing
in the interval [0, 1], and the case s < t is thus proved. Consider now the
case s > t. Observe that for any N > 1 the function f(z) is concave in z
for 0 < z < 1, and that f(0) = 0. Thus, by Jensen's inequality, for any
O < ac < 1 and any 0 < z < 1,

f (az) = f(caz + (1 - a)0)

> af(z) + (1 - a)f(O)

= a-f(z).

Choosing a! = t/s and z = s now concludes the proof of this part.
A proof of the second part of this lemma can be found in [32, Lemma 1].

Note, however, that we have chosen to define 0/0 = 1 whereas it is defined as
0 in [32]. It is, however, straightforward to verify that the results still holds.

The third claim of the lemma is trivial because it holds point-wise and
must therefore also hold in expectation.

APPENDIX 3

The proof of Lemma 13 is based on repeated application of the Cauchy-
Schwartz inequality: Let

t=l j-0 j-0

n1 iI A 2 1
- hj- hh)xtj) (2yt- (hj + hj)xtj

nt--1 \ j/--1/24

t=l t--1
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where the last step follows from the Cauchy-Schwartz inequality with
2

2! !

o xtj=O

< (hj' - hj)2) (83)
j=o j=o

and

(t2 2(Yt - ( + hj)xt±j h -h
j=0

j=o j=o-0

We thus have from (83)

/ 2 n \ 1 / 2 /

( t) 1 < v/2 J+1h"/-h'H2 xZ2)
t=l t=l

-= vJ+1 h"- h'l1 2 /n-P, (85)

and by the triangle inequality

n 1/2 n 2- 1/2 n J 2- 1/2

(E ot32 < 2 E ~yt-E hjxt_j + E (h;' -hi)xj)
t=l t=l j=o t=l j=o

< 2 y[ (Y - h'xt)] + /J+ llh"- h'l 2 /n--P, (86)
t=l j=o

Recalling the definition (78) of Q' we have

A < VP(J + 1)h"- h'/ 2 (2/Q 7 + ||h" - h' 2 /P(J± - - 1). (87)

By symmetry we also have

A < vP(J + 1)h"h' - h' 2 (2 Q + |h" - h'122/P(J + 1)), (88)

where Q" is defined in (79). Inequalities (87) and (88) conclude the proof of
the lemma.
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