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The Compound Channel Capacity
of a Class of Finite-State Channels

Amos Lapidoth,Member, IEEE, and İ. Emre Telatar,Member, IEEE

Abstract—A transmitter and receiver need to be designed
to guarantee reliable communication on any channel belonging
to a given family of finite-state channels defined over common
finite input, output, and state alphabets. Both the transmitter
and receiver are assumed to be ignorant of the channel over
which transmission is carried out and also ignorant of its initial
state. For this scenario we derive an expression for the highest
achievable rate. As a special case we derive the compound channel
capacity of a class of Gilbert–Elliott channels.

Index Terms—Compound channel, error exponents, finite-state
channels, Gilbert–Elliott channel, universal decoding.

I. INTRODUCTION

T HIS paper deals with a situation where a communication
system consisting of a transmitter and a receiver needs to

be designed for an unknown channel. The only information
available to the designer is the family of channels over
which the system will be used, and based on this information
the designer must design a transmitter (codebook) and a
receiver (decoder) that will guarantee reliable communication
over any channel in the family. No feedback mechanism is
available to the transmitter, and the codebook must therefore
be fixed before transmission begins. At the receiver end, the
decoding rule must not depend on the channel over which
communication takes place since the receiver too is assumed
ignorant of the channel. This situation is commonly referred
to as coding for the compound channel [1] or coding for a
class of channels [2], [3].

The highest rate at which robust reliable communication
is achievable in this setup is called the compound channel
capacity of the family, or the capacity of the family. It has
been studied in the case where the family of channels consists
of memoryless channels in [2] and in the case where the
family consists of linear dispersive channels with an unknown
distorting filter in [4].

In this paper we study the compound channel capacity for
families of finite-state channels. Such channels exhibit memory
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and are often used to model wireless communications in the
presence of fading [5]–[7].

Before turning to a precise statement of the problem and
results, we explain some of the difficulties encountered in the
compound channel by considering the case where the family
of channels consists of memoryless channels only. For this
case the compound channel capacity is given by [1]–[3]

(1)

where is the family of discrete memoryless channels under
consideration (defined over common finite input and output
alphabets), the maximization is over the set of input distri-
butions, and is the mutual information between the
input and output of the channel when the input distribution
to the channel is .

First note that the compound channel capacity is, in general,
not equal to the infimum of the capacities of the different chan-
nels in the family, as the capacity-achieving input distributions
may be different for different channels in the family. Once this
is noticed, one soon realizes that the best one can hope for is
to achieve (1). Notice, however, that in order to demonstrate
that of (1) is achievable one must demonstrate that one can
achieve with codes such that neither the codebook
nor the decoder depend on the channel being used. One cannot
employ maximum-likelihood or joint-typicality decoding with
respect to the law of the channel in use as this law is unknown.
Moreover, the classical random coding argument is based
on computing the average probability of error for a random
ensemble of codes and then inferring that there exists at least
one code that performs as well as this average. The choice
of the codebook from the ensemble typically depends on the
channel, and one of the difficulties in proving (1) is in showing
that there exists a codebook that is simultaneously good for
all the channels in the family.

Showing that one cannot guarantee reliable communication
at any rate higher than is usually simpler, but requires work
as it does not follow directly from the single-channel converse
theorem: may be smaller than the capacity of every channel
in the family. To prove a converse one assumes that a good
codebook of rate is given, and from it one then derives a
distribution that satisfies

(2)

where is small and is related to the blocklength and
the probability of error attained by the code. The distribution

is typically related to the empirical distribution of the
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codebook, and (2) is usually shown using Fano’s inequality
and some convexity arguments.

In this paper we shall derive a result analogous to (1) for
finite-state channels. The result will be derived by demon-
strating that for appropriate rates and maximum-likelihood
decoding the ensemble average probability of error for all
the channels in the family can be uniformly bounded by an
exponentially decreasing function of the blocklength, and by
invoking a result from [8] on the existence of a universal
decoder for the class of finite-state channels that performs
asymptotically as well as a maximum-likelihood decoder tuned
to the channel in use.

The rest of the paper is organized as follows. We conclude
this introductory section with a more precise statement of
the problem and with a presentation of our main result—the
capacity of the compound channel consisting of finite-state
channels. The coding theorem and the converse theorem
needed to prove this result are presented in Section II. In
Section III we use this result to derive the capacity of a class
of Gilbert–Elliott channels. The paper concludes with a brief
discussion in Section IV.

Precise Statement of the Problem and Main Result

For a given set , let denote the set of probability
distributions on . We will only deal with probability distri-
butions on finite sets, and so, we will identify an element
of with a nonnegative function such that

For a positive integer, denote by the set of probability
distributions on with the property that is an integer
for all . We will call such a an -type on .

A discrete finite-state channel with input alphabet, output
alphabet , and state space is characterized by a conditional
probability assignment

Operationally, if at time the state of the channel is
and the input to the channel at timeis , then the output
of the channel at time and the state of the channel at
time are determined according to the distribution

For such a channel, the probability that the
channel output is and the final channel
state is conditional on the initial state and the
channel input is given by

(3)

We can sum this probability over to obtain the probability
that the channel output is conditional
on the initial state and the channel input

(4)

Given an initial state and a distribution on ,
the joint distribution of the channel input and output is well-
defined, and the mutual information between the input and the
output is given by

We are abusing the notation to lettake as arguments both
the random variables and the distributions.

Suppose now that we are given a classof discrete finite-
state channels with common finite-state space, and common
finite input and finite output alphabets and . Each channel

is characterized by

(5)

and in analogy to (3) and (4) we will denote by
the probability that the output of channel

is and the final state is conditional on the
input and initial state , and by
the probability that the output of channelis under
the same conditioning. Given a channel , an initial state

, and a distribution on , the mutual information
between the input and output of the channelis given by

Definition 1: A rate is said to beachievablefor the
family of channels , if for any , there exists an
such that for all there exists an encoder

and a decoder

such that the average probability of error is less than
irrespective of the initial state and the channel
over which the transmission is carried out. That is,

for all and

Since the state is not observed by the encoder or decoder,
we will assume that the channels in the class have a common
state space as long as each channel in the
class has the same number of states. When we are presented
with a class of finite-state channels with common input and
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output alphabets where each channel has at most but possibly
less than states, we can equip the class with a state space
with states that is common to all the channels in the family
by augmenting the state space of those channels that have less
than states. However, one has to be careful not to artificially
introduce bad states in this process. An approach that will
avoid this is the following. If a channel has states,
pick one of its states, say state, and define a new channel
with states by

The new channel and the old channel satisfy

and thus a code that is good for one is good for the other.
Let denote the compound channel capacity of the

class , i.e., the supremum of all achievable rates for the
class. We will prove the following theorem.

Theorem 1: The compound channel capacity of the class
of finite-state channels defined over common finite input,

output, and state alphabets is given by

(6)

Analytic calculation of this limit is possible only in special
cases, e.g., for a class of Gilbert–Elliott channels which will
be discussed below, and, in general, the limit cannot even be
computed numerically. Nonetheless, in the course of the paper
we will establish a sequence of lower bounds monotonically
increasing to (Proposition 1).

A relatively simple finite-state channel that is often used
to model communication in the presence of fading is the
Gilbert–Elliott channel, which has been studied in [6], [11],
and in references therein. In the Gilbert–Elliott channel the
channel input and output alphabets are binary

, and the channel state is also binary, but for conve-
nience we set corresponding to a “bad” state and
a “good” state. In this model the channel output sequence
is related to the channel input sequenceby

where denotes binary ( ) addition, and is the real-
ization of a binary hidden Markov noise process with internal
state set , see Section III.

The capacity of the Gilbert–Elliott channel is achieved by
an independent and identically distributed (i.i.d.) Bernoulli
input distribution, irrespective of the channel parameters [6].
Using Theorem 1 we shall show in Section III that under
relatively mild conditions outlined in Theorem 2 the compound
channel capacity of a class of Gilbert–Elliott channels is equal
to the infimum of the capacities of the members of the family.
The highest rate at which reliable communication can be
guaranteed is thus not reduced due to the ignorance of the
transmitter and receiver of the channel in use.

II. PROOF OF THECONVERSE AND A CODING THEOREM

Before we can even start to prove the theorem, we need
to show that the right-hand side of (6) exists. This is a
consequence of the following proposition, which is proved
in Appendix I.

Proposition 1: The maximum over in defin-
ing the sequence

(7)

is well-defined, and the sequence converges. Moreover,

(8)

where

(9)

A. Converse

Given a code of blocklength and rate , and error
probability not exceeding for any channel and initial
state , define as

otherwise.

Then by Fano’s inequality we get, for all and

(10)

and thus by (7)–(9)

where the first inequality follows from Proposition 1, and the
second follows from the definition of and (10). We then
conclude that no rate above is achievable.

B. Coding Theorem

We will prove the coding theorem in a sequence of steps.
The first step is to quote a result from [5] to show that if

is less than and if we employ maximum-likelihood
decoding tuned to the channel over which the trans-
mission is carried out, then we can find an such that
if we view the channel inputs and outputs in blocks of
(that is, to consider an equivalent channel with input alphabet

and output alphabet ), and construct i.i.d. random
codes for this channel (that is, codes where each symbol of
each codeword is chosen independently according to some
distribution), we achieve exponentially decaying probability of
error in increasing blocklength. The decay of the probability
of error depends, of course, on the channel in use.
The second step is to show that the resulting error exponent
is bounded from belowuniformly over the class . The third
step is to convert this i.i.d. random coding result to a different
kind of random coding, where the codewords are chosen
independently but uniformly over some set of input sequences.
The last step is to invoke a theorem of [8] on the existence
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of a universal decoders for the class of finite-state channels
to show that this is sufficient to construct good codes and
decoders (that do not require knowledge of the channel in
use) for the compound channel.

Given , let
denote the average (over codebooks and messages) probability
of error that is incurred when a blocklength-rate- code
whose codewords are drawn independently according to the
distribution is used over the channel and
is decoded using a maximum-likelihood decoder tuned to the
channel. We know [5, pp. 176–182] that for any

where

Lemma 1: Given and . Let
and define by

where

Then

Proof: Identical to [5, pp. 179–180, proof of Lemma
5.9.1].

Lemma 2: For any channel with input alphabet and
output alphabet , and for any distribution on

where is the size of the output alphabet.
Proof: See Appendix II.

Given , set . Choose such
that and let be the distribution
that achieves the supremum

For , let denote the distribution

where and
. From Lemma 1 we have

applying Lemma 2 to the channel

Choosing maximizes the right-
hand side in the range with the value

else.

Notice that for , . We conclude that for
all

(11)

The important thing to note is that the right-hand side is
independent of both and .

We have thus seen that if one constructs a code of block-
length by constructing a random code by choosing
codewords independently according to , then the proba-
bility of error decays exponentially in as long as the rate
of the code is below . We now show that this implies
that random coding by choosing codewords independently and
uniformly over a type class has similar performance:

Lemma 3: Given , let denote the
distribution that is the -fold product of , i.e.,

For a given type , let denote the
distribution that is uniform over the length sequences of
type .

For every distribution there exists a type
whose choice depends on and but not on

such that

for all . Here tends to as tends
to infinity.
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Proof: Given a code of rate chosen according to the
product distribution, consider the following procedure to con-
struct an equitype subcode of rate : Find the type

with the highest occurrence in (resolving ties according
to some arbitrary but fixed rule). The number of codewords
of this type will be lower-bounded by since the
number of types is upper-bounded by . Construct the
code by picking the first codewords in of
type . Since is a subcode of , its average probability of
error when used over the channelis upper-bounded by that
of times .

Since is a random code, the type is also random with
a distribution that depends on, , and but not on .
Also, conditional on , the codewords in are mutually
independent and uniformly distributed over a set of sequences
of length and type . Denoting the distribution of by ,
we choose to satisfy . Again, this is possible
since the number of types is upper-bounded by . Then

and thus

Combining this lemma with (11), we see that for each
, there is a type such that

Choose such that for all

and

Then, for all

(12)

We will now invoke the following theorem proved in [8], to
show that (12) implies the existence of a code and a decoder
(neither depending on or ) that perform well for every
and :

Theorem [8]: Given an input alphabet , an output alpha-
bet , and a finite state space, let index the class of
all finite-state channels with these input, output, and state
alphabets. Consider now a random codebook of rateand
blocklength whose codewords are drawn independently and
uniformly over a set , and let

denote the average (over messages and codebooks) probability
of error incurred over the channel with initial state
when maximum-likelihood decoding is performed (with the
knowledge of and at the decoder). Similarly, for any
decoder and codebook , let denote
the average (over message) probability of error incurred over
the channel with initial state when the codebook and
decoder are used.

There then exists a sequence of ratecodes , and
a sequence of decoders (both sequences not depending on
the specific channel or initial state ) such that

For a detailed description of the structure of the universal
decoder and the family of codes of this theorem the reader is
referred to [8]. Loosely speaking, the decoder is constructed by
“merging” the maximum-likelihood decoders that correspond
to each of a set of finite-state channels. To within a factor
which is no bigger than the cardinality of the set, the merged
decoder is shown to have a probability of error that is no
worse than the probability of error incurred by any of the
maximum-likelihood decoders. The set is chosen so as to have
a polynomial cardinality (in the blocklength) and to be “dense”
in the sense that every finite-state channel is within “distance”

of some channel in the set, where the notion of distance
between laws is made precise in [8].

We apply this theorem with , the set of
sequences of type , to conclude that for there
exists a sequence of rate codes of blocklength ,

and a sequence of decoders such that the
probability of error decays exponentially in for any
and . This approach can be easily extended to treat
the case where the blocklength is of the form , where

, by appending a constant string of lengthto each
codeword in the codebook designed for the blocklength.
One must, of course, guarantee thatis negligible compared
to .

III. A C LASS OF GILBERT–ELLIOTT CHANNELS

In this section we study the compound channel capac-
ity of a class of Gilbert–Elliott channels. Such channels
have two internal states and binary input and out-
put alphabets, . The channel law of
a Gilbert–Elliott channel is determined by four parame-
ters, which define the channel law
through (3) where is defined as follows:

where

and
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Fig. 1. The Gilbert–Elliott channel model.PG and PB are the channel
error probabilities in the “good” and “bad” states, andg andb are transition
probabilities between states.

see Fig. 1. It is straightforward to verify that the noise sequence

(where denotes addition) is independent of the input
. Thus

where is independent of the inputs and is Bernoulli
distributed if , and is Bernoulli distributed if

.
The capacity of a single Gilbert–Elliott channel is

derived in [6] and is achieved by a memoryless Bernoulli
input distribution, irrespective of the channel parameters. It
can be expressed in the following form. Let denote a
stationary Markov process taking value in with the
law

Let be a -valued random process, where condi-
tional on the process, forms an independent sequence
of random variables with

if
if

where if is a sequence of random variables then
denotes . We now have that the capacity of
the Gilbert–Elliott channel of parameters

is given by

provided that

where is the entropy rate of the process .
Using Theorem 1 we shall now establish the compound

channel capacity of a class of Gilbert–Elliott channels.

Theorem 2: Consider a family of Gilbert–Elliott channels,
and let

(13)

If , then the compound channel capacity of the
family is given by

where is the capacity of the Gilbert–Elliott channel with
parameters .

Proof: First note that the converse part of this theorem
is trivial since no rate is achievable for a family of channels
if it is unachievable for some member of the family. We thus
focus on the direct part which we prove using Theorem 1 by
choosing to be the i.i.d. Bernoulli input distribution.
Noting that for this input distribution the channel output is
also i.i.d. Bernoulli we deduce that

The theorem will thus be established once we show that

(14)

Given a channel , an initial state , and the
channel input , we have by (3) that the probability

of the channel state being at time is
given by

We can now extend the notion of indecomposability [5, p. 105]
to families of channels as follows.

Definition 2: A family of channels defined over common
finite input, output, and state alphabets and is
uniformly indecomposable if for any there exists an

such that for

for all , all , and all initial states .
Extending [5, Theorem 4.6.4] to uniformly indecomposable

families of channels we obtain that for uniformly indecompos-
able families of channels and any input distribution

(15)

Under the assumptions of the theorem the family of
Gilbert–Elliott channels is uniformly indecomposable, and
it thus follows that
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and (14) (and hence the theorem) will be established if we
show

(16)

We now show that to establish (16) it suffices to show that

(17)

This reduction follows by noting that is
monotonically nonincreasing, and by noting that by the chain
rule

Next, writing

(18)

and recalling that given the future of is independent of
its past we conclude that

(19)

On the other hand, by (18)

(20)

and thus, by (19) and (20), it follows that to prove (17) (and
hence the theorem) it suffices to show

(21)
In words, we need to prove that given , knowing the
initial state becomes immaterial to estimating for
sufficiently large , with the convergence being uniform over
the family.

Given an initial distribution on the
channel state, let

be the distribution of the channel state at time, after
observing the noise process.

Let denote when is chosen as the stationary
distribution of , let denote when , and
let denote when .

To prove (21) write

where is the binary entropy function, i.e.,

and the expectation is taken over when has its
stationary distribution. Similarly, write

where the expectation is taken over and when
has its stationary distribution. It follows that to prove (21) it
suffices to prove that

(22)

which is proved in Appendix III.
A different proof of (22), which is valid with the additional

condition

is outlined below. It has the advantage of being generalizable
to finite-state channels with more states. The proof is based
on the recursion equations for computing from , see
[7, eq. (11)], [9, Lemma 2.1], and references therein.

(23)

where

and is a column all-one vector. The convergence in (22) now
follows from [15, Proposition A.4] on normalized products
of matrices that are each of the form of a diagonal matrix
multiplied by a stochastic matrix. This proposition improves
on the estimates of [9, Lemma 6.1] on normalized products of
matrices by exploiting the structure of the matrices.

It should be noted that irrespective of the parameters
and , and irrespective of the initial state we have that
if and the input distribution is i.i.d.
Bernoulli then

This observation could be used to slightly strengthen Theorem
2. In particular, if we wish to demonstrate that a rateis
achievable for the family then in computing in (13) we
may exclude those channels infor which

.
To see that some condition on the transition probabilities of

the state chain is necessary, consider a class of Gilbert–Elliott
channels indexed by the positive integers. Specifically, let

, , for . For
any given , one can achieve rates exceeding
over the channel by using a deep enough interleaver to
make the channel look like a memoryless BSC with crossover
probability . Thus

However, for any given blocklength , the channel that
corresponds to when started in the bad state will
stay in the bad state for the duration of the transmission with
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probability exceeding Since in the bad state
the channel output is independent from the input, we conclude
that reliable communication is not possible at any rate and

IV. DISCUSSION AND CONCLUSIONS

In this paper we have derived the capacity of a class of
finite-state channels. Comparing (6) with (1) we note that the
expression for the capacity is very similar to the one that holds
for a class of memoryless channels, as both take the form of a

of mutual informations, where the maximum is over
all input distributions, and the infimum is over the channels in
the family. The main difference is that in the expression for the
capacity of a class of finite state channels there is an additional
limit that allows for the dimension of the input distribution to
go to infinity. This is not surprising, as such a limit is even
needed to express the capacity of a single finite-state channel.
This additional limit is significant, because if the convergence
to the mutual information rate is not uniform over the family,
unexpected compound channel capacities may result.

Theorem 1 should not lead one to conjecture that the
compound channel capacity of any family is of a
form, as the following counterexample demonstrates [12], [13].
Let and let be the digits in the binary
expansion of , i.e.,

(For definiteness, for a rational of the form , take
the terminating expansion among the two possible binary
expansions.) Consider now the set of channels defined over
common binary input and output alphabets where over the
channel the conditional probability of the output sequence

given the input sequence
is given by

if
otherwise

where denotes addition. For this family of channels
we have that the expression yields a value of
irrespective of the blocklength, and yet the compound channel
capacity of this family is , as can be easily verified using
standard techniques from the theory of arbitrarily varying
channels, see [13], and [14, Appendix]. This example can be
explained by noting that for this family of channels there does
not exist a universal decoder [8].

APPENDIX I

We prove Proposition 1 using the following sequence of
lemmas.

Lemma 4: For each , there exists such that

Proof: For each , , and , the function

is continuous. Furthermore, for a fixed, this class of func-
tions is uniformly continuous in and . (The modulus of
continuity of can be bounded in terms of the size of
the input and output alphabets alone, see, e.g., [2, Lemma 2].)
Thus

is continuous. Since is compact, the supremum over
of this function is attained.

Lemma 5: Given , , , , and , as in Lemma
1. Then

Proof: For a given and , let
be the distributed according to

We want to show that

To that end, write

The first term is lower-bounded by .
For the second term, note that

where we have used the independence of and . We
now note that

(this follows from the inequality

see [5, p. 112]) and



LAPIDOTH AND TELATAR: THE COMPOUND CHANNEL CAPACITY OF FINITE-STATE CHANNELS 981

where

Combining the above

Corollary 1: The sequence converges. Furthermore,

(24)

where

(25)

Proof: Given integers , let and achieve
the maximizations in and , respectively. Let

and define as in the proof of Lemma 5. Then

or

Since is also bounded (say by ), we
conclude that (see [5, p. 112])

Lemma 4 and the above corollary establish Proposition 1.

APPENDIX II

Proof of Lemma 2:This lemma is a slight modification
of [5, Problem 5.23]. The reason we chose to include a proof
is twofold: first, the solutions to the problems in [5] are not
widely available, and second, the official solutions for this
problem contain a small error.

By expanding in a power series around
to second order, we obtain

for some

and so it suffices to show that

for all . Differentiating

we obtain

(26)

where

and

We now differentiate to find

(27)

Since for all and , the second term above
is zero. We now compute
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Substituting this in (27) we obtain

(28)

Using the inequality on the second term in
brackets and combining the first two terms

Since the last term is nonpositive we can drop it to leave

Observe now that for , . Thus

Note that for

Furthermore,

and

thus

and

We will upper-bound the right-hand side further by maximiz-
ing over subject to , . To that
end, expand the square and maximize each term

The second maximization gives . For the first, write

where the next to last equality follows from the concavity of
in the range , and thus the maximization

taking place when . Thus

as was to be shown.

APPENDIX III

In this Appendix we prove (22).
For a given Gilbert–Elliott channel define

where

and

Mushkin and Bar-David [6, Appendix] show that the quantity
in (22)

is upper-bounded by . We
can thus prove (22) as long as for some
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for all channels in our class . We will show that under the
assumptions of Theorem 2, namely,

(29) is satisfied and can be taken to be .
To that end, suppose for some . This

implies that either , in which case
and , or else, , in which case
and . Take the first alternative. implies

, ,
and

(30)

implies ,
and

(31)

From (30) and (31), we conclude that

(32)

We can rewrite (32) as

and thus , implying .

Taking the second possibility yields the same lower bound.
We thus conclude that , which
proves (22).
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