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The Compound Channel Capacity
of a Class of Finite-State Channels

Amos Lapidoth,Member, IEEE andl. Emre Telatar Member, IEEE

Abstract—A transmitter and receiver need to be designed and are often used to model wireless communications in the
to guarantee reliable communication on any channel belonging presence of fading [5]-[7].
to a given family of finite-state channels defined over common Before turning to a precise statement of the problem and
finite input, output, and state alphabets. Both the transmitter . e .
and receiver are assumed to be ignorant of the channel over results, we explain some of 'the .dlf'fICU|tIes encountered in the
which transmission is carried out and also ignorant of its initial compound channel by considering the case where the family
state. For this scenario we derive an expression for the highest of channels consists of memoryless channels only. For this
achievable rate. As a special case we derive the compound channetase the compound channel capacity is given by [1]-[3]
capacity of a class of Gilbert—Elliott channels.

Index Terms—Compound channel, error exponents, finite-state C= max proa I(Q; P) (1)
channels, Gilbert—Elliott channel, universal decoding.
where F is the family of discrete memoryless channels under
I. INTRODUCTION consideration (defined over common finite input and output

HIS deals with a situat h ... alphabets), the maximization is over the set of input distri-
paper deals with a situation where a communicatiqf ;¢ and/(Q; P) is the mutual information between the

sy;tem consisting of a transmitter and a receiver need_%gut and output of the channél when the input distribution
be designed for an unknown channel. The only |nformat|o[8 the channel is)
a\;]a'ulﬁblﬁ to the dgl?gner 'Z thedfgm'% of cr?ar?nfels OVET Eirst note that the compound channel capacity is, in general,
V;: ICd t © system Wld € Used, and basec on td'sbm Ermaté%t equal to the infimum of the capacities of the different chan-
the designer must esign a transmltte_r (codeboo )_an_nés in the family, as the capacity-achieving input distributions
receiver (decoder) that will guarantee reliable commumcatl%lay be different for different channels in the family. Once this

over any channel in the family. No feedback mechanism iS noticed, one soon realizes that the best one can hope for is

avalllable to the transm!ttgr, and t_he codebook m.ust theref Eeachieve (1). Notice, however, that in order to demonstrate
be fixed before transmission begins. At the receiver end,

tC of (1) is achievable one must demonstrate that one can

decoding ru_le mulft nolt depe_nd OE the c_hannel over Whiﬁ@hieveI(Q; P) with codes such that neither the codebook
gommunlcanon takes p ace since t_e receiver too Is assun}l%q the decoder depend on the channel being used. One cannot
ignorant of the channel. This situation is commonly referre ploy maximum-likelihood or joint-typicality decoding with

t<|) as c;)dirr:g forl the compound channel [1] or coding for |aespect to the law of the channel in use as this law is unknown.
class of channels [2], [3]. . ___Moreover, the classical random coding argument is based
' The'hlghest. rate' at Whlch robust reliable communicatio computing the average probability of error for a random
IS achlevable n th|§ setup Is calleo! the compound chanqe semble of codes and then inferring that there exists at least
capacity O.f the family, or the capacity _Of the family. It ha?)ne code that performs as well as this average. The choice
been studied in the case w_here the far_mly of channels consig{s, e codehook from the ensemble typically depends on the
of memoryl_ess ch_annels. in [2,] and in the case where tIaﬁannel, and one of the difficulties in proving (1) is in showing
fa..ml|y-COHS.IStS Qf linear dispersive channels with an unknovmat there exists a codebook that is simultaneously good for
d'StO”r']f‘g filter in [4]. - 4 channel . ll the channels in the family.

In this paper we study the compound channel capacity OrShowing that one cannot guarantee reliable communication

families of finite-state channels. Such channels exhibit memo&(yany rate higher thai is usually simpler, but requires work

as it does not follow directly from the single-channel converse
theorem:C may be smaller than the capacity of every channel
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codebook, and (2) is usually shown using Fano’s inequality Given an initial statess € S and a distributiort),, on A™,

and some convexity arguments. the joint distribution of the channel input and output is well-
In this paper we shall derive a result analogous to (1) fdefined, and the mutual information between the input and the

finite-state channels. The result will be derived by demowutput is given by

strating that for appropriate rates and maximum-likelihood ) _ )

decoding the ensemble average probability of error for all I(X; Ylso) = 1(Qn; Pu([; 50))

the channels in the family can be uniformly bounded by an = Z Qn(2)P,(ylz, so)
exponentially decreasing function of the blocklength, and by z,y

invoking a result from [8] on the existence of a universal P, (y|z, so)
decoder for the class of finite-state channels that performs +In ZQ"(‘T/) P, (ylz so)'
asymptotically as well as a maximum-likelihood decoder tuned v ’

to the channel in use. ) )
The rest of the paper is organized as follows. We conclulf¥e are abusing the notation to léttake as arguments both
this introductory section with a more precise statement i€ random variables and the distributions. o
the problem and with a presentation of our main result—the SUPPOS€ now that we are given a cléssf discrete finite-
capacity of the compound channel consisting of finite-staff?t€ channels with common finite-state spcand common
channels. The coding theorem and the converse theorBfif€ input and finite output alphabets and). Each channel
needed to prove this result are presented in Section II. fn€ © is characterized by
Sect_ion 1l we use this result to derive the capacity_of a clqss Py, 5|z, s, 0), yeY, rcX, s 5 €S (5)
of Gilbert—Elliott channels. The paper concludes with a brief
discussion in Section IV. and in analogy to (3) and (4) we will denote by
P, (y, sn|x, so, 6) the probability that the output of channel
Precise Statement of the Problem and Main Result f is y € Y™ and the final state is,, € S conditional on the
For a given set4, let P(4) denote the set of probability NPUt# € A™ and initial stateso € S, and by P, (y|z, so, 6)
distributions onA. We will only deal with probability distri- € Probability that the output of chann@lis y € Y™ under
butions on finite sets, and so, we will identify an elemént the same conditioning. Given a chandet ©, an initial state

of P(A) with a nonnegative functior): A — R such that ~ S0» and a distribution@, on A™, the mutual information
between the input and output of the chanée$ given by

Qla) = 1.

2, 9@ 1(X: Y50, 6) =1(Qu: Pal- 50, 6)
For a positive integen, denote byP,, (A) the set of probability = Qu(@)Pa(ylz, 50, 0)
distributions( on.A with the property thatQ(a) is an integer zy

for all o € A. We will call such aQ ann-type onA. 1o P (yl®, so, 0)

A discrete finite-state channel with input alphaBgtoutput Z Qu() P (ylT', 0, 9)'
alphabety, and state spac® is characterized by a conditional v
probability assignment

Definition 1: A rate R is said to beachievablefor the
Py, s'lz,s),  y€Y, €, s 5 €S, family of channels®, if for any ¢ > 0, there exists am(e)

Operationally, if at timez — 1 the state of the channel i_, Such that for alln > n(c) there exists an encoder

and the input to the channel at timeis z,,, then the output fiiL, e, |’GnR'|} _am
of the channely,, at timen and the state,, of the channel at
time n are determined according to the distribution and a decoder

P(yru 3n|$n7 Sn—l)- ¢Z yn - {17 Ty |'enR‘|}

For such a channel, the probabilifiel(y, s, ?0) thatthe gch that the average probability of error is less than
channel outputig = (y1, -+ -, yn) € V" and the final channel jrespective of the initial state, € S and the channel € ©
state iss, conditional on the initial stateg € S and the 5yer which the transmission is carried out. That is,
channel inpute = (21, ---, x,) € X™ is given by .
fe™™1

Poy, sulz, s0) = > ] P, silzi, sic1). (3) et 3 Balf(i), so, ) <,
: i=1
- S1, ...jtgn_l =1 - - g(eyj)/;éz
We can sum this probability ovey, to obtain the probability for all sp € S andé € ©.
that the channel output 8= (y1, - -+, y») € V™ conditional
on the initial states; € S and the channel input = Since the state is not observed by the encoder or decoder,
(z1, -+, Tn) € A" we will assume that the channels in the class have a common

n state spac& = {1, ---,|S|} as long as each channel in the
P, (ylz, so) = Z H P(y;, silzi, si—1). (4) class has the same number of states. When we are presented
108 iml with a class of finite-state channels with common input and
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output alphabets where each channel has at most but possiblYi. PROOF OF THECONVERSE AND A CODING THEOREM

less than$ states, we can equip the class with a state spac&zefore we can even start to prove the theorem, we need

with S states that is common to all the channels in the faml‘% show that the right-hand side of (6) exists. This is a

by augmenting the state space of those channels that have !%?fsequence of the following proposition, which is proved
thanS states. However, one has to be careful not to artificially Appendix 1.

introduce bad states in this process. An approach that will - _ . _
avoid this is the following. If a channél hasS, < S states, ~ Proposition 1: The maximum over,, € P(X™) in defin-
pick one of its states, say stafe, and define a new channeling the sequence

with S states by ) 1
Cn(0) = max inf = I(Qn; Pu(- |-, so, 8)),

P'(y, s|z, s', 6) QuEP(X™) 50ES,0€0 N
P(y, s|z, min{s’, Sy}, ), 1<s< 8y n=12 - (7)
N { 5-3%, P(y, Sp|lz, min{s’, Se}, 0), s = Se. is well-defined, and the sequence converges. Moreover,
The new channeP’ and the old channeP satisfy Jlim C,(©) = sup Ca(O) (8)
P (y|z, so, 8) = P,(y|z, min{sg, Ss}, 6) where
and thus a code that is good for one is good for the other. C(©) = C,(0) — (n|S])/n. ©)

Let C(©) denote the compound channel capacity of the
class©, i.e., the supremum of all achievable rates for th&
. Converse

class. We will prove the following theorem.
Given a codeC of blocklengthn and rateR, and error

The_or_em 1: The compound _channel capacity Of_ the F'asﬁrobability not exceeding for any channeb € © and initial
© of finite-state channels defined over common finite mpugt‘,ﬂ%0 € S, defineQ, € P(x™)

as
output, and state alphabets Y, S is given by
. . 1 O, () = 1/[C|, zeC
C(©)= lim  max inf = I(Qn; Pu(:"; 0, ). " 0, otherwise.

n—oo Q,EP(X") 50€5,0€0 N
(6) Then by Fano’s inequality we get, for &lle © andsy € S

Analytic calculation of this limit is possible only in special I(Qn; Po(:]-, 50, 8)) > n(l — )R —1n 2 (10)
cases, e.g., for a class of Gilbert—Elliott channels which will
be discussed below, and, in general, the limit cannot even &&d thus by (7)—(9)
computed numerically. Nonetheless, in the course of the paper .
we will establish a sequence of lower bounds monotonically CO)2Cr(@) 2 (1-€e)R -

increasing toC'(©) (Proposition 1) e\ghere the first inequality follows from Proposition 1, and the

A relatively simple finite-state channel that is often us o -
to model communication in the presence of fading is ths’e('}Cond follows from the def|n|t|qn aﬂn.and (10). We then
onclude that no rate abow&(©) is achievable.

Gilbert—Elliott channel, which has been studied in [6], [11f
and in references therein. In the Gilbert—Elliott channel the .
channel input and output alphabets are binaty— y — b- Coding Theorem
{0, 1}, and the channel state is also binary, but for conve-We will prove the coding theorem in a sequence of steps.
nience we sef = {B, G} corresponding to a “bad” state andThe first step is to quote a result from [5] to show that if
a “good” state. In this model the channel output sequanceR is less thanC(©) and if we employ maximum-likelihood
is related to the channel input sequencéy decoding tuned to the channéle © over which the trans-
mission is carried out, then we can find am such that
if we view the channel inputs and outputs in blocks raf
where @ denotes binaryriod 2) addition, andz is the real- (that is, to consider an equivalent channel with input alphabet
ization of a binary hidden Markov noise process with interna” and output alphabed”™), and construct i.i.d. random
state setS, see Section lll. codes for this channel (that is, codes where each symbol of
The capacity of the Gilbert—Elliott channel is achieved bgach codeword is chosen independently according to some
an independent and identically distributed (i.i.d.) Bernold2  distribution), we achieve exponentially decaying probability of
input distribution, irrespective of the channel parameters [&rror in increasing blocklength. The decay of the probability
Using Theorem 1 we shall show in Section Il that undesf error depends, of course, on the chanfiet © in use.
relatively mild conditions outlined in Theorem 2 the compound@he second step is to show that the resulting error exponent
channel capacity of a class of Gilbert—Elliott channels is equial bounded from belowniformly over the clas®. The third
to the infimum of the capacities of the members of the familgtep is to convert this i.i.d. random coding result to a different
The highest rate at which reliable communication can leénd of random coding, where the codewords are chosen
guaranteed is thus not reduced due to the ignorance of thdependently but uniformly over some set of input sequences.
transmitter and receiver of the channel in use. The last step is to invoke a theorem of [8] on the existence

2 lulS|
n n

y=zdz2
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of a universal decoders for the class of finite-state channeleerex = (z1, -+, znm) ANAE; = (T(i—1ymt1s * 5 Tim)s
to show that this is sufficient to construct good codes and= 1, ---, N. From Lemma 1 we have

decoders (that do not require knowledge of the channel in

use) for the compound channel. Enm(p, QL Pym(-|-, - 0)) — pR

Given Qn € P(Xn)' let Pe?,j(nv R, Qx; Pn( | " 50, 9)) > Fm(pv Qm; m( | L) 9)) - pR
denote the average (over codebooks and messages) probability - In|S|
of error that is incurred when a blocklengthrate-R code =min — Ey(p, Qm; Pm(-]-, s0,0)) — p<R+ —)

. . so MM m

whose codewords are drawn independently according to the
distribution @,, is used over the channd®, (|-, so, #) and
is decoded using a maximum-likelihood decoder tuned to t
channel. We know [5, pp. 176-182] that for apy [0, 1]

Pe?)(nv R, Qn? n( | 'y S0, 9))

|f%\gplying Lemma 2 to the channél,.(- |-, so, 6)

> p[mln — I(Qum; P(:] -, 50, 0))

< |S| exp{ 7’L[ (p7 Qn7 n( | Tyt 9)) - pR]} <R+ In |S|>:| 1 pQ[ln(ean)]Q
m 2m
where , !
> pe— 5— YR
Fo(p; Qni Pa(-|+ - 6)) > pe = o p*[ln(eY™)]
In
-7 7|1 | + ml% o, Eo(pv @n; Pa(-], 50, 0)) Choosingp = min{1, me/[In(eY™)]?} maximizes the right-

hand side in the range < p < 1 with the value

EO(ﬁv Qru n( | 'y S0, 9))

1+p 1
2 m\]2 m\]2
1/(1+ me?/(2[ln(eY ™)), €< — [In(e¥Y™)]
Z Z Qu(@) Pa(yle, so, )0+ Ble,m, Y) = 1 "
€= 5 [In(eY™)]?, else.
Lemma 1: Given @, € P(x*) and Q,, € P(X™). Let
n = k +m and define@,, € P(X™) by Notice that fore > 0, (e, m, Y) > 0. We conclude that for
al N > 1
Qn(z) = Qu(@1)Qm(22) -
where PI(Nm, R, Q%; Pym(- |, 50, 0))
T = (xlv Ty xn) S |S| exp{—Nmﬁ(e, m, Y)} (ll)
T (371, s $k) . . . . . .
The important thing to note is that the right-hand side is
T2 = (Thtrs oo, Tn)- independent of botl# and s.
Then We have thus seen that if one constructs a code of block-
k length Nm by constructing a random code by choosing
Fo(p, Qu; Pul:]-5 - 0) > ﬁ FA(P, Qr; Pr(|, - 0)) codewords independently according @\, then the proba-

F bility of error decays exponentially it¥ as long as the rate
Py Qmi Bl 5 0))- of the code is belowC(©). We now show that this implies

Proof: Identical to [5, pp. 179-180, proof of Lemma that random coding by choosing codewords independently and
5.9.1]. 0 unlformly over a type class has similar performance:

Lemma 3: Given Q@ € P(X), let Q" € P(X™) denote the

Lemma 2: For any channelP with input alphabett” and
Y P P distribution that is then-fold product of@, i.e.,

output alphabed, and for any distributiort on X
Eo(p, Q; P) > pI(Q; P) — 5 p*[In(eY)]? -
2 Qn(@) = [ [ Q).
whereY = || is the size of the output alphabet. i=1
Proof: See Appendix II. O

Given R < C(8), sete = (C(©) — R)/2. Choosem such
thatC',,(©) > R+e and letQ,,, € P(AX™) be the distribution
that achieves the supremu@y,,(©)

For a given typel) € P,(X), let Q) € P(x™) denote the

distribution that is uniform over the. length sequences of

type Q.

_For every distribution@ € P(&) there exists a type
In|S| Q) € P.(X) whose choice depends @ andn but not on

soegnge@ E I(any rn( | 50, 9)) m > Re P such that

For N > 1, let QY € P(x™N™) denote the distribution P'(n, R = 6(n), O™; P) < exp(2n6(n)) P’ (n, R, Q"; P)

@) =] Qm) for all P. Here(n) = |X| In(n + 1)/n tends to0 asn tends
‘ to infinity.
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Proof: Given a cod€ of rate R chosen according to the denote the average (over messages and codebooks) probability
product distribution, consider the following procedure to coref error incurred over the channgl ¢ ¥ with initial statesq
struct an equitype subcod® of rate R — §(n): Find the type when maximum-likelihood decoding is performed (with the
() with the highest occurrence i (resolving ties according knowledge ofy» and sq at the decoder). Similarly, for any
to some arbitrary but fixed rule). The number of codewordiecodery and codeboolC, let P,  ¢(error|t, so) denote
of this type will be lower-bounded by*(£-%(")) since the the average (over message) probability of error incurred over
number of types is upper-bounded b§*(™). Construct the the channel/ with initial states, when the codebook and
code C’ by picking the firsten(®=2(") codewords inC of decoder$ are used.
type @Q’. Since(’ is a subcode of, its average probability of  There then exists a sequence of r&teodesC,, C B,,, and
error when used over the chanrélis upper-bounded by that a sequence of decodefs (both sequences not depending on

of C times |C|/|C’| = ™™, the specific channep or initial statesy) such that
SinceC is a random code, the typ@’ is also random with 1 P

a distribution that depends of?, n, and R but not on P. lim  sup — 1n< n, . €, (CLTOT |, 30)) -0

Also, conditional on@’, the codewords irC’ are mutually N0 el soes T Py, w(error |, so)

independent and uniformly distributed over a set of Sequences,, 5 getailed description of the structure of the universal

of lengthn and typeq’. Denoting the distribution o)’ by 7,  jacqder and the family of codes of this theorem the reader is

A 5 A —né(n i e i
we choose) to satisfyr (<) ze ). Again, this f,)possmle referred to [8]. Loosely speaking, the decoder is constructed by
since the number of types is upper-boundec:1§™). Then “merging” the maximum-likelihood decoders that correspond

W(Q)pg(m R —6(n), O, P) to each of a set of finite-state channels. To within a factor
o J(n) which is no bigger than the cardinality of the set, the merged

< Z m(@)Fe(n, R=é(n), Q5 P) decoder is shown to have a probability of error that is no

@ worse than the probability of error incurred by any of the
< eMPr(n, R, Q"; P) maximum-likelihood decoders. The set is chosen so as to have

a polynomial cardinality (in the blocklength) and to be “dense”
in the sense that every finite-state channel is within “distance”
P"(n, R=6(n), Q™; P) < exp(2n8(n))P"(n, R, Q"; P). ¢, — 0 of some channel in the set, where the notion of distance
0 between laws is made precise in [8].

bini his | ith hat f We apply this theorem withm = Nm, B, the set of
Combining this lemma with (11), we see that for eacQyq ences of typé),,, to conclude that foRk < C(©) there
N > 1, there is a type),,, € Py(&™) such that

exists a sequence of rafé codesCy,, of blocklength Nm,
PT(Nm, R, QW): Prnp(- ]+, s0, 6)) N =1,2,...,and a sequence of decoders,, such that the
In(N + 1) probability of error decays exponentially iN for anyd € ©
<|S] exp{—Nm[ﬁ(e —|x|m ™ |y|) and sp € S. This approach can be easily extended to treat
m the case where the blocklength is of the formv + 1/, where

and thus

—2/x)™ _ln(N + 1)]}_ 0<r< m, by appending a con_stant string of lengtkto each
Nm codeword in the codebook designed for the blocklengtN.
ChooseN, such that for allN > N, One must, of course, guarantee that negligible compared
to mNV.
m (VN +1)
" = <2
and lll. A CLASS OF GILBERT—ELLIOTT CHANNELS
In(N+1) 1 In this section we study the compound channel capac-
21| ——= < = f(¢/2,m, Y). . : )
o Nm 2/(6/ m, ¥) ity of a class of Gilbert—Elliott channels. Such channels
Then, for all N > N, have two internal state€s, B and binary input and out-
. A (V) put alphabets, = Y = {0, 1}. The channel law of
PI(Nm, R, 3, Pnm(-|+; 50, 8)) a Gilbert—Elliott channeld is determined by four parame-

< |S| exp{—Nm3 B(e/2, m, Y)}. (12) ters,b(f), g(8), P(6), Ps(f) which define the channel law

. _ ) ) through (3) whereP(y, s|z, ', 8) is defined as follows:
We will now invoke the following theorem proved in [8], to

show that (12) implies the existence of a code and a decoder P(y, slz, s', 0) = qo(y|z, s )re(s|s’)
(neither depending of or sg) that perform well for every
and so: where

Theorem [8]: Given an input alphabet’, an output alpha- re(G|B) =1 —r9(B|B) = ¢(0)
bet ), and a finite state spac8, let ¥ index the class of re(B|G) =1 — 14(G|G) = b(6)

all finite-state channels with these input, output, and staétra] d

alphabets. Consider now a random codebook of fatand

blocklengthn whose codewords are drawn independently and q6(1]0, B) =1 — ¢¢(0[0, B) = Pp(#)
uniformly over a setB,, C A", and letP,, y.(error |1, so) g0 (0|1, B) =1 — go(1]1, B) = Pp(6)
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b Theorem 2: Consider a family of Gilbert—Elliott channels,
d let

g b= elgg Inin{g(e)v b(e)v 1- 9(9)7 1- b(e)} (13)

. 1-Pg . o 1-Pp 0 If § >0, then the compound channel capaciiy®) of the

family is given by
$ O C(©) = inf C(6)
= 1
1 1 1 1 bco
L-Pg 1- Pg

whereC(#) is the capacity of the Gilbert—Elliott channel with
Fig. 1. The Gilbert—Elliott channel modeP; and Py are the channel parametergb(6), g(6), Ps(6), Ps(6)).
error probabilities in the “good” and “bad” states, ap@ndb are transition Proof: First note that the converse part of this theorem
probabilities between states. . . ; . . .
is trivial since no rate is achievable for a family of channels
if it is unachievable for some member of the family. We thus
q6(110, G) =1 — ¢4(0|0, G) = P () focus on the direct part which we prove using Theorem 1 by
2(0]1, G) =1 — gp(1]1, G) = P5(6) choosing®,, to be the i.i.d. Bernoul{il/2) input distribution.
Noting that for this input distribution the channel output is
see Fig. 1. It is straightforward to verify that the noise sequenggso i.i.d. Bernoull{1/2) we deduce that

Foeey 2 L(XP5 Ys0. ) = n 2 =~ HOYXY, 50, 6)
(where@ denotesnod 2 addition) is independent of the input 711
z. Thus =ln2- - H(Z}|s0, 6).

Yi=X;® Z; The theorem will thus be established once we show that

where Z; is independent of the inputs and is Bernouttj i 2 gz 0) — holZ
distributed if s; = B, and is Bemoulli P distributed if i max sup |2 H(Z7 |0, 8) = he(2)
S; = G.

=0. (14

Given a channeb € ©, an initial states, € &, and the

The capacityC(6) of a single Gilbert—Elliott channel is ; n -
derived in [6] and is achieved by a memoryless Bernailil channel inputz € A™, we have by (3) t_hat the _probab_|l|ty
E.(snl|®, so, #) of the channel state being, at time n is

input distribution, irrespective of the channel parameters. It” b
can be expressed in the following form. LgS;} denote a en by
stationary Markov process taking value {67, B} with the

law Pn(3n|m7 307 Z Z H P yzv Sz|$zv Si—1, )

Pr(Sj41 = G|Sk = B) =1 — Pr(Sj41 = B|Si = B) YEIT oy i
- 9(6) We can now extend the notion of indecomposability [5, p. 105]

. . . . to families of channels as follows.
Pr(Sk_H IB|SkIG) Il—Pr(Sk_H IG|SkIG) L . .
—b(0) Definition 2: A family of channels defined over common
o ) finite input, output, and state alphabefs, ), and S is
Let {Zk} be a{o 1} -valued random process, where Cond|un|f0rm|y Indecomposab|e if for any > 0 there exists an

tional on the procesS, {Z,} forms an independent sequencéVo such that forn > No
of random variables with

- sup |Pn(8n|.'l', 307 9) - Pn(8n|.'l', 3()/7 9)| <e€
~ ~ i — 6c©
Pr(Z; =15%2) = {PB’ T =5 )

P, if Sp=G for all s, € S, all z € X", and all initial statess), s{j € S.
where if {X;} is a sequence of random variables th& Extending [5, Theorem 4.6.4] to uniformly indecomposable
denotesX, - - -, X,,. We now have that the capaci€y(6) of families of channels we obtain that for uniformly indecompos-

the Gilbert—Elliott channel of parametef®6), ¢(#), Pz(¢), able families of channels and any input distribution
P;(6)) is given by

1
N lim sup (X Y|sy, 0) — = I(X; Y|sg, 9)‘ =0. (15)
C(0) =1n 2 — he(2) n=%0 jeo 0 n 0
provided that Under the assumptions of the theorem the family of
Gilbert—Elliott channels is uniformly indecomposable, and
0 < b(f), g(0) <1 it thus follows that

wherehy(Z) is the entropy rate of the proce$gy }. lim sup 1 I(X{L; Y50, 0) — <ln 9 _ lH(ngm 9)>
Using Theorem 1 we shall now establish the compound-<c gce n
channel capacity of a class of Gilbert—Elliott channels. =
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and (14) (and hence the theorem) will be established if wehere the expectation is taken ov&s and Zf‘l when S,
show has its stationary distribution. It follows that to prove (21) it
suffices to prove that

lim sup max Z |78 (s|Z07Y) = B (s|Z77H)| =0

n—=00 ge@ Z1r 0ty An—1 ses

1 - .
lim sup |— H(Z]|S0, 0) — he(Z)| = 0. (16)

We now show that to establish (16) it suffices to show that

lim sup |H(Z,|Z71, So, 0) — he(Z)| =0.  (17)

(22)

which is proved in Appendix Ill.

This reduction follows by noting thaH(Zn|Zf‘1, So, 6) is A different proof of (22), which is valid with the additional
monotonically nonincreasing, and by noting that by the cha@®ndition

rule ) inf win{Po(6), Po(8), 1~ Pa(6), 1~ Pa(6)} > 0
on & _ o | ok=1 &
H(Z1%, 0) = kz_:l H(Z|27, 50, 0). is outlined below. It has the advantage of being generalizable
- B to finite-state channels with more states. The proof is based
Next, writing on the recursion equations for computing,; from =, see
he(Z) _ H(Zn|Zﬁ_1, 6) (18) [7, eq. (12)], [9, Lemma 2.1], and references therein.
and recalling that givers, the future ofZ is independent of Tng1(21, s 2n) = T2, ) Znmt) Alzn) (23)
its past we conclude that (215 o5 Zn—1)A(20)1
H(Za| 27, S0, 0) < ho(2). (19) Where
_(1-Pg 0 1-b b
On the other hand, by (18) A(0) = < 0 1 PB)( g 1 —g)
H(Zn|Z77, 0) 2 he(2) (20) AL — <PG 0 )(1 b b )
and thus, by (19) and (20), it follows that to prove (17) (and 0 I 9 l-yg
hence the theorem) it suffices to show and1 is a column all-one vector. The convergence in (22) now
lim sup (H(Zn|Zf_1, 6) — H(Zn|2f_1, So, 9)) = 0. follows _from [15, Proposition A.4] on normali_zed products_
N0 e of matrices that are each of the form of a diagonal matrix

N _ (21) multiplied by a stochastic matrix. This proposition improves
In words, we need to prove that givefi’ ™", knowing the on the estimates of [9, Lemma 6.1] on normalized products of

initial state So becomes immaterial to estimating, for matrices by exploiting the structure of the matrices. I
sufficiently largen, with the convergence being uniform over

the family. It should be noted that irrespective of the paramebéfy
Given an initial distributionr, = (mo(G), 7o(B)) on the and g(¢), and irrespective of the initial statgy we have that
channel state, let if 0 < Pz < Pg < 1/2 and the input distribution is i.i.d.
Bernoulli(1/2) then
7rn(zlv T Zn—l) 1
= (ma(Gl21, + o5 Znm1)s Ta(Bleg, o) 2nm1) - LT Y50, 0) 2 In 2 = hy(Pp).

be the distribution of the channel state at time after This observation could be used to slightly strengthen Theorem
observing the noise process. 2. In particular, if we wish to demonstrate that a rateis

Let 7, denotew, when mo is chosen as the stationaryachievable for the family® then in computings in (13) we
distribution of Sy, let 77 denoter, whenmy = (1, 0), and may exclude those channels @for whichln 2 — h,(Pg) >

let 72 denoter,, whenmy = (0, 1). R.
To prove (21) write To see that some condition on the transition probabilities of
H(Z,| 2771, 6) = Egus hy(Porl, (G271 the state c_hain is necessary, cqnsid_er a class of Gi!pert—EIIiott
L —_— channels indexed by the positive integers. Specifically, let
+ Ppm,(B|Z1 7)) Pa(k) =0, Pa(k) = 1/2, b(k) = g(k) = 2% for k > 1. For

any givenk, one can achieve rates exceedlng — h;(1/4)

wherehy(x) is the binary entropy function, i.e., ) .
over the channek by using a deep enough interleaver to

hy(x) = z In 1 +(1=2)In 1 make the channel look like a memoryless BSC with crossover
r I-z probability 1/4. Thus
and the expectation is taken ovéf’~* when S, has its inf C(6) > In 2 — hy(1/4)
stationary distribution. Similarly, write 9co = b '
H(Z,|Z77 1, So, 6) However, for any given blocklengtn, the channel that

corresponds t&? = n when started in the bad state will

_ . . S 7n—1 S 7n—1
= Eg,, zp-ho(Pom>(Gl2177) + Py (B|1Z777)) stay in the bad state for the duration of the transmission with



980 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998

probability exceedind — n2™" > % Since in the bad state Proof: For eachn, 8 € ©, ands, € S, the function
the channel output is independent from the input, we conclude Qn € P(X™) = I(Qn: Po(-]-, 50, 0)) € R

that reliable communication is not possible at any rate and
is continuous. Furthermore, for a fixed this class of func-

0=0C(0) <In2-h(1/4) < érelg (). tions is uniformly continuous i and sy. (The modulus of
continuity of I(-; P) can be bounded in terms of the size of
IV. DIScuUssION AND CONCLUSIONS the input and output alphabets alone, see, e.g., [2, Lemma 2].)

In this paper we have derived the capacity of a class bhus
finite-state channels. Comparing (6) with (1) we note thatthe ¢ < P(x")— inf  I(Qn; Pu(|, 50, 0)) € R

expression for the capacity is very similar to the one that holds 50€85,0€0
for a class of memoryless channels, as both take the form okacontinuous. Sincé(X™) is compact, the supremum over
max — inf of mutual informations, where the maximum is ovey), of this function is attained. O

all input distributions, and the infimum is over the channels in . ]
the family. The main difference is that in the expression for the Lémma 5: Givenk, m, n, Qx, andQy,, @, as in Lemma
capacity of a class of finite state channels there is an additiofkal Then

limit that allows for the dimension of the input distribution to inf I(Qn; Po(-|, 0, 9))

go to infinity. This is not surprising, as such a limit is even 508 ]

needed to express the capacity of a single finite-state channel. z 81§1f6 I(Qx; (-], 50, 0))

This addltlona_l limit is §|gn|f|cant, becau_se if the convergence Finf I(Qp; (-] 50, 6)) = 0|8
to the mutual information rate is not uniform over the family, 50,0

unexpected compound channel capacities may result. Proof: For a givend € © and s, € S, let (X1, X»
Theorem 1 should not lead one to conjecture that tI}el’ Ys, Si) be the distributed according to

compound channel capacity of any family is ofieax — inf

form, as the following counterexample demonstrates [12], [13]. Qx(%1)Qm(x2)Pu(y1, silz1, so. 0) Pr(ya|z2, sk, 0).

Let© = (0, 1) and Iet_9(1>, 62 ... be the digits in the binary We want to show that

expansion off € O, i.e.,

inf I(X1X2;Y1Y2|80, 9) Z inf I(Xl; Y1|80, 9)

6=> 6972, 69 e{o,1}. 50,6 s0,6
>0 +Si{1fQI(X2;Y2|Sk,9)—In|S|.

(For definiteness, for a rational of the form k/2", take 1q that end, write

the terminating expansion among the two possible binary .

expansions.) Consider now the set of channels defined 0\}087@ I(X 1 X Y1Y2|3079):;£{£[I(X1? Y.Y2[s0,6)

common binary input and output alphabets where over the FI(X5;Y Y5 X1, 50,0)]
channelé the conditional probability of the output sequence _ ' T
Y= (y17 B yn) given the inpUt sequence— (xlv Ty $N) Z;(I},E I<X1;Y1Y2|807 9)
IS given by + inf I(XQ; Y1Y2|X1, S0, 9)
1, ifyi=z @09, Vi v
P (ylz, 0) = {0: otherwise ’ The first term is lower-bounded kiwf,, 4 1(X1; Y1|so0, 6).

h q 42 addii For this familv of ch | For the second term, note that
where® denotesmod 2 addition. For this family of channels
I(X2; Y1Y 2| Xy, s0, 0) =1(X2; YY) X150, 0)

we have that theanax —inf expression yields a value df

irrespective of the blocklength, and yet the compound channel — I(X1; Xo[so, 0)
capacity of this family is0, as can be easily verified using =I1(Xo; Y 1Y, X|s0, 0)
standard techniques from the theory of arbitrarily varying > I(X2; Yo|so, 0)

channels, see [13], and [14, Appendix]. This example can be
explained by noting that for this family of channels there doaghere we have used the independenceXaf and X,. We
not exist a universal decoder [8]. now note that

I(XQ; Y2|80, 9) Z I(XQ; Y2|Sk, S0, 9) bt 111|S|
APPENDIX | . _ _
We prove Proposition 1 using the following sequence &hls follows from the inequality
lemmas. [{(A; B|CD) - I(A; B|C)| < H(D)
Lemma 4: For eachr, there existg)* € P(X™) such that
see [5, p. 112]) and

1
soeg}ge@ o 1(Qns Enlls 50, 9) I(X2; Y2|Sk, 50, 8) = Y alsulso, 0)1(X2; Yalsy, 6)

sk

. 1
= o3 swcitheo 1 1(@ni Pal:s lso, ). > il 1(Xs; Yalsi, )
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where we obtain
q(skls0, 0) = > Pualyys silz1, s0, 0)Qu(@1). — E){p, Q: P)
_ > a@) (i ay) + (1 + p)a’w)/aly))
Combining the above Ty
in% I(XlXQ;Y1Y2|30,9)Zinf0 I(Xl; Y1|80, 9) B Za(y)l'H’
+inf I(Xa; Yalsi, 6)~1n|S]. !
: - = Z <ln oly) =Y glely) In P(ylw)l/(“”))
Corollary 1: The sequencé€,,(0) converges. Furthermore, .
| : = 3 w1 y o) (26)
lim C,(0) =sup C,(0) (24) = Q($|y)
where where
C(©) = Cu(©) — (In|S]) /. (25) _a(y)ttr
w(y) - a(y )1_|_p
Proof: Given integers:, m > 1, let @ and@,,, achieve o
the maximizations inCy(©) and C,,,(©), respectively. Let and
n = k +m and defineR,, as in the proof of Lemma 5. Then Aely) = Q(z)P(y|z)/ 4+»
nCp(©) 2 inf 1(Qns Pa(]- 50, 6) aly)
> inf I(Qu; Pi(-], so, 0)) We now differentiate— F) to find — E{/
+ 100 HQus Pl 50, ) = ] B0 P =Y a% (watel)] b 22
:ka((%)—i—mCm( ) —In|S], “Y
or Z q(zly). (27)

~ ~ ~ 'Y
_ . ) Since " q(z|y) = 1 for all y and p, the second term above
Since C,,(0) is also bounded (say bin|X| + In|S[), we s zero. We now compute

conclude that (see [5, p. 112])

A . a
lim Cn(0) = lim Cn(O) =sup Cp(O). O a—p[w(y)q(wly)]
Lemma 4 and the above corollary establish Proposition 1. 9 | Q) P(y|z) W+ a(y)r
~ 9p aly ) +e
APPENDIX I P K @)
Proof of Lemma 2:This lemma is a slight modification  _ -1 1/(1+p)
, = -1 In P P+l
of [5, Problem 5.23]. The reason we chose to include a proof (W)g(=ly) I (1+p)7" In P(y|z) +1n afy)
is twofold: first, the solutions to the problems in [5] are not p ,
widely available, and second, the official solutions for this +a(y) ap aly) + Eolp; @ P)}
problem contain a small error. -
By expandingEy(p, Q; P) in a power series aroung= 0 = w(y)q(zy) | = 1+ p)~ In P(y|x) 7 +1n afy)
to second order, we obtain i
Eo(p, Q; P) =pEo(0, Q; P)+ 5 p°Eg (¢, Q; P), - % q(z'|y) In P(y|z")L/ (e
for some¢ € [0, p] -
=pl(Q; P)+ 5 p°Ef (¢, Q; P) +E\(p, Q; P)
and so it suffices to show that
~E{(p. Qi P) < [ln(ey ) — w(y)gely)| —— o 2L
. - Wazlv) | T )
for all p € [0, 1]. Differentiating p Q')
oy Lo +—— > q(@'ly) In —
~Eo(p, Q; P)=In Y _aly) 1+p & o(@'ly)

Y

ZQ P(yla)t/ 40 +Ej(p, Q; P)|.
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Substituting this in (27) we obtain We will upper-bound the right-hand side further by maximiz-
) ing overw(y) subject tow(y) > 0, >°, w(y) = 1. To that
o oy 1 Q) end, expand the square and maximize each term
EO(p7 Q7 P)—1+pzw( ) ($|y) In q($|y)
Ty _E(/)/(pv Q; P)
Q) |’
P )2
+ T+0 zy: w(y) [zw: q(z|y) ln q($|y)] <1+ (7 max Z YIn w(y
~ [Eg(p, Q; P)I. (28)

+2p In Y max Zw(y) ln 1 +(pln Y)Q] .
Using the inequalityE[A]?> < E[A?] on the second term in YT w(y)

brackets and combining the first two terms o ) . .
9 The second maximization givés Y. For the first, write

_Eg(pv Q7 ) ) max Z hl w

<3 wietely) 2O~ £y, @ PP 2

wY = max Z w(y) <ln wiy) + 1)
Since the last term is nonpositive we can drop it to leave R ¢
2 . w(y) 2
_E'p, O; P Z Ya(zly) {ln qc(Ja(ZTZy))} ' = max zy: w(y) [(111 7) +21nwly) - 1]
Y)
Observe now that for > 1, In(2)? < (4/¢?)z < 2. Thus S max Z wly <n T) -1
Yy

~Ef(p, % P)< Y w(y)Ql) = [ (e¥))? -1

z,Y: — 2
Q@) q(ely) o Y] +2n Y

z) 12 where the next to last equality follows from the concavity of
+ Z w(y)g(ely)|ln o(z[y) z(In(z/e))? in the ranged < z < 1, and thus the maximization
Q)< q(xly) taking place whenu(y) = 1/Y. Thus
2
T 2lnY
SR S e “E{lp. Qs D) SLH [P+ 2
EETH
Q(z)<q(zly) <l1+MWmYP+2hY
Note that forQ(z)/q(z]y) < 1 = [ln (e¥))?
O(x) 2 Q) P(y|z)H (1+0) 2 as was to be shown. O
] <[] m @
e A APPENDIX Il
Furthermore, In this Appendix we prove (22).
I aly) 1 (I w(y) — Eo(p. Q: P)) For a given Gilbert—Elliott channél define
naoly) =——(nwy)— Lolp,
and e U(S, 3/7 3//7 Z) = V(S, 3/7 Z) - W(Sv 3//7 Z)
Eo(p, Q; P) <pl(Q; P)< pln Y where
thus Vs, s',2) =Pr(s; = s|sj—1 = s, ss41 =5, 21 = 2)
and
5 In w(y) — pIn Y \?
(In a(y))® < T, W(s, s, z) =Pr(s; = s|sij—1 £ 8, ss41 = 5, 21 = 2).
d Mushkin and Bar-David [6, Appendix] show that the quantity
an in (22)
_E'(p,Q; P .
ol Qi F) () — pTa 72 D D LA C i EEAC Vi
<1+ Y w(y)Q(wly)< y1+pp ) aes

is upper-bounded bymax, . o7 . |U(s, s, s, 2)|)*. We
can thus prove (22) as long as for somg 0

<1 lnwy)—plnY 2
+Z 1+p ' max |U(s, s',s", 2)|<1—¢

s,s’,8",z

ENTH
Q(x)<q(z|y)




LAPIDOTH AND TELATAR: THE COMPOUND CHANNEL CAPACITY OF FINITE-STATE CHANNELS 983

for all channeld? in our class®. We will show that under the
assumptions of Theorem 2, namely,

6 = jnf min{b(6), g(6), 1 = b(8), 1 - g(6)} > 0
(29) is satisfied and can be taken to bé?/2.

To that end, supposg/| > 1 — ¢ for somee < 1. This
implies that eithed” — W > 1 — ¢, in which caseV > 1 —«¢
andW < ¢ orelse W —V > 1—¢, in which caséV > 1—¢
and V < ¢ Take the first alternativel” > 1 — ¢ implies
Pr(zy = z|si =) > 0, Pr(sj—1 = s, 81 = s, si41 = ') > 0,
and

Pr(zi = z|s1 # s) Pr(si—1 = s, s # s, $141 = §')
< 1;_6 Pr(z = z|s1 = )
Pr(sic1=s, 81 =38, s;41 = §). (30)

W < e implies Pr(z = z|s; # s) > 0, Pr(si—1 # s, 81 #
s, 8141 = §”) > 0 and

Pr(z = zls; = 5) Pr(si—1 # 5, 51 = 5, 5141 = 5”)
€
< 1. Pr(z = z|s; # )
Pr(si—1 # 8, 51 £ 8, s5i41 = ). (31)
From (30) and (31), we conclude that

Pr(sis1=s,51# s, siq1 =)
‘Pr(s;_1 #s,81=35, 51371 =5")

2
€ /
< < ) Pr(siii =s,s1=5,5141=5")

1—e¢
Pr(siy #s, 510 # s, 141 =5"). (32)

We can rewrite (32) as

< € )2 S Pr(si_i=s,81# s, 5141 =8)

l—¢) “Pr(sim1=s,5=s5,s141=2¢)
Pr(sisi #5, 50=5, 5111 = 57)
Pr(si—1 # s, st £ s, s141 = §")

> 6

and thuse/(1 — €) > &%, implying e > §%/2.

Taking the second possibility yields the same lower bound.
We thus conclude thal/(s, s', s”, z)| < 1 — §2/2, which
proves (22). O
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