42 research outputs found

    The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions

    Full text link
    We show that the widely used homotopy method for solving fixpoint problems, as well as the Harsanyi-Selten equilibrium selection process for games, are PSPACE-complete to implement. Extending our result for the Harsanyi-Selten process, we show that several other homotopy-based algorithms for finding equilibria of games are also PSPACE-complete to implement. A further application of our techniques yields the result that it is PSPACE-complete to compute any of the equilibria that could be found via the classical Lemke-Howson algorithm, a complexity-theoretic strengthening of the result in [Savani and von Stengel]. These results show that our techniques can be widely applied and suggest that the PSPACE-completeness of implementing homotopy methods is a general principle.Comment: 23 pages, 1 figure; to appear in FOCS 2011 conferenc

    Geometry and equilibria in bimatrix games

    Get PDF
    This thesis studies the application of geometric concepts and methods in the analysis of strategic-form games, in particular bimatrix games. Our focus is on three geometric concepts: the index, geometric algorithms for the computation of Nash equilibria, and polytopes. The contribution of this thesis consists of three parts. First, we present an algorithm for the computation of the index in degenerate bimatrix games. For this, we define a new concept, the “lex-index” of an extreme equilibrium, which is an extension of the standard index. The index of an equilibrium component is easily computable as the sum of the lex-indices of all extreme equilibria of that component. Second, we give several new results on the linear tracing procedure, and its bimatrix game implementation, the van den Elzen-Talman (ET) algorithm. We compare the ET algorithm to two other algorithms: On the one hand, we show that the Lemke-Howson algorithm, the classic method for equilibrium computation in bimatrix games, and the ET algorithm differ substantially. On the other hand, we prove that the ET algorithm, or more generally, the linear tracing procedure, is a special case of the global Newton method, a geometric algorithm for the computation of equilibria in strategic-form games. As the main result of this part of the thesis, we show that there is a generic class of bimatrix games in which an equilibrium of positive index is not traceable by the ET algorithm. This result answers an open question regarding sustainability. The last part of this thesis studies the index in symmetric games. We use a construction of polytopes to prove a new result on the symmetric index: A symmetric equilibrium has symmetric index +1 if and only if it is “potentially unique”, in the sense that there is an extended symmetric game, with additional strategies for the players, where the given symmetric equilibrium is unique

    07471 Abstracts Collection -- Equilibrium Computation

    Get PDF
    From 18 to 23 November 2007, the Dagstuhl Seminar 07471 ``Equilibrium Computation\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

    Full text link
    While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×20002000 \times 2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria

    Uniqueness of Stationary Equilibrium Payoffs in Coalitional Bargaining

    Get PDF
    We study a model of sequential bargaining in which, in each period before an agreement is reached, the proposer’s identity (and whether there is a proposer) are randomly determined; the proposer suggests a division of a pie of size one; each other agent either approves or rejects the proposal; and the proposal is implemented if the set of approving agents is a winning coalition for the proposer. The theory of the fixed point index is used to show that stationary equilibrium expected payoffs of this coalitional bargaining game are unique. This generalizes Eraslan (2002) insofar as: (a) there are no restrictions on the structure of sets of winning coalitions; (b) different proposers may have different sets of winning coalitions; (c) there may be a positive probability that no proposer is selected.
    corecore