2,493 research outputs found

    Verification of the FtCayuga fault-tolerant microprocessor system. Volume 1: A case study in theorem prover-based verification

    Get PDF
    The design and formal verification of a hardware system for a task that is an important component of a fault tolerant computer architecture for flight control systems is presented. The hardware system implements an algorithm for obtaining interactive consistancy (byzantine agreement) among four microprocessors as a special instruction on the processors. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, provided certain preconditions hold. An assumption is made that the processors execute synchronously. For verification, the authors used a computer aided design hardware design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover

    Adaptive Latency Insensitive Protocols andElastic Circuits with Early Evaluation: A Comparative Analysis

    Get PDF
    AbstractLatency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design tolerant to additional latencies caused by wires or computational elements. They are performance-limited by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if all inputs to a block are simultaneously available. Adaptive LIP's (ALIP) and EC with early evaluation (ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the subset of inputs needed at a given time is available. Their difference in terms of implementation and behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results have been obtained through simple examples, a single representative case-study already used in the context of both LIP's and EC and through extensive simulations over a suite of benchmarks

    Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    Get PDF
    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort

    On the nature and effect of power distribution noise in CMOS digital integrated circuits

    Get PDF
    The thesis reports on the development of a novel simulation method aimed at modelling power distribution noise generated in digital CMOS integrated circuits. The simulation method has resulted in new information concerning: 1. The magnitude and nature of the power distribution noise and its dependence on the performance and electrical characteristics of the packaged integrated circuit. Emphasis is laid on the effects of resistive, capacitative and inductive elements associated with the packaged circuit. 2. Power distribution noise associated with a generic systolic array circuit comprising 1,020,000 transistors, of which 510,000 are synchronously active. The circuit is configured as a linear array which, if fabricated using two-micron bulk CMOS technology, would be over eight centimetres long and three millimetres wide. In principle, the array will perform 1.5 x 10 to the power of 11 operations per second. 3. Power distribution noise associated with a non-array-based signal processor which, if fabricated in 2-micron bulk CMOS technology, would occupy 6.7 sq. cm. The circuit contains about 900,000 transistors, of which 600,000 are functional and about 300,000 are used for yield enhancement. The processor uses the RADIX-2 algorithm and is designed to achieve 2 x 10 to the power of 8 floating point operations per second. 4. The extent to which power distribution noise limits the level of integration and/ or performance of such circuits using standard and non-standard fabrication and packaging technology. 5. The extent to which the predicted power distribution noise levels affect circuit susceptibility to transient latch-up and electromigration. It concludes the nature of CMOS digital integrated circuit power distribution noise and recommends ways in which it may be minimised. It outlines an approach aimed at mechanising the developed simulation methodology so that the performance of power distribution networks may more routinely be assessed. Finally. it questions the long term suitability of mainly digital techniques for signal processing

    Adaptive Latency Insensitive Protocols

    Get PDF
    Latency-insensitive design copes with excessive delays typical of global wires in current and future IC technologies. It achieves its goal via encapsulation of synchronous logic blocks in wrappers that communicate through a latency-insensitive protocol (LIP) and pipelined interconnects. Previously proposed solutions suffer from an excessive performance penalty in terms of throughput or from a lack of generality. This article presents an adaptive LIP that outperforms previous static implementations, as demonstrated by two relevant cases — a microprocessor and an MPEG encoder — whose components we made insensitive to the latencies of their interconnections through a newly developed wrapper. We also present an informal exposition of the theoretical basis of adaptive LIPs, as well as implementation detail

    Design of High Performance Modified Wave pipelined DAA Filter with Critical Path Approach

    Get PDF
    In this paper, a new high speed control circuit is proposed which will act as a critical path for the data which will go from input to output to improve the performance of wave pipelining circuits The wave pipelining is a method of high performance circuit designs which implements pipelining in logic without the use of intermediate registers. Wave pipelining has been widely used in the past few years with a great deal of significant features in technology and applications. It has the ability to improve speed, efficiency, economy in every aspect which it presents. Wave pipelining is being used in wide range of applications like digital filters, network routers, multipliers, fast convolvers, MODEMs, image processing, control systems, radars and many others. In previous work, the operating speed of the wave-pipelined circuit can be increased by the following three tasks: adjustment of the clock period, clock skew and equalization of path delays. The path-delay equalization task can be done theoretically, but the real challenge is to accomplish it in the presence of various different delays. So, the main objective of this paper is to solve the path delay equalization problem by inserting the control circuit in wave pipelined based circuit which will act as critical path for the data that moves from input to output. The proposed technique is evaluated for DSP applications by designing 4- tap FIR filter using Distributed arithmetic algorithm (DAA). Then comparison of this design is done with 4-tap FIR filter designs using conventional pipelining and non pipelining. The synthesis and simulation results based on Xilinx ISE Navigator 12.3 shows that wave pipelined DAA based filter is faster by a factor of 1.43 compared to non pipelined one and the conventional pipelined filter is faster than non pipelined by factor of 1.61 but at the cost of increased logic utilization by 200 %. So, the wave-pipelined DA filters designed with the proposed control circuit can operate at higher frequency than that of non-pipelined but less than that of pipelined. The gain in speed in pipelined compared to that of wavepipelined is at the cost of increased area and more dissipated power. When latency is considered, wavepipelined design filters with the proposed scheme are having the lowest latency among three schemes designed
    corecore