10 research outputs found

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso

    Holographic Algorithm with Matchgates Is Universal for Planar #\#CSP Over Boolean Domain

    Full text link
    We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#\#CSP) over Boolean variables into exactly three categories: (1) Polynomial-time tractable; (2) #\#P-hard for general instances, but solvable in polynomial-time over planar graphs; and (3) #\#P-hard over planar graphs. The classification applies to all sets of local, not necessarily symmetric, constraint functions on Boolean variables that take complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in category (2).Comment: 94 page

    FKT is not universal — A planar Holant dichotomy for symmetric constraints

    Get PDF

    The simple, little and slow things count : on parameterized counting complexity

    Get PDF
    In this thesis, we study the parameterized complexity of counting problems, as introduced by Flum and Grohe. This area mainly involves questions of the following kind: On inputs x with a parameter k, can we solve a given counting problem in time f(k)*|x|^c for a function f that depends only on k? In the positive case, we call the problem fixed-parameter tractable (fpt). Otherwise, we try to prove its #W[1]-hardness, which is the parameterized analogue of #P-hardness. We introduce a general technique that bridges parameterized counting complexity and the so-called Holant framework. We then apply this technique to the problem of counting perfect matchings (or equivalently, the permanent) subject to structural parameters of the input graph G: On the algorithmic side, we introduce a new tractable structural parameter, namely, the minimal size of an excluded single-crossing minor of G. We complement this by showing that counting perfect matchings is #W[1]-hard when parameterized by the size of an arbitrary excluded minor. Then we turn our attention to counting general subgraphs H other than perfect matchings in a host graph G. Instead of imposing structural parameters on G, we parameterize by the size of H, giving rise to the problems #Sub(C) for fixed graph classes C: For inputs H and G with H in C, we wish to count H-copies in G. Here, C could be the class of matchings, cycles, paths, or any other recursively enumerable class. We give a full dichotomy for these problems: Either #Sub(C) has a polynomial-time algorithm or it is #W[1]-complete. Assuming that FPT and #W[1] do not coincide, we can thus precisely identify the graph classes C for which the subgraph counting problem #Sub(C) admits polynomial-time algorithms. Furthermore, we obtain an unexpected application of our extensions to the Holant framework: We show that, given two unweighted graphs, it is C=P-complete to decide whether they have the same number of perfect matchings. Finally, we prove conditional lower bounds for counting problems under the counting exponential-time hypothesis #ETH. This hypothesis, introduced by Dell et al., asserts that the satisfying assignments to n-variable formulas in 3-CNF cannot be counted in time 2^o(n). Building upon this, we introduce a general technique that allows to derive tight lower bounds for other counting problems, such as counting perfect matchings, the Tutte polynomial, and the matching polynomial.Die vorliegende Arbeit befasst sich mit der parametrisierten KomplexitĂ€t von ZĂ€hlproblemen, einem von Flum und Grohe gegrĂŒndeten Gebiet, in welchem Fragen der folgenden Art betrachtet werden: Können gegebene Probleme auf Eingaben x mit Parameter k in Zeit f(k)*|x|^c gelöst werden, wobei f eine Funktion ist, die nur von k abhĂ€ngt? Im positiven Falle bezeichnen wir das Problem als parametrisierbar (FPT). Andernfalls versuchen wir typischerweise, dessen #W[1]-HĂ€rte zu beweisen - diese lĂ€sst sich vereinfachend als ein parametrisiertes Äquivalent der #P-HĂ€rte auffassen. Wir fĂŒhren zunĂ€chst eine allgemeine Technik ein, welche die parametrisierte ZĂ€hlkomplexitĂ€t mit dem sogenannten Holant-Rahmenwerk verbindet. Anschließend setzen wir diese zum ZĂ€hlen perfekter Paarungen (oder Ă€quivalent, zur Auswertung der Permanente) unter strukturellen Parametern des Eingabegraphens G ein: Wir zeigen, dass das ZĂ€hlen perfekter Paarungen parametrisierbar ist durch die minimale GrĂ¶ĂŸe eines ausgeschlossenen Minors von G, der höchstens eine Kreuzung besitzt. Dieses algorithmische Resultat komplementieren wir durch die #W[1]-HĂ€rte des ZĂ€hlens perfekter Paarungen, wenn die minimale GrĂ¶ĂŸe eines beliebigen ausgeschlossenen Minors als Parameter betrachtet wird. Anschließend widmen wir uns dem ZĂ€hlen beliebiger Subgraphen H in Graphen G. Anstelle von strukturellen Parametern betrachten wir die GrĂ¶ĂŸe von H als Parameter und erhalten hierdurch die Probleme #Sub(C) fĂŒr feste Graphklassen C: Auf Eingaben H und G mit H in C gilt es, die H-Kopien in G zu zĂ€hlen. Hierbei kann C die Klasse der Paarungen, Zyklen, Pfade, oder eine beliebige andere Klasse von Graphen darstellen. Wir zeigen eine vollstĂ€ndige Dichotomie fĂŒr diese Probleme: Das Problem #Sub(C) ist entweder in P oder #W[1]-hart. Unter der gĂ€ngigen Annahme, dass FPT und #W[1] nicht zusammenfallen, erhalten wir somit eine vollstĂ€ndige Klassifikation der Polynomialzeit-lösbaren Probleme #Sub(C). Weiterhin erhalten wir eine unerwartete Anwendung unserer Erweiterungen des Holant-Rahmenwerks: Wir zeigen die C=P-VollstĂ€ndigkeit der Frage, ob die Anzahlen perfekter Paarungen in zwei gegebenen ungewichteten Graphen ĂŒbereinstimmen. Schlussendlich zeigen wir bedingte untere Schranken fĂŒr ZĂ€hlprobleme unter der ZĂ€hlversion der Exponentialzeithypothese #ETH, eingefĂŒhrt durch Dell et al. Diese postuliert, dass die erfĂŒllenden Belegungen in 3-KNF-Formeln mit n Variablen nicht in Zeit 2^o(n) gezĂ€hlt werden können. Darauf aufbauend fĂŒhren wir eine allgemeine Technik ein, die es ermöglicht, scharfe untere Schranken fĂŒr andere ZĂ€hlprobleme zu erhalten: Dies umfasst das ZĂ€hlen perfekter Paarungen, das Tutte-Polynom und das Paarungs-Polynom
    corecore