4,896 research outputs found

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure

    Conflict-Free Coloring of Intersection Graphs of Geometric Objects

    Full text link
    In FOCS'2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with O(\log n) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we also obtain a strengthening of the two main results of Even et al. which we believe is of independent interest. In particular, in view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \rho-fat objects in the plane.Comment: 18 page

    A programme to determine the exact interior of any connected digital picture

    Full text link
    Region filling is one of the most important and fundamental operations in computer graphics and image processing. Many filling algorithms and their implementations are based on the Euclidean geometry, which are then translated into computational models moving carelessly from the continuous to the finite discrete space of the computer. The consequences of this approach is that most implementations fail when tested for challenging degenerate and nearly degenerate regions. We present a correct integer-only procedure that works for all connected digital pictures. It finds all possible interior points, which are then displayed and stored in a locating matrix. Namely, we present a filling and locating procedure that can be used in computer graphics and image processing applications

    Boundary Value Problems on Planar Graphs and Flat Surfaces with integer cone singularities, II: The mixed Dirichlet-Neumann Problem

    Get PDF
    In this paper we continue the study started in part I (posted). We consider a planar, bounded, mm-connected region Ω\Omega, and let \bord\Omega be its boundary. Let T\mathcal{T} be a cellular decomposition of \Omega\cup\bord\Omega, where each 2-cell is either a triangle or a quadrilateral. From these data and a conductance function we construct a canonical pair (S,f)(S,f) where SS is a special type of a (possibly immersed) genus (m1)(m-1) singular flat surface, tiled by rectangles and ff is an energy preserving mapping from T(1){\mathcal T}^{(1)} onto SS. In part I the solution of a Dirichlet problem defined on T(0){\mathcal T}^{(0)} was utilized, in this paper we employ the solution of a mixed Dirichlet-Neumann problem.Comment: 26 pages, 16 figures (color

    Coloring Intersection Hypergraphs of Pseudo-Disks

    Get PDF
    We prove that the intersection hypergraph of a family of n pseudo-disks with respect to another family of pseudo-disks admits a proper coloring with 4 colors and a conflict-free coloring with O(log n) colors. Along the way we prove that the respective Delaunay-graph is planar. We also prove that the intersection hypergraph of a family of n regions with linear union complexity with respect to a family of pseudo-disks admits a proper coloring with constantly many colors and a conflict-free coloring with O(log n) colors. Our results serve as a common generalization and strengthening of many earlier results, including ones about proper and conflict-free coloring points with respect to pseudo-disks, coloring regions of linear union complexity with respect to points and coloring disks with respect to disks
    corecore