2,395 research outputs found

    Two dimensional outflows for cellular automata with shuffle updates

    Full text link
    In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle updates are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.Comment: 20 pages, 5 figures. v2: 16 pages, 5 figures; changed the title, abstract and structure of the paper. v3: minor change

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    Quantum automata, braid group and link polynomials

    Full text link
    The spin--network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah--Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite--states and discrete--time quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are colored Jones polynomials. The automaton calculation of the polynomial of (the plat closure of) a link L on 2N strands at any fixed root of unity is shown to be bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index 2N, on the other. The growth rate of the time complexity function in terms of the integer k appearing in the root of unity q can be estimated to be (polynomially) bounded by resorting to the field theoretical background given by the Chern-Simons theory.Comment: Latex, 36 pages, 11 figure

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-BĆ¼chi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views
    • ā€¦
    corecore