25,758 research outputs found

    Characterization of Binary Constraint System Games

    Full text link
    We consider a class of nonlocal games that are related to binary constraint systems (BCSs) in a manner similar to the games implicit in the work of Mermin [N.D. Mermin, "Simple unified form for the major no-hidden-variables theorems," Phys. Rev. Lett., 65(27):3373-3376, 1990], but generalized to n binary variables and m constraints. We show that, whenever there is a perfect entangled protocol for such a game, there exists a set of binary observables with commutations and products similar to those exhibited by Mermin. We also show how to derive upper bounds strictly below 1 for the the maximum entangled success probability of some BCS games. These results are partial progress towards a larger project to determine the computational complexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy or not.Comment: Revised version corrects an error in the previous version of the proof of Theorem 1 that arises in the case of POVM measurement

    Bounding quantum-classical separations for classes of nonlocal games

    Get PDF
    We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1m+māˆ’1mt1āˆ’t. Secondly, for free XOR games, in which the input distribution is of product form, we show Ī²(G)ā‰„Ī²āˆ—(G)2t where Ī²(G) and Ī²āˆ—(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1āˆ’Ļµ then the classical value is at least 1āˆ’O(āˆšĻµlogk) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms

    Bounding Quantum-Classical Separations for Classes of Nonlocal Games

    Get PDF
    We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms

    Bounding quantum-classical separations for classes of nonlocal games

    Get PDF
    We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms

    Multipartite entanglement in XOR games

    Get PDF
    We study multipartite entanglement in the context of XOR games. In particular, we study the ratio of the entangled and classical biases, which measure the maximum advantage of a quantum or classical strategy over a uniformly random strategy. For the case of two-player XOR games, Tsirelson proved that this ratio is upper bounded by the celebrated Grothendieck constant. In contrast, PĆ©rez-GarcĆ­a et al. proved the existence of entangled states that give quantum players an unbounded advantage over classical players in a three-player XOR game. We show that the multipartite entangled states that are most often seen in todayā€™s literature can only lead to a bias that is a constant factor larger than the classical bias. These states include GHZ states, any state local-unitarily equivalent to combinations of GHZ and maximally entangled states shared between different subsets of the players (e.g., stabilizer states), as well as generalizations of GHZ states of the form āˆ‘iɑi|iāŒŖ...|iāŒŖ for arbitrary amplitudes ɑi. Our results have the following surprising consequence: classical three-player XOR games do not follow an XOR parallel repetition theorem, even a very weak one. Besides this, we discuss implications of our results for communication complexity and hardness of approximation. Our proofs are based on novel applications of extensions of Grothendieckā€™s inequality, due to Blei and Tonge, and Carne, generalizing Tsirelsonā€™s use of Grothendieckā€™s inequality to bound the bias of two-player XOR games

    Universality of EPR Pairs in Entanglement-Assisted Communication Complexity, and the Communication Cost of State Conversion

    Get PDF
    In this work we consider the role of entanglement assistance in quantum communication protocols, focusing, in particular, on whether the type of shared entangled state can affect the quantum communication complexity of a function. This question is interesting because in some other settings in quantum information, such as non-local games, or tasks that involve quantum communication between players and referee, or simulating bipartite unitaries or communication channels, maximally entangled states are known to be less useful as a resource than some partially entangled states. By contrast, we prove that the bounded-error entanglement-assisted quantum communication complexity of a partial or total function cannot be improved by more than a constant factor by replacing maximally entangled states with arbitrary entangled states. In particular, we show that every quantum communication protocol using Q qubits of communication and arbitrary shared entanglement can be epsilon-approximated by a protocol using O(Q/epsilon+log(1/epsilon)/epsilon) qubits of communication and only EPR pairs as shared entanglement. This conclusion is opposite of the common wisdom in the study of non-local games, where it has been shown, for example, that the I3322 inequality has a non-local strategy using a non-maximally entangled state, which surpasses the winning probability achievable by any strategy using a maximally entangled state of any dimension [Vidick and Wehner, 2011]. We leave open the question of how much the use of a shared maximally entangled state can reduce the quantum communication complexity of a function. Our second result concerns an old question in quantum information theory: How much quantum communication is required to approximately convert one pure bipartite entangled state into another? We give simple and efficiently computable upper and lower bounds. Given two bipartite states |chi> and |upsilon>, we define a natural quantity, d_{infty}(|chi>, |upsilon>), which we call the l_{infty} Earth Mover\u27s distance, and we show that the communication cost of converting between |chi> and |upsilon> is upper bounded by a constant multiple of d_{infty}(|chi>, |upsilon>). Here d_{infty}(|chi>, |upsilon>) may be informally described as the minimum over all transports between the log of the Schmidt coefficients of |chi> and those of |upsilon>, of the maximum distance that any amount of mass must be moved in that transport. A precise definition is given in the introduction. Furthermore, we prove a complementary lower bound on the cost of state conversion by the epsilon-Smoothed l_{infty}-Earth Mover\u27s Distance, which is a natural smoothing of the l_{infty}-Earth Mover\u27s Distance that we will define via a connection with optimal transport theory

    Entangled Games Are Hard to Approximate

    Get PDF
    We establish the first hardness results for the problem of computing the value of one-round games played by a verifier and a team of provers who can share quantum entanglement. In particular, we show that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i) a quantum verifier and two entangled provers or (ii) a classical verifier and three entangled provers. Previously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical conjecture, which, if true, would imply hardness of approximation of entangled-prover games to within a constant. Using our techniques we also show that every language in PSPACE has a two-prover one-round interactive proof system with perfect completeness and soundness 1-1/poly even against entangled provers. We start our proof by describing two ways to modify classical multiprover games to make them resistant to entangled provers. We then show that a strategy for the modified game that uses entanglement can be ā€œroundedā€ to one that does not. The results then follow from classical inapproximability bounds. Our work implies that, unless P=NP, the values of entangled-prover games cannot be computed by semidefinite programs that are polynomial in the size of the verifier's system, a method that has been successful for more restricted quantum games

    A parallel repetition theorem for all entangled games

    Get PDF
    The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz's classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known. We prove that the entangled value of a two-player game GG repeated nn times in parallel is at most cGnāˆ’1/4logā”nc_G n^{-1/4} \log n for a constant cGc_G depending on GG, provided that the entangled value of GG is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.Comment: To appear in the 43rd International Colloquium on Automata, Languages, and Programming (ICALP
    • ā€¦
    corecore