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Abstract
In this work we consider the role of entanglement assistance in quantum communication protocols,

focusing, in particular, on whether the type of shared entangled state can affect the quantum
communication complexity of a function. This question is interesting because in some other settings
in quantum information, such as non-local games, or tasks that involve quantum communication
between players and referee, or simulating bipartite unitaries or communication channels, maximally
entangled states are known to be less useful as a resource than some partially entangled states.
By contrast, we prove that the bounded-error entanglement-assisted quantum communication
complexity of a partial or total function cannot be improved by more than a constant factor by
replacing maximally entangled states with arbitrary entangled states. In particular, we show that
every quantum communication protocol using Q qubits of communication and arbitrary shared
entanglement can be ε-approximated by a protocol using O(Q/ε+log(1/ε)/ε) qubits of communication
and only EPR pairs as shared entanglement. This conclusion is opposite of the common wisdom in
the study of non-local games, where it has been shown, for example, that the I3322 inequality has a
non-local strategy using a non-maximally entangled state, which surpasses the winning probability
achievable by any strategy using a maximally entangled state of any dimension [17]. We leave open
the question of how much the use of a shared maximally entangled state can reduce the quantum
communication complexity of a function.

Our second result concerns an old question in quantum information theory: How much quantum
communication is required to approximately convert one pure bipartite entangled state into another?
We give simple and efficiently computable upper and lower bounds. Given two bipartite states |χ〉
and |υ〉, we define a natural quantity, d∞(|χ〉 , |υ〉), which we call the `∞ Earth Mover’s distance,
and we show that the communication cost of converting between |χ〉 and |υ〉 is upper bounded by a
constant multiple of d∞(|χ〉 , |υ〉). Here d∞(|χ〉 , |υ〉) may be informally described as the minimum
over all transports between the log of the Schmidt coefficients of |χ〉 and those of |υ〉, of the maximum
distance that any amount of mass must be moved in that transport. A precise definition is given
in the introduction. Furthermore, we prove a complementary lower bound on the cost of state
conversion by the ε-Smoothed `∞-Earth Mover’s Distance, which is a natural smoothing of the
`∞-Earth Mover’s Distance that we will define via a connection with optimal transport theory.
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1 Introduction

1.1 Entanglement-assisted communication complexity
Imagine that two cooperating players, Alice and Bob, are given the task of evaluating a
function f(x, y) (x, y ∈ {0, 1}n), where x is known only to Alice and y is known only to
Bob. The communication complexity of f is the number of bits that Alice and Bob need to
exchange in order to compute f . Popular variations of this framework include allowing a
small probability of error, allowing qubits to be communicated instead of classical bits, and
allowing extra resources such as shared randomness or entanglement.

In classical communication complexity, Newman’s theorem [14] states that arbitrarily
large amounts of shared randomness in a protocol can be replaced by a distribution with
O(log(n/ε)) bits of entropy while only reducing the success probability of that protocol by ε.
(Here n is the input size of each party.) Is there a quantum analogue to this result?

In one sense the answer is “no”. Given a two-party entanglement-assisted protocol for, say,
computing the value of some function, we cannot replace the shared entanglement with some
different, less entangled, state, without causing large errors [10, 1]. It is an open question
whether it is possible to replace a large entangled state with a less entangled one while also
changing the communication protocol.

However, while it remains a challenge to characterize the dimension of shared entanglement
required for optimal entanglement-assisted quantum communication protocols, in this work
we show that the type of shared entanglement required by such protocols can be neatly
characterized. In Theorem 1 below, we establish that the bounded-error entanglement-assisted
quantum communication complexity of a partial or total function cannot be improved by
more than a constant factor by replacing maximally entangled states with arbitrary entangled
states. This is accomplished by constructing an explicit protocol which allows two parties,
who only share maximally entangled states, to simulate any entanglement-assisted quantum
communication task regardless of the shared state that that task originally required.

I Theorem 1. Consider a quantum communication protocol R whose goal it is to compute
a joint function f(x, y) ∈ {0, 1}. Suppose that R uses an arbitrary bipartite entangled state
|ψ〉AB (of unbounded dimension), as well as Q qubits of communication total, in either
direction (for sufficiently large Q ≥ 15). Then, for every ε > 0, there exists a quantum
communication protocol R′ which simulates R with error ε, while using only a maximally
entangled state as an entangled resource (rather than |ψ〉AB or any other state), and using
O(Q/ε+ log(1/ε)/ε) qubits of communication. Thus, if R computes f with error ε′ it follows
that R′ computes f with error ε+ ε′.

Theorem 1 shows that, although the role of shared entanglement in quantum commu-
nication complexity is still not well understood, the type of shared entanglement does not
drastically change communication complexity. This is true regardless of input size or promise,
as long as we are in the constant-error regime and some communication is allowed between
players (unlike, say, the simultaneous-message-passing model). This result sets quantum
communication complexity apart from settings such as channel simulation [3], nonlocal
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games [11, 16], unitary gate simulation [6], and communication tasks involving quantum
communication between referees and players [12]. In each of those cases the ratio between
the EPR-assisted costs and the (unrestricted) entanglement-assisted costs can be made arbi-
trarily large. This suggests that the role of shared entanglement in quantum communication
complexity may be fundamentally different than in these other settings. Furthermore, the
result achieved in Theorem 1 may be useful in future work attempting to further bound the
role of entanglement in quantum communication complexity, as it restricts the problem to
the case of shared EPR pairs, without loss of generality.

Previously it was known that a universal form of entanglement existed: the embezzling
state [8]. Our Theorem 1 can be viewed as showing that these states can be replaced by the
much simpler family of maximally entangled states.

It may be worth noting that the proof of Theorem 1 is nearly oblivious to the entanglement-
assisted protocol being considered in the following sense: Given a protocol P using Q qubits
of entanglement and a shared entangled state |ψ〉, we can replace |ψ〉 with a “consolidated”
state ρ at the cost of error ε. Moreover, ρ can be prepared from a maximally entangled state
using O(Q/ε+ log(1/ε)/ε) communication. Taking ε constant implies that the EPR-assisted
communication complexity of a function is at most O(1) times the (unrestricted) entanglement-
assisted communication complexity of that function. It was not necessary to modify the
protocol P to achieve this result, except to pre-compose it with a pre-processing protocol
which starts with only EPR pairs, and prepares the state ρ using only O(Q/ε+ log(1/ε)/ε)
communication. P can then be run on ρ directly. Such a protocol-agnostic preprocessing
should not be taken for granted, since it is known that reducing the number of EPR pairs
may in some cases require more than just pre-processing [10, 1].

1.2 Communication cost of state transformations
Our second contribution, which is related at the level of techniques to Theorem 1, is to
provide upper and lower bounds for an old quantity studied in quantum information theory,
the communication cost of state transformation.

Suppose that |χ〉AB and |ν〉AB are bipartite pure quantum states, with vectors of Schmidt
coefficients denoted respectively by χ and ν. In this setting it is known that |χ〉 can be exactly
converted into |ν〉 using LOCC if and only if χ is majorized by ν [15]. But the communication
cost of this transformation is known only in a few special cases. If |χ〉 = |χ0〉⊗n and
|ν〉 = |ν0〉⊗n for some states |χ0〉 , |ν0〉, then this cost is O(

√
n) or less in some special

cases (e.g. |ν0〉 is maximally entangled). More generally there is, in principle, an exact
characterization of the communication cost (either LOCC, or quantum communication) of
state transformation using the Schubert calculus due to Daftuar and Hayden [4], but in
practice it is difficult to extract concrete bounds from their main theorem.

In this work we identify a simple and efficiently computable quantity, which we call the `∞
Earth Mover’s (or Wasserstein) Distance, which tells us approximately how much quantum
communication is required to transform |χ〉 to |ν〉. Given its simple form, we believe that
this quantity may be a useful tool in quantum information theory.

I Definition 2 (`∞ Earth Mover’s Distance ). Let |χ〉AB =
∑
i∈X
√
χi |i〉A⊗|i〉B and |υ〉AB =∑

j∈Y
√
υj |j〉A ⊗ |j〉B be two states. We define d∞(|χ〉 , |υ〉) to be the `∞ Earth Mover’s

distance between |χ〉 and |υ〉, which is equal to the minimum µ ≥ 0 for which there exists a
joint distribution ω(x, y) : X × Y → R≥0 such that:∑

j∈Y ω(i, j) = χi ∀i ∈ X∑
i∈X ω(i, j) = υj ∀j ∈ Y

ω(i, j) = 0 whenever | log(χi)− log(υj)| > µ

CCC 2019



20:4 Entanglement and Communication Complexity

We can think of χ as corresponding to placing χi mass at position log(χi) for each i,
and similarly for υ. Then d∞(|χ〉 , |υ〉) is the `∞ EMD (Earth Mover’s distance) between
these distributions.

In Section 4 we will show that this quantity gives an intuitive upper bound on the amount
of quantum communication required to transform one bipartite shared state into another. In
particular we prove the following theorem.

I Theorem 3. Let |χ〉AB and |υ〉AB be two bipartite shared states. There is a protocolMχ→υ
which can prepare |υ〉 from |χ〉, using only 4dd∞(|χ〉 , |υ〉)e+ 8 qubits of communication.

In Section 3 we establish a complementary lower bound, showing that a “ε-smoothed”
version of the `∞ Earth Mover’s Distance, denoted by dε∞(|χ〉 , |υ〉), gives a lower bound on
the cost of state transformation. That is:

I Theorem 4. Given any two bipartite shared states |ψ〉AB =
∑
i

√
ψi |i〉A ⊗ |i〉B and

|φ〉AB =
∑
i

√
φi |i〉A ⊗ |i〉B, shared between two parties A and B, together with a unitary

UP which can be performed on the state |ψ〉AB via a quantum communication protocol P,
that uses Q qubits of communication between A and B, we have that, for every ε:∣∣∣〈φ|AB UP |ψ〉AB∣∣∣ ≤ 1− 1

4ε
2 + 24 · 2− 1

2 (dε∞(|ψ〉,|φ〉)−3Q)

In words: If two shared states cannot be brought within small `∞ Earth Mover’s Distance
of each other by moving an ε quantity of mass of their Schmidt coefficients, then they also
cannot be brought closer than 1−O(ε2) fidelity with each other without using Ω(dε∞(|ψ〉 , |φ〉))
qubits of communication (for sufficiently large values of dε∞(|ψ〉 , |φ〉)). Thus, the ε-smoothed
`∞ Earth Mover’s Distance provides a lower bound on the communication cost of state
conversion. On the other hand, from the definition of dε∞(|ψ〉 , |φ〉), stated in Definition 13,
we note here that one can use Theorem 3 to move |ψ〉 to within 1− ε fidelity of |φ〉 using only
O(dε∞(|ψ〉 , |φ〉)) qubits of communication. To do this, omit the ε mass of Schmidt coefficients
on which the two states have large ε-smoothed `∞ distance, and apply Theorem 3 as one
would do with the regular `∞ Earth Mover’s Distance. In this sense dε∞(|ψ〉 , |φ〉) gives both
an upper and lower bound on the communication cost of state conversion.

To put these bounds in context: One could consider entanglement concentration and
dilution to be the starting point for the study of state conversion. The original paper on
entanglement concentration and dilution [2] concerned the many-copy limit and did not
attempt to bound the amount of classical communication used. The first time the classical
communication cost of state conversion was considered explicitly seems to have been in [13],
which could be said to establish a version of our upper bound in the case where the starting
state is maximally entangled. (Their result is not quite that general but contains many of
the key ideas.) A version of our lower bound was established, again for the case of starting
with maximally entangled states, in [7, 9]. These lower bounds could be applied to general
state conversion but relied on Rènyi entropy inequalities that are clearly not tight in many
cases. Finally, as noted earlier, a full characterization of the communication cost of general
state conversion was given in [4] but the resulting formula is complicated and there is not an
efficient algorithm known to evaluate it.

We conclude the section with two remarks about notation.
I Remark 5. In theorem statements above, and where appropriate, we have made use of
superscripts A and B, as in |ψ〉AB =

∑
i

√
ψi |i〉A⊗|i〉B to explicitly denote the two halves of

the bipartite division of a state. However, since all of the shared entangled states considered in
this paper are bipartite, and since the two components of the bipartite division are generally
clear from context, we will usually omit this notation.
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I Remark 6. When considering a bipartite state |ψ〉, we will assume that the state has
a Schmidt decomposition of the form |ψ〉 =

∑
i

√
ψi |i〉 ⊗ |i〉 across the implicit bipartite

division. This is done in the theorem statements above and everywhere in the paper. We
can assume this WLOG because any state that has the same Schmidt coefficients as |ψ〉 can
be moved to this canonical form (and vice versa) using only local unitary transformations,
which can be implemented with no quantum communication between the two components of
the bipartite division. Thus our analysis of communication costs is unaffected by assuming
WLOG that, in any quantum communication protocol, shared entangled states start and
end in this form.

I Remark 7. Given a quantum state |ν〉 in HA ⊗HB, we will use rkSchmidt(|ν〉) to denote
the Schmidt rank of |ν〉 across the bipartite division between HA and HB .

2 Entanglement-Assisted Communication Complexity

In this section we will discuss the proof of our main result, Theorem 1, which shows
that arbitrary entanglement-assisted quantum communication protocols can be simulated
by quantum communication protocols that use only the maximally entangled state as an
entangled resource. A basic fact we will need is that two bipartite pure states which are
sufficiently different in the distribution of mass across their Schmidt coefficients must be
nearly orthogonal. This fact is stated for our specific purposes in Lemma 9 below. Crucially,
such states remain nearly orthogonal even after one of them is acted on by any unitary
which can be implemented with a small amount of quantum communication, as we detail in
Lemma 8.

I Lemma 8. Given two quantum states |ψ〉 and |ν〉 on HA ⊗HB, such that the Schmidt
coefficients of ψ are upper bounded by λmax, and those of ν are upper bounded by νmax, and
further given a unitary transformation U on HA ⊗HB which can be implemented using at
most Q qubits of communication between the HA and HB components of the Hilbert space, it
follows that:

| 〈ψ| U |ν〉 | ≤ 2 3
2Q · rkSchmidt(|ψ〉)

√
λmaxνmax

Proof. If U is a unitary transform using Q qubits of communication, then rkSchmidt(U |ν〉) ≤
2QrkSchmidt(|ν〉) [9]. We also know that the Schmidt coefficients of U |ν〉 are bounded above
by 2Qνmax [9]. The desired result now follows by Lemma 9. J

I Lemma 9. Given two quantum states |ψ〉 and |ν〉 on HA ⊗HB, such that the Schmidt
coefficients of ψ are upper bounded by λmax, and those of ν are upper bounded by νmax,
we have:

| 〈ψ|ν〉 | ≤ rkSchmidt(|ψ〉)
√
λmaxνmax

Proof. For brevity let r = rkSchmidt(|ψ〉). Schmidt decompose |ψ〉 and |ν〉 as |ψ〉 =∑r−1
i=0
√
λi |i〉A⊗|i〉B , as |ν〉 =

∑
j

√
νj |j〉A⊗|j〉B . Define the matrixMν =

∑
j

√
νj |j〉A 〈j|

∗
B ,

and note that

CCC 2019



20:6 Entanglement and Communication Complexity

〈ψ|ν〉 =
r−1∑
i=0

∑
j

√
λiνj 〈iA|jA〉 · 〈iB |jB〉

=
r−1∑
i=0

√
λi 〈iA|

∑
j

√
νj |j〉A 〈j|

∗
B

 |i∗B〉
=

r−1∑
i=0

√
λi 〈iA|Mν |i∗B〉

Now, by definition of a Schmidt Decomposition, we know that the maximum singular
value of Mν is √νmax. Thus, for all i we have that | 〈iA|Mν |i∗B〉 | ≤

√
νmax (since |iA〉 and

|iB〉 are normalized vectors by definition). It then follows that:

| 〈ψ|ν〉 | ≤ r
√
λmaxνmax = rkSchmidt(|ψ〉)

√
λmaxνmax J

Although Theorem 1 is the main result of this work, the proof is too long to fit in a 10
page abstract. Therefore will now give a brief, intuitive outline of the proof of Theorem 1,
restated below for the reader’s convenience, and include the complete proof in Section A of
the Appendix.

I Theorem (Restatement of Theorem 1). Consider a quantum communication protocol R
whose goal it is to compute a joint function g(x, y) ∈ {0, 1}. Suppose that R uses an
arbitrary bipartite entangled state |ψ〉AB (of unbounded dimension), as well as Q qubits of
communication total, in either direction (for sufficiently large Q ≥ 15). Then, for every
ε > 0, there exists a quantum communication protocol R′ which simulates R with error ε,
while using only a maximally entangled state as an entangled resource (rather than |ψ〉AB

or any other state), and using O(Q/ε + log(1/ε)/ε) qubits of communication. Thus, if R
computes f with error ε′ it follows that R′ computes f with error ε+ ε′.

Proof Sketch of Theorem 1. Suppose that we have a communication protocol using Q

qubits of communication and a pure entangled state |ϕ〉. If we can prepare |ϕ〉 from EPR
pairs using O(Q) qubits of communication then we are done. Thus we can assume that |ϕ〉
has entanglement spread that is � Q. This will be defined more precisely below (see also
[9, 7, 5]) but roughly speaking it means that we can write |ϕ〉 as a superposition of varying
numbers of EPR pairs, say from Emin to Emax, with Emax − Emin � Q. (Technically we
need to use Theorem 3 to show that with a small amount of communication |ϕ〉 can be
mapped to a superposition of maximally entangled states of different sizes.)

For simplicity, suppose that |ϕ〉 = |α〉+ |β〉 where |α〉 , |β〉 each have norm 1/
√

2 and, up
to normalization, |α〉 is locally equivalent to Emin EPR pairs and |β〉 is locally equivalent to
Emax EPR pairs. This difference in entanglement means that |α〉 and |β〉 must be nearly
orthogonal: specifically their overlap can be at most 1/

√
2Emax−Emin . Moreover, if we apply

a unitary communication protocol P using Q qubits of communication to one of them, say β,
then that will not be enough to bridge the gap. If we perform P and then measure the first
qubit, this is equivalent to measuring the observable P†σ(1)

z P, which conveniently is also a
unitary using 2Q qubits of communication. The bias of the protocol (i.e. Pr[1]− Pr[0]) is
then

〈ϕ| P†σ(1)
z P |ϕ〉 = 〈α| P†σ(1)

z P |α〉+ 〈β| P†σ(1)
z P |β〉+ (1)

〈α| P†σ(1)
z P |β〉+ 〈β| P†σ(1)

z P |α〉 (2)
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Because of the limited communication used by P the terms in (2) are negligible, on the order
of 1/

√
2Emax−Emin−4Q.

This means that |ϕ〉 behaves effectively like an incoherent mixture of |α〉 and |β〉. The
phase of the superposition between |α〉 and |β〉 cannot be observed without using more
communication. Similar arguments were used in [6] to argue that projecting onto |ϕ〉 required
a lot of communication even given the assistance of unlimited EPR pairs. Indeed applying a
phase of −1 to |α〉+ |β〉 but not |α〉 − |β〉 is equivalent to the unitary which maps |α〉 ↔ |β〉,
and so must require quantum communication if the two states have different amounts of
entanglement. (The only exception would be if an embezzling state is used.)

If |α〉 and |β〉 are locally equivalent to maximally entangled states of different sizes then
their mixture can be prepared using no communication starting with a large number of EPR
pairs and a shared random bit (which can also be obtained from an EPR pair). Since P
cannot distinguish ϕ from this mixture, we can run the protocol successfully starting with
EPR pairs which we map for free (or almost for free, given our above use of Theorem 3) to
the mixture of |α〉 and |β〉.

To prove the full theorem we need to consider more general superpositions and new
mathematical subtleties arise. But the key principle is still that a low-communication protocol
cannot observe phases of superpositions between states whose degrees of entanglement are
too far apart. J

3 The Cost of State Transformation: A Lower Bound

It is natural at this point to discuss the background and proof for Theorem 4, which establishes
a lower-bound on the cost of State Transformation by the ε-Smoothed `∞ Earth Mover’s
Distance, and to postpone the discussion of Theorem 3 until Section 4, for two reasons. First,
the proof of Theorem 4 in this section shares key techniques in common with the proof of
Theorem 1 in Section 2 above, and so this progression may provide the reader with some
continuity of thought while also reiterating the usefulness of the techniques. Second, Theorem
4 in this section motivates the notion of the `∞ Earth Mover’s Distance by highlighting
its, perhaps surprising, relevance to lower bounding the cost of state transformation. This
prepares the reader with some motivation for why the upper bound proven in Theorem 3, in
Section 4 below, is interesting and potentially useful. Thus, covering Theorem 4 at this point
may provide the reader with a reason to accept the ε-smoothed `∞ Earth Mover’s Distance
as a useful proxy for the cost of State Transformation.

Whereas the proof of Theorem 3 in the next section will make direct use of Definition 2, the
proof of Theorem 4 in this section is elucidated by first establishing an equivalent formulation
of the `∞ Earth Mover’s Distance which is derived by establishing the relationship between
the `∞ Earth Mover’s Distance as defined in Definition 2, and the Monge-Kantorovich
Transportation distance on the real line, as shown below. After translating to this equivalent
definition, stated in Definition 12, the generalization to the ε-smoothed `∞ Earth Mover’s
Distance in Definition 13 is straightforward and natural.

I Definition 10. Given two probability distributions µ and ν on the real line, define Γ(µ, ν)
to be the set of probability distributions on R× R whose marginals are µ and ν, respectively.
Given a cost function c : R × R → [0,∞] the corresponding Monge-Kantorovich distance,
dMK(µ, ν) between µ and ν is defined as:

dMK(µ, ν) = inf
{∫

R×R
c(x, y)dγ(x, y)|γ ∈ Γ(µ, ν)

}
.

CCC 2019



20:8 Entanglement and Communication Complexity

We can interpret Γ(µ, ν) as flows mapping µ to ν and c(x, y) as the cost of moving one
unit of mass from position x to position y. The Monge-Kantorovich distance is then the
minimum cost flow using this cost function and boundary conditions.

In order to translate into a statement about quantum states, we make the following
definition in a similar style to Definition 2:

I Definition 11. Given a bipartite shared state |ψ〉 =
∑
i∈X
√
ψi |i〉 ⊗ |i〉 let us define a

random variable Vψ which takes value log(ψi) with probability ψi (note that, since the ψi
sum to one, this is a well defined random variable). We now define pψ to be the probability
distribution of this random variable.

It is clear that, for every ψ, pψ is a probability distribution on the real line. One may
note the following simple relationship between Monge-Kantorovich distance and `∞ Earth
Mover’s Distance:

For any θ > 0, consider the Monge-Kantorovich distance, dMK(θ) where the function
c : R × R → [0,∞] is defined by c(x, y) = 1 if |x − y| ≥ θ and c(x, y) = 0 if |x − y| < θ.
Then, for any two quantum states |ψ〉 and |φ〉, we have that d∞(|ψ〉 , |φ〉) < θ if and only if
dMK(θ)(pψ, pφ) = 0.

Given this concrete connection between `∞ Earth Mover’s Distance and the Monge-
Kantorovich distance, we can now make use of the following characterization of Monge-
Kantorovich distance for distributions on the real line, which is well known in optimal
transport theory:

I Fact. Let µ and ν be probability distributions supported on the real line, and let Fµ and Fν
be their cumulative distribution functions, respectively. Then, for any c : R× R→ [0,∞] :

dMK(µ, ν) ≡ inf
γ∈Γ(µ,ν)

{∫
R×R

c(x, y)dγ(x, y)
}

=
∫ 1

0
c(F−1

µ (s), F−1
ν (s))ds

It follows from this Fact, combined with the discussion above, that an equivalent definition
of the `∞ Earth Mover’s Distance is given by:

I Definition 12.

d∞(|ψ〉 , |φ〉) ≡ max
q∈[0,1]

|F−1
pψ

(q)− F−1
pφ

(q)|

A drawback of d∞(|ψ〉 , |φ〉) is that it is not robust against tiny changes of either distri-
bution in the total variation distance. Concretely, it is lower but not upper semi-continuous,
since adding an infinitesimal amount of mass far away can cause d∞(, t)o increase by an un-
bounded amount. This is acceptable for an upper bound (i.e. protocols using communication
scaling with d∞(, )) but it would be impossible to prove a lower bound (or no-go theorem) of
the form of Theorem 4 if stated using that definition. For this reason, we find it convenient
to introduce a “smoothed” version of the distance measure.

I Definition 13. ε-Smoothed `∞-Earth Mover’s Distance

dε∞(|ψ〉 , |φ〉) ≡ max
q∈[0,1]

min
r∈[q−ε,q+ε]

|F−1
pψ

(q)− F−1
pφ

(r)|

With this definition in place we can now state the lower bound.

I Theorem (Restatement of Theorem 4). Given any two bipartite shared states |ψ〉AB =∑
i

√
ψi |i〉A ⊗ |i〉B and |φ〉AB =

∑
i

√
φi |i〉A ⊗ |i〉B, shared between two parties A and
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B, together with a unitary UP which can be performed on the state |ψ〉AB via a quantum
communication protocol P, that uses Q qubits of communication between A and B, we have
that, for every ε:∣∣∣〈φ|AB UP |ψ〉AB∣∣∣ ≤ 1− 1

4ε
2 + 24 · 2− 1

2 (dε∞(|ψ〉,|φ〉)−3Q)

Intuitively, Theorem 4 states that two bipartite shared states which are far apart in the
ε-Smoothed `∞-Earth Mover’s Distance, cannot be made equal via a quantum communication
protocol unless it uses at least c · dε∞(|ψ〉 , |φ〉) qubits of communication (for a particular
constant c which can be computed from the statement of Theorem 4).

Proof. Suppose that two bipartite shared states |ψ〉 and |φ〉 have dε∞(|ψ〉 , |φ〉) = d. By
definition ∃p ∈ [0, 1] such that

min
r∈[p−ε,p+ε]

|F−1
pψ

(p)− F−1
pφ

(r)| = d (3)

Suppose that F−1
pψ

(p) < F−1
pφ

(r) (if the opposite is true then we simply switch the
roles of ψ and φ and continue with the same proof). Define x ≡ F−1

pψ
(p). Further define

|ψ〉≤x ≡
∑
{i:| log 1/ψi|≤x}

√
ψi |i〉 ⊗ |i〉, and |ψ〉>x ≡ |ψ〉 − |ψ〉≤x. Similarly define |φ〉≥x+d ≡∑

{i:| log 1/φi|≥x+d}
√
φi |i〉 ⊗ |i〉, and |φ〉<x+d ≡ |φ〉 − |φ〉≥x+d. Note that |ψ〉≤x, and |ψ〉>x

are orthogonal, as are |φ〉<x+d and |φ〉≥x+d.
Since we have x ≡ F−1

pψ
(p) it follows from the definitions that || |ψ〉≤x ||2 = p. Since

Fpψ(x) = p, and F−1
pψ

(p) < F−1
pφ

(r), it follows from Equation 3 that Fpφ(x + d) ≤ p − ε.
Therefore, || |φ〉<x+d ||2 ≤ p− ε and thus || |φ〉≥x+d ||2 = 1− || |φ〉<x+d ||2 ≥ 1− p+ ε.

The main idea in the proof of this theorem is that we can now decompose UP |ψ〉 and |φ〉
each into three nearly orthogonal parts as follows:

I Definition 14.∣∣ψ1〉 ≡ UP |ψ〉≤x ,∣∣ψ3〉 ≡ ∣∣φ3〉 〈φ3∣∣UP |ψ〉>x ,

∣∣φ3〉 ≡ |φ〉≥x+d ,∣∣φ1〉 ≡ ∣∣ψ1〉 〈ψ1∣∣ |φ〉<x+d ,

∣∣ψ2〉 ≡ (I − ∣∣φ3〉 〈φ3∣∣)UP |ψ〉>x∣∣φ2〉 ≡ (I − ∣∣ψ1〉 〈ψ1∣∣) |φ〉<x+d

It follows from this definition that:

UP |ψ〉 =
∣∣ψ1〉+

∣∣ψ2〉+
∣∣ψ3〉 (4)

|φ〉 =
∣∣φ1〉+

∣∣φ2〉+
∣∣φ3〉 (5)

The motivation and key property of the particular decomposition described in Definition
14 is best illustrated by the discussion of Lemma 15 below and the remainder of the proof of
Theorem 4, which follows that.

I Lemma 15. For i, j ∈ {1, 2, 3} with i 6= j, we have that |〈φi|ψj〉| ≤ h(Q, d), |〈ψi|ψj〉| ≤
h(Q, d), and |〈φi|φj〉| ≤ h(Q, d), where h(Q, d) ≡ 4 · 2

3Q−d
2 .

The proof of Lemma 15 is given separately in the appendix. Within that proof is the key
use of Lemma 8 which is the primary conceptual step in proving Theorem 4. Understanding
the proof of Lemma 15 is also the best way of understanding the motivation behind Definition
14 above.

While the individual
∣∣ψi〉 and ∣∣φi〉 are not necessarily all orthogonal we do have

∣∣ψ2〉 ⊥∣∣ψ3〉 and ∣∣ψ1〉 ⊥ ∣∣ψ2〉+
∣∣ψ3〉. Likewise ∣∣φ1〉 ⊥ ∣∣φ2〉 and ∣∣φ3〉 ⊥ ∣∣ψ1〉+

∣∣ψ2〉. Together with
equations (4) and (5), these imply

1 =
∥∥∣∣ψ1〉∥∥2 +

∥∥∣∣ψ2〉∥∥2 +
∥∥∣∣ψ3〉∥∥2 (6a)

1 =
∥∥∣∣φ1〉∥∥2 +

∥∥∣∣φ2〉∥∥2 +
∥∥∣∣φ3〉∥∥2 (6b)
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From Lemma 15 it follows that:

| 〈φ|P(ψ)〉 | ≡ | 〈φ|UP |ψ〉 | =
∣∣(〈φ1∣∣+

〈
φ2∣∣+

〈
φ3∣∣) (∣∣ψ1〉+

∣∣ψ2〉+
∣∣ψ3〉)∣∣

≤
∣∣〈φ1∣∣ψ1〉∣∣+

∣∣〈φ2∣∣ψ2〉∣∣+
∣∣〈φ3∣∣ψ3〉∣∣+ 6 · h(Q, d)

≤
∥∥∣∣φ1〉∥∥ ∥∥∣∣ψ1〉∥∥+

∥∥∣∣φ2〉∥∥ ∥∥∣∣ψ2〉∥∥+
∥∥∣∣φ3〉∥∥ ∥∥∣∣ψ3〉∥∥+ 6 · h(Q, d) (7)

Now recall that∥∥∣∣ψ1〉∥∥ =
∥∥∥UP |ψ〉≤x∥∥∥ =

∥∥∥|ψ〉≤x∥∥∥ = √p∥∥∣∣φ3〉∥∥ =
∥∥∥|φ〉≥x+d

∥∥∥ ≥√1− p+ ε

We now return to Equation 7. Setting xi = ‖ |ψi〉‖ and yi = ‖ |φi〉‖ for i = 1, 2, 3 we have

| 〈φ|P(ψ)〉 | ≤ x1y1 + x2y2 + x3y3 + 6 · h(Q, d) (8)

where x1 = √p, y3 ≥
√

1− p+ ε and (x1, x2, x3), (y1, y2, y3) are unit vectors. We claim that
this quantity is maximized by setting x2 = y2 = 0 and y3 =

√
1− p+ ε. Indeed we can

upper bound √py1 + x2y2 ≤ x12y12 where x12 ≡
√
x2

1 + x2
2 and y12 ≡

√
y2

1 + y2
2 . Now define

x12 = cos(α), x3 = sin(α), y12 = cos(β), y3 = sin(β) and we have

x1y1 + x2y2 + x3y3 ≤ cos(α− β). (9)

This is maximized by taking (x1, x2, x3) = (√p, 0,
√

1− p) and (y1, y2, y3) =
(
√
p− ε, 0,

√
1− p+ ε). Thus

| 〈φ|P(ψ)〉 | ≤
√
p− ε√p+

√
1− p

√
1− p+ ε+ 6 · h(Q, d). (10)

Finally we would like an upper bound independent of p. This maximization is performed
in the proof of Fact 27 from Section G of the Appendix and yields the following.

| 〈φ|P(ψ)〉 | ≤ 1− 1
4ε

2 + 6 · h(Q, d). J

4 The Cost of State Transformation: An Upper Bound

In this section we will give a proof of Theorem 3, which states that the quantum communica-
tion cost of converting between two bipartite entangled states is upper bounded by the `∞
Earth Mover’s Distance between those states. This upper bound represents the second half
of our two sided argument (employing both Theorem 3 and Theorem 4) that the `∞ Earth
Mover’s Distance is a simple and efficiently computable proxy for the cost of state conversion.
The proof is divided into two parts which are proved separately in Lemma 18, and Lemma 19
together with Corollary 20. At a high level Lemma 18 tells us that, given bipartite states |χ〉
and |υ〉, one can map the Schmidt coefficients of |χ〉 directly onto the Schmidt coefficients
of |υ〉 using a series of bipartite “flows” that have small degree (where degree is a quantity
defined below). Lemma 19 and Corollary 20 then tell us that any such “flow” which has small
degree, can be implemented as an actual bipartite state transformation, with correspondingly
small communication required.

Here we establish Lemmas 18 and 19 which, together, prove the desired theorem. We
begin with a couple definitions establishing the concept of flows, as we use it here.
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I Definition 16 (Right (Left) Index-1 Flow). Fix two states |χ〉 =
∑
i∈X
√
χi |i〉 ⊗ |i〉 and

|υ〉 =
∑
j∈Y
√
υj |j〉 ⊗ |j〉. A Right Index-1 Flow from |χ〉 to |υ〉 is a bipartite graph GX,Y

with vertex set X ∪ Y , and edge set EX,Y (where X,Y represents the bipartition of the
vertices) such that:

Each vertex in j ∈ Y has degree 1 in GX,Y .
For all i ∈ X, χi =

∑
j∈Y :(i,j)∈EX,Y υj

If the roles of |χ〉 and |υ〉 are reversed in the above, then we say that there is a Left
Index-1 Flow from |χ〉 to |υ〉. Equivalently, there is a Left Index-1 Flow from |υ〉 to |χ〉
exactly when there is a a Right Index-1 Flow from |χ〉 to |υ〉.

I Definition 17 (Degree of a Right (Left) Index-1 Flow). We define the degree of a Right
(Left) Index-1 Flow from |χ〉 =

∑
i∈X
√
χi |i〉 ⊗ |i〉 to |υ〉 =

∑
j∈Y
√
υj |j〉 ⊗ |j〉 to be the

maximum degree of any vertex in the bipartite graph GX,Y .

The following lemma, which a key step in proving Theorem 3, establishes that bipartite
states which are close to each other in the `∞ Earth Mover’s Distance of Definition 2, can
be mapped to each other through a series of flows of bounded degree. This series of flows
intuitively establishes a map for converting one bipartite state to the other using bounded
quantum communication, in a manner that will be made rigorous in Lemma 19. The main
step in the proof of Lemma 18 involves constructing a flow through a type of greedy algorithm
whose analysis has a number of subtle cases. In order to concretely exhibit these cases the
entire greedy algorithm, including every case, is written out in pseudocode in Algorithm 1.

I Lemma 18. Given two states |χ〉 and |υ〉, there exist two “intermediate” states |γ〉 and |ρ〉,
such that there is a Right Index-1 Flow from |χ〉 to |γ〉 of degree at most 22dd∞(|χ〉,|υ〉)e+4, a
Left Index-1 Flow from |γ〉 to |ρ〉 of degree at most 2dd∞(|χ〉,|υ〉)e+2, and a Left Index-1 Flow
from |ρ〉 to |υ〉 of degree at most 2dd∞(|χ〉,|υ〉)e+2.

The Proof of Lemma 18 is included in the Appendix, section D.
Lemma 18, above, shows that two bipartite entangled states can be connected to each

other by a series of flows which have a degree which is bounded in terms of the `∞ Earth
Mover’s Distance between them. The next step is to establish that every flow can be
implemented via a quantum communication protocol. Lemma 19 and Corollary 20, below,
accomplish this by showing that, if two bipartite states can be connected by flows of small
degree, then one state can be converted to the other (and vice versa) using a quantum
communication protocol which only requires small amounts of communication.

I Lemma 19. Given two states |τ〉 and |κ〉 such that there is a Right Index-1 Flow from |τ〉
to |κ〉 with degree at most 2Q, there exists a quantum communication protocol P, which uses
Q qubits of communication, and converts the shared state |τ〉 to the shared state |κ〉.

The idea of the proof is that if |τ〉 =
∑
i

√
τi |i〉 ⊗ |i〉 then it suffices to define separately

protocols for each |i〉 ⊗ |i〉 term. These protocols simply use quantum communication to
create a shared entangled state, resulting in the state

∑
i τi |i〉A ⊗ |i〉B ⊗ |ψi〉A′B′ . Choosing

the Schmidt coefficients according to the given Right Index-1 Flow yields the result. The
details of this argument are in the Appendix xE.

Corollary 20 establishes the same result as Lemma 19, but in the reverse direction.

I Corollary 20. Given two states |τ〉 and |κ〉 such that there is a Left Index-1 Flow from |κ〉
to |τ〉 with degree at most 2Q, then, for two parties sharing entangled state |κ〉, there exists a
quantum communication protocol P, which uses Q qubits of communication, and converts
the shared state |κ〉 to the shared state |τ〉.
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The proof of Corollary 20 is straightforward and appears in Appendix F.

I Theorem (Restatement of Theorem 3). Let |χ〉AB and |υ〉AB be two bipartite shared states.
There is a protocol Mχ→υ which can prepare |υ〉 from |χ〉, using only 4dd∞(|χ〉 , |υ〉)e + 8
qubits of communication.

Proof. The proof follows by applying Lemma 18, followed by Lemma 19 and Corollary 20. J
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A Proof of Theorem 1

A concept which will be useful in the proof of Theorem 1 is the notion of the spread of a state:

I Definition 21 (Spread). For a finite dimensional bipartite entangled state |ψ〉AB =∑
i

√
ψi |i〉A ⊗ |i〉B let λmax be the maximum of the Schmidt coefficients of ψ, and let

λmin be the minimum Schmidt coefficient. We define the spread of |ψ〉 to be the quantity
log(λmax/λmin).

We note that the above definition of spread is given in the case of finite dimensional
|ψ〉, which is the only case we will need. There is also an ε-smoothed variant of the spread
of a state [9, 5], but it will not be needed for this proof. Within the proof of Theorem 1
the spread of a bipartite state will be used as a proxy for the amount of communication
required to create that state from a maximally entangled state. This intuition is formalized,
for example, by Theorem 3, but in this case of converting from a maximally entangled state,
is also an implication of earlier works, such as [7, 9].

I Theorem (Restatement of Theorem 1). Consider a quantum communication protocol R
whose goal it is to compute a joint function g(x, y) ∈ {0, 1}. Suppose that R uses an arbitrary
bipartite entangled state |ψ〉AB (of unbounded, but finite, dimension), as well as Q qubits
of communication total, in either direction (for sufficiently large Q ≥ 15). Then, for every
ε > 0, there exists a quantum communication protocol R′ which simulates R with error ε,
while using only a maximally entangled state as an entangled resource (rather than |ψ〉AB

or any other state), and using O(Q/ε + log(1/ε)/ε) qubits of communication. Thus, if R
computes f with error ε′ it follows that R′ computes f with error ε+ ε′.

Proof. Given R, g, and |ψ〉 as in the theorem statement, Schmidt decompose |ψ〉 as∑
i

√
λi |i, i〉 (see Remark 6 for why we may assume WLOG that |ψ〉 has this form).

Let N ≥ 2 be an integer, which will be specified later. Define a function f : [0, 1] →
{0, 1, . . . , 2N} given by

f(λ) = 2
⌈⌈

log(1/λ)
N

⌉
N−log(1/λ)

⌉
∈ {1, 2, 4, . . . , 2N},

and define a new state |ϕ〉 ≡
∑
i

∑
j∈{1,...,f(λi)}

√
νi,j |(i, j), (i, j)〉, where νi,j ≡ λi

f(λi) .
Note that

∑
i,j νi,j = 1, so that |ϕ〉 is a normalized pure state. Furthermore, every Schmidt

coefficient νi,j of |ϕ〉 is within a multiple of 2 of the integer power 2−
⌈ log(1/λi)

N

⌉
N . This follows

because∣∣∣∣∣log
(

νi,j

2−
⌈ log(1/λi)

N

⌉
N

)∣∣∣∣∣ =
∣∣∣∣log (λi)− log(f(λi)) +

⌈
log(1/λi)

N

⌉
N

∣∣∣∣
=
∣∣∣∣log (λi)− log

(
2
⌈⌈ log(1/λi)

N

⌉
N−log(1/λi)

⌉)
+
⌈

log(1/λi)
N

⌉
N

∣∣∣∣
=
∣∣∣∣⌈ log(1/λi)

N

⌉
N − log (1/λi)−

⌈⌈
log(1/λi)

N

⌉
N − log(1/λi)

⌉∣∣∣∣
≤ 1 (11)

Next, we can upper bound d∞(|ψ〉 , |ϕ〉) ≤ N by considering the coupling in which each
νi,j is moved to λi. The largest distance obtained here is the maximum log f(λi) for which
λi > 0, and this in turn is ≤ N . Therefore, by Theorem 3, there is a protocolM by which
Alice and Bob can prepare |ψ〉 from |ϕ〉, using 4dd∞(|χ〉 , |υ〉)e + 8 ≤ 4N + 8 qubits of
communication. (For this special case, of course a simpler protocol could also be used.)
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Define C ≡ R◦M to be the composed protocol in which Alice and Bob start with shared
state |ϕ〉, first use protocol M to convert |ϕ〉 to |ψ〉, and then perform protocol R using
shared state |ψ〉 and inputs x and y, to compute the joint function g(x, y). It is evident that
C has exactly the same success probability as R. SinceM uses at most 4N + 8 qubits of
communication and R uses Q qubits of communication, C can be performed with Q+ 4N + 8
qubits of communication.

For k a nonnegative integer, define Ik := {i : 2−kN+1 ≥ λi > 2−kN−1} and define the
subnormalized state

|ϕk〉 ≡
∑
i∈Ik

√
λi |i, i〉 . (12)

From Equation (11) and the surrounding discussion, we have that |ϕ〉 =
∑
k |ϕk〉. Further-

more, by the definition of Ik, it follows that |ϕk〉 has spread at most 2; note that the spread
of |ϕk〉 does not depend on whether the state is normalized or not.

The idea of the proof is that different |ϕk〉 are not only orthogonal, but must remain
approximately orthogonal even after a small amount of quantum communication. In particular,
note that for any l, rkSchmidt(|ϕl〉) ≤ 2lN+1‖ |ϕl〉 ‖2. Furthermore, for all l we have, by
definition, that the Schmidt coefficients of |ϕl〉 are bounded above by 2−lN+1. Therefore, if
U is a unitary transform using M qubits of communication, then, it follows by Lemma 8,
that ∀j, k,

|〈ϕk|U |ϕj〉| ≤ 2 3
2M2min(j,k)N+1 ∥∥∣∣ϕmin(j,k)

〉∥∥2√2−jN+1 · 2−kN+1

≤ 2 3
2M2−N

|j−k|
2 +2 ∥∥∣∣ϕmin(j,k)

〉∥∥2 (13)

To apply this to our problem, we first note that the protocol C depends, a priori, on the
inputs x, y to the function g(x, y) that we wish to compute (just like the the protocol R).
We now fix any input pair x, y and for the remainder of the proof of this theorem we will
perform only transformations of the shared state which do not depend on the value of x, y.
We will therefore establish that our transformation to a maximally entangled shared state
does not significantly impact the success probability of the quantum communication protocol
regardless of the value of x, y. The desired Theorem then follows.

With the input x, y now fixed, we observe that the success probability of protocol C (which
we have already established is equal to the success probability of the original protocol R)
can be expressed WLOG by performing C and then computing the probability of outcomes
when measuring the first qubit in the computational basis. The probability that such a
measurement on protocol C outputs b ∈ {0, 1} is

Pr[b] = 〈ϕ| C†(|b〉 〈b| ⊗ I)C |ϕ〉 ,

where I acts on all qubits except for the first, which is being measured. Define P ≡
C†(σz ⊗ I)C = C†(|0〉 〈0| ⊗ I)C − C†(|1〉 〈1| ⊗ I)C. Then

Pr[0]− Pr[1] = 〈ϕ| P |ϕ〉 =
∑
j,k

〈ϕj | P |ϕk〉 (14)

Observe, for later, that P is a unitary operator that can be implemented using 2Q+8N+16
qubits of communication.

The proof will proceed as follows: In Lemma 24 we show that the density matrix
ϕ = |ϕ〉 〈ϕ| can be divided into three “pieces”, one piece which has small trace norm and can
therefore be omitted, one piece called ϕfar which only has non-zero terms which are far from
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the diagonal in the appropriate basis, and one piece called ϕblock which is a block-diagonal
mixed state that can be produced with small error and low communication cost from a
maximally entangled state. Then, in Lemma 25, we show that the ϕfar piece of ϕ has very
little effect on the protocol C. This means that ϕ can be replaced by ϕblock alone while
incurring very little error in the success probability of C. Stated equivalently, via the equality
in Equation 14 above, Lemma 25 shows that the quantity |Tr(P(ϕ− ϕblock))| is small. Since
we know from Lemma 24 that ϕblock can be produced with low cost from a maximally
entangled state, this leads us to the desired result.

We now establish some notation which will be useful throughout the rest of the proof:

I Definition 22 (subset-matrix). Consider operators on the Hilbert space which is the span
of the |ϕj〉. We say that an operator M ′ is a subset-matrix of an operator M , if it is the
case that for all l, k either 〈ϕl|M ′ |ϕk〉 = 〈ϕl|M |ϕk〉, or 〈ϕl|M ′ |ϕk〉 = 0.

I Definition 23 (Non-Zero Set). For an operator θ on the Hilbert space which is the span of
the |ϕj〉, define the non-zero set of θ to be Tθ = {(l, k) : 〈ϕk| θ |ϕl〉 6= 0}.

I Lemma 24. Consider the density matrix ϕ ≡
∑
k,l |ϕk〉 〈ϕl|. For any ε > 0, there exist

subset-matrices, ϕblock, ϕfar, of ϕ, such that
1. ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε
2. Tϕfar ⊆ {(l, k) : |k − l| > B}, where B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
.

3. The bipartite shared state ϕblock can be prepared starting from EPR pairs with O(N/ε+
log(1/ε)/ε) bits of communication.

The proof of Lemma 24 is included in Section B of the Appendix.
We can now bound the difference between the protocol C acting on ϕ versus C acting on

ϕblock, following equation 14 as follows:

|(Prϕ[0]− Prϕ[1])− (Prϕblock [0]− Prϕblock [1])| = |Tr(P(ϕ− ϕblock))|

Setting N = 2Q and recalling from the Theorem statement that Q ≥ 15 by assumption,
it follows by Lemma 25, stated below, that:

|(Prϕ[0]− Prϕ[1])− (Prϕblock [0]− Prϕblock [1])| = |Tr(P(ϕ− ϕblock))| ≤ 3ε (15)

This completes the proof of the Theorem as we now describe.
We know from Lemma 24 that there is a quantum communication protocol, call it K,

which prepares the shared state ϕblock starting from just a maximally entangled state using at
most O(N/ε+ log(1/ε)/ε) bits of communication. Now define the protocol R′ ≡ C ◦K. Since
C uses at most Q+ 4N + 8 qubits of communication, and since we have chosen to set N = 2Q
(in the line above Equation 15), it follows that R′ uses at most O(N/ε + log(1/ε)/ε) =
O(Q/ε+ log(1/ε)/ε) qubits of communication. Furthermore, the success probability of R′
with only the maximally entangled state as an entangled resource is the same, by construction,
as the success probability of C with ϕblock as an entangled resource, which, by Equation 15
above and the original definition C ≡ R ◦M, is within 3ε of the success probability of the
original protocol R from the theorem statement when using the original shared state |ψ〉 as
an entangled resource. This is the desired result. J

I Lemma 25. For ϕblock as constructed in Lemma 24, and for N,Q as defined in the proof
of Theorem 1 we have, |Tr(P(ϕ− ϕblock))| ≤ 3ε whenever N ≥ 2Q ≥ 30.
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Proof. Following Lemma 24, we define B ≡ 30 + 2
⌈

log(1/ε)
N

⌉
. Now, letting ϕblock and ϕfar

be as in Lemma 24, and recalling that ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε, we have:

|Tr(P(ϕ− ϕblock))| ≤ |Tr(P((ϕblock + ϕfar)− ϕblock))|+ 2ε = |Tr(Pϕfar)|+ 2ε

=

∣∣∣∣∣∣
∑

(k,l)∈Tϕfar

〈ϕk| P |ϕl〉

∣∣∣∣∣∣+ 2ε ≤
∑

(k,l)∈Tϕfar

|〈ϕk| P |ϕl〉|+ 2ε

≤
∑

k,l:|k−l|>B

|〈ϕk| P |ϕl〉|+ 2ε

where the final inequality follows because Tϕfar ⊆ {(l, k) : |k − l| > B} by Lemma 24.
Recalling that the unitary P can be implemented using 2Q+8N+16 qubits of communication,
and applying equation 13 then gives that:

|Tr(P(ϕ− ϕblock))| − 2ε ≤
∑

k,l:|k−l|>B

min(1, 23/2·(2Q+8N+16)2−N
|k−l|

2 +4)
∥∥∣∣ϕmin(k,l)

〉∥∥2

= 2
∑
l

‖|ϕl〉‖2
∑

k>l+B
min(1, 23Q+12N+242−N

|k−l|
2 +4)

= 2
∑
n>B

min(1, 23Q+12N+242−N n
2 +4)

≤ 2 · 23Q+12N+242−BN/2+4
∞∑
k=0

2−N k
2

= 2 · 23Q+12N+242−BN/2+4

(
1 + 2−N2

1− 2−N2

)
≤ 4 · 23Q+12N+242−BN/2+4

So, recalling from the Lemma statement that N ≥ 2Q ≥ 30 by assumption:

|Tr(P(ϕ− ϕblock))| − 2ε ≤ 4 · 23Q+12N+242−BN/2+4

≤ 4 · 228214N2−15N−
⌈

log(1/ε)
N

⌉
N

≤ 2302−N−log(1/ε)

≤ ε

So,

|Tr(P(ϕ− ϕblock))| ≤ 3ε J

Note, in the pre-processing step in the proof of Theorem 1, and again at a point within
the proof of Lemma 24 we use our Theorem 3 in a setting where either the starting or
ending state is very close to a maximally entangled state. It is helpful to observe, to avoid
confusion, that in such cases Theorem 3 is not strictly necessary and could be replaced with
previously known results from, for example, [7, 9]. In this manuscript we will use Theorem 3
in these cases in order to remain self-contained, and for the convenience of the reader, but
we emphasize that the lines of the proof of Theorem 1 in which we use Theorem 3 could be
replaced with known results.
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B Proof of Lemma 24

I Lemma (Restatement of Lemma 24). Consider the density matrix ϕ ≡
∑
k,l |ϕk〉 〈ϕl|. For

any ε > 0, there exist subset-matrices, ϕblock, ϕfar, of ϕ, such that
1. ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε
2. Tϕfar ⊆ {(l, k) : |k − l| > B}, where B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
.

3. The bipartite shared state ϕblock can be prepared starting from EPR pairs with O(N/ε+
log(1/ε)/ε) bits of communication.

Proof. Note: The terminology used in this proof is defined in the proof of Theorem 1
preceding the use of Lemma 24 there (Appendix A).

Fixing an ε > 0 we will now show how to “cut” ϕ ≡
∑
k,l |ϕk〉 〈ϕl| down into a mixture of

states of small spread such that the cut only removes subset-matrices of the operator which
are either far from the diagonal or small in the trace norm (less than 2ε).

Define a sequence of mutually orthogonal projectors {Pi}, where each Pi is the projection
onto the span of {|ϕl〉}2(i−1)B<l≤2i·B . Let

Mi ≡ (P2i−1 + P2i)ϕ(P2i−1 + P2i).

Now, for k ∈ [1, ...., d1/εe] define

Sk ≡
∞∑
i=0

Mi·d1/εe+k.

The Sk are block-diagonal subset-matrices of ϕ, which are disjoint in the sense that TSk ∩
TSk′ = ∅ when k 6= k′. Additionally,

∑d1/εe
k=1 Sk =

∑
iMi is a subset-matrix of ϕ which

contains the entire diagonal of ϕ. Indeed
∑d1/εe
k=1 Sk can be obtained from ϕ via the “pinching”

TPCP which has Kraus operators given by the {P2i−1 + P2i}. Thus

1 = tr
d1/εe∑
k=1

Sk.

Choose k′ such that tr[Sk′ ] ≤ 1/d1/εe ≤ ε. Since the Sk are all PSD we also have ‖Sk′‖1 ≤ ε.
Our strategy now is to use something like ϕ− Sk′ as a candidate for ϕblock + ϕfar in the

Lemma statement. However, subtracting all of Sk′ removes some terms close to the diagonal,
which, even though it is not a large fraction of all entries in ϕ, would make the proof and
statement of Lemma 24 somewhat awkward. So, in order to make the Lemma statement
as clean as possible we will only subtract the “anti-diagonal” parts of Sk′ , and leave the
“diagonal” parts of Sk′ in a manner made precise below.

Define the block matrices

Di ≡ P2i−1ϕP2i−1 + P2iϕP2i Ai ≡ P2i−1ϕP2i + P2iϕP2i−1

Di and Ai are, respectively, the diagonal and off-diagonal blocks of Mi.
Further define Kk′ ≡

∑∞
i=0Ai·d1/εe+k′ . We have that Kk′ = Sk′ −

∑∞
i=0Di·d1/εe+k′ , and

that ‖
∑∞
i=0Di·d1/εe+k′‖1 = ‖Sk′‖1 since

∑∞
i=0Di·d1/εe+k′ is a block-diagonal subset-matrix

of Sk′ containing the entire diagonal of Sk′ . Thus,

‖Kk′‖1 = ‖Sk′ −
∞∑
i=0

Di·d1/εe+k′‖1 ≤ ‖Sk′‖1 + ‖
∞∑
i=0

Di·d1/εe+k′‖1 = 2‖Sk′‖1 ≤ 2ε
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We now define a “cut down” version of ϕ by ϕ̃ ≡ ϕ−Kk′ . From this definition we have:

‖ϕ− ϕ̃‖1 = ‖Kk′‖1 ≤ 2ε. (16)

Further, we define the projectors

ηj ≡
∑

2((j−1)·d1/εe+k′)≤l<2(j·d1/εe+k′)

Pl, (17)

and define the block diagonal matrix ϕblock as:

ϕblock ≡
∑
j

Qjϕ̃Qj =
∑
j

Qj(ϕ−Kk′)Qj =
∑
j

QjϕQj (18)

where the last equality follows because
∑
j QjKk′Qj = 0 because Kk′ consists only of

the “anti-diagonal” components Ai·d1/εe+k′ which lie outside of the Qj . Note that ϕblock is a
subset-matrix of ϕ̃ according to Definition 22. Now define ϕfar by:

ϕfar ≡ ϕ̃− ϕblock (19)

Therefore, ϕfar is also a subset-matrix of ϕ̃ according to Definition 22. Furthermore, it
follows immediately using Equation 16 that:

‖ϕ− (ϕfar + ϕblock)‖1 = ‖ϕ− ϕ̃‖1 ≤ 2ε (20)

Second Claim: To establish the second claim in Lemma 24 we now show that Tϕfar ⊆
{(l, k) : |k − l| > B} (recall that B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
). To see this, we consider the case

that |k − l| ≤ B and show that in this case (l, k) /∈ Tϕfar . Assume WLOG that k ≥ l. When
|k − l| ≤ B we know that either ∃j such that:

2B(2(j − 1)d1/εe+ 2k′ − 1) < l, k ≤ 2B(2jd1/εe+ 2k′ − 1) (21)

or ∃j such that:

4B(jd1/εe+ k′)− 3B ≤ l ≤ 2B(2jd1/εe+ 2k′ − 1) ≤ k ≤ 4B(jd1/εe+ k′)−B (22)

In the first case, denoted by Equation 21, we have that the coordinates (l, k) lie within
the subset-matrix ϕblock of ϕ, and thus that either (l, k) ∈ Tϕblock or (l, k) /∈ Tϕ by definition.
In particular, either (l, k) ∈ TQjϕQj ⊆ Tϕblock as follows by Equation 18 and the definition of
Qj in Equation 17, or (l, k) /∈ Tϕ. If (l, k) ∈ Tϕblock then we note that Tϕblock ∩ Tϕfar = ∅ by
definition (Equation 19), and this implies that (l, k) /∈ Tϕfar . If (l, k) /∈ Tϕ, then (l, k) /∈ Tϕfar

because Tϕfar ⊆ Tϕ.
On the other hand, in the case denoted by Equation 22, we have the coordinates (l, k)

lie within the subset-matrix Kk′ of ϕ, and thus that either (l, k) ∈ TKk′ , or (l, k) /∈ Tϕ.
The reason for this is that we know that, in this case, the coordinates (l, k) are within
the subset-matrix Mjd1/εe+k′ of ϕ. Furthermore, since we have already ruled out the case
of Equation 21, we know that (l, k) is not in Djd1/εe+k′ , the block diagonal portion of
Mjd1/εe+k′ . Therefore, the coordinates (l, k) must lie in the block-anti-diagonal portion
Ajd1/εe+k′ = Mjd1/εe+k′ −Djd1/εe+k′ (this can also be determined directly from Equation
22 itself, and the definition of Ajd1/εe+k′). Since Kk′ ≡

∑∞
i=0Aid1/εe+k′ we know that the

coordinates (l, k) lie within the Kk′ , or more precisely, either (l, k) ∈ TKk′ , or (l, k) /∈ Tϕ.
Just as before, if (l, k) /∈ Tϕ, then (l, k) /∈ Tϕfar ⊆ Tϕ. On the other hand, in the case
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that (l, k) ∈ TKk′ we know that TKk′ ∩ Tϕfar = ∅ because Tϕfar ⊆ Tϕ̃ by Equation 19, and
Tϕ̃ ∩ TKk′ = ∅ as follows from the definition ϕ̃ ≡ ϕ−Kk′ .

This establishes that Tϕfar ⊆ {(l, k) : |k − l| > B}.
Third Claim: To establish the third claim in Lemma 24, and complete the proof, we

will show that ϕblock is a mixture of states of spread at most O(N/ε + log(1/ε)/ε), which
means that ϕblock can be produced from a shared maximally entangled state with at most
O(N/ε+ log(1/ε)/ε) bits of communication.

Recalling the definition of ϕblock in Equation 18, let us define ρ′j ≡ QjϕQj , so that it is
clear that ϕblock =

∑
j ρ
′
j . It is also clear that ρ′j is not only PSD, but also an un-normalized

pure state, because

ρ′j ≡ QjϕQj = Qj |ϕ〉 〈ϕ|Qj .

From the definition of Qj in Equation 17 we have that:

Qj |ϕ〉 =
∑

Bs<l≤Bb

|ϕl〉 ,

Where the index limits are

Bs ≡ 2(2((j − 1) · d1/εe+ k′)− 1) ·B
Bb ≡ 2(2(j · d1/εe+ k′)− 1) ·B.

We know from the definition in Equation 12 that the |ϕl〉 are orthogonal to each other,
and that each |ϕl〉 has Schmidt coefficients bounded by 2−lN+1 ≥ λi > 2−lN−1. Thus, it is
immediate that ρ′j has spread at most (Bb−Bs)N+4 = 2d1/εeBN+4 = O(N/ε+log(1/ε)/ε),
where the last equality follows because B = 30+2

⌈
log(1/ε)
N

⌉
. Therefore ϕblock is a normalized

mixture of states with spread at most O(N/ε+ log(1/ε)/ε).
Consider the normalized version of ρ′j , which is still a pure state of spread at most O(N/ε+

log(1/ε)/ε) it is clear that this state has Earthmover distance at most O(N/ε+ log(1/ε)/ε)
from the nearest maximally entangled state (simply move all of the weight onto Schmidt
coefficients of the size of the smallest Schmidt coefficient, which can be done by moving all
the weight a distance less than or equal to the spread). It follows, by using Theorem 3 that
there is a protocol which prepares the normalized version of ρ′i from EPR pairs, with only
O(N/ε+log(1/ε)/ε) bits of communication (we note that this line of the proof could also have
been established using result from [7, 9], for example). Now the state ϕblock ≡

∑
i ρ
′
i can be

prepared by applying this same protocol in superposition over i (with the probability tr(ρ′i)
assigned to each i), and then tracing out over the i register. Thus ϕblock can be prepared
starting from EPR pairs with O(N/ε+ log(1/ε)/ε) bits of communication. J

C Proof of Lemma 15

Proof. First note that it is immediate from the definitions that
〈
φ2
∣∣ψ1〉 =

〈
φ3
∣∣ψ2〉 = 0, so

the conditions of the lemma are automatically satisfied in those cases.
To bound the remaining inner products we will first prove a bound on the inner product

|
〈
φ3
∣∣ψ1〉 | and note that the remaining inner products are bounded as a consequence of

this first bound. For notational convenience, while establishing the bound on |
〈
φ3
∣∣ψ1〉 |,

we set |ρ〉 ≡ |ψ〉≤x, and let ρj be the non-zero Schmidt coefficients of |ρ〉 (which are just a
renamed version of the non-zero Schmidt coefficients of |ψ〉≤x). Therefore, we know that,
for all j, 1 ≥ ρj ≥ 2−x, and |ψ〉≤x = |ρ〉 =

∑
j

√
ρj |j〉 ⊗ |j〉. The purpose of this renaming
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convention is that we can now cleanly make the following definition. For integers i define
|ρ〉i ≡

∑
{j:i<| log 1/ρj |≤i+1}

√
ρj |j〉 ⊗ |j〉, so that we have |ψ〉≤x = |ρ〉 =

∑dxe
i=−1 |ρ〉i, and

〈ρk|ρi〉 = 0 whenever k 6= i. So,

dxe∑
i=−1

‖|ρ〉i‖
2 = ‖|ρ〉‖2 ≤ 1 (23)

By definition, for any 1 ≤ i ≤ dxe, the Schmidt coefficients of |ρ〉i are upper bounded by
2−i, and lower bounded by 2−(i+1), and from the latter we have rkSchmidt(|ρ〉i) ≤ 2i+1 ‖|ρ〉‖2.
Furthermore, the Schmidt coefficients of |φ≥x+d〉 are upper bounded by 2−(x+d), and thus,
we have by Lemma 8 that:

|〈φ≥x+d|UP |ρ〉i| ≤ 2 3
2QrkSchmidt(|ρ〉i)

√
2−(x+d)2−i ≤ 2 3

2Q · 2i+1 ‖|ρ〉i‖
2 ·
√

2−(x+d)2−i

= 2 · 2 3
2Q ‖|ρ〉i‖

2√2i−x−d ≤ 2 · 2 3
2Q ‖|ρ〉i‖

2 · 2 · 2−d/2 = 4 · 2
3Q−d

2 ‖|ρ〉i‖
2
, (24)

where the final inequality follows because i ≤ dxe by assumption. Thus,

∣∣〈φ3∣∣ψ1〉∣∣ =
∣∣∣〈φ≥x+d|UP |ψ〉≤x

∣∣∣ =

∣∣∣∣∣∣
dxe∑
i=−1

〈φ≥x+d|UP |ρ〉i

∣∣∣∣∣∣ ≤
dxe∑
i=−1

|〈φ≥x+d|UP |ρ〉i|

≤ 4 · 2
3Q−d

2

dxe∑
i=−1

‖|ρ〉i‖
2 = 4 · 2

3Q−d
2

∥∥∥|ψ〉≤x∥∥∥2
≤ 4 · 2

3Q−d
2 = h(Q, d), (25)

where the second inequality follows by Equation 24 and the subsequent equality follows
by Equation 23. Having established this upper bound on

∣∣〈φ3
∣∣ψ1〉∣∣ we now proceed with

bounding the other inner products in the Lemma statement:∣∣〈ψ3∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

∣∣φ3〉 〈φ3∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

∣∣φ3〉∣∣ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d), (26)∣∣〈ψ2∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

(
I −
∣∣φ3〉 〈φ3∣∣) ∣∣ψ1〉∣∣ ≤ ∣∣〈ψ>x|U†P

∣∣ψ1〉∣∣+
∣∣〈ψ>x|U†P

∣∣φ3〉 〈φ3∣∣ψ1〉∣∣
=
∣∣〈ψ>x|U†PUP |ψ〉≤x

∣∣+
∣∣〈ψ3∣∣ψ1〉∣∣ = |〈ψ>x|ψ≤x〉|+

∣∣〈ψ3∣∣ψ1〉∣∣ =
∣∣〈ψ3∣∣ψ1〉∣∣ ≤ h(Q, d),

where both of the inequality steps follow by Equation 26 (the first of which also uses the
triangle inequality).∣∣〈φ3∣∣φ1〉∣∣ =

∣∣〈φ3∣∣ψ1〉 〈ψ1∣∣φ<x+d
〉∣∣ =

∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d
〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d),

∣∣〈φ3∣∣φ2〉∣∣ =
∣∣〈φ3∣∣ (I − ∣∣ψ1〉 〈ψ1∣∣) |φ〉<x+d

∣∣ ≤ ∣∣〈φ3∣∣φ<x+d

〉∣∣+
∣∣〈φ3∣∣ψ1〉 〈ψ1∣∣φ<x+d

〉∣∣
= |〈φ>x+d|φ<x+d〉|+

∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d

〉∣∣ =
∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d

〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d)

Now, as noted earlier,
〈
φ2
∣∣ψ1〉 =

〈
φ3
∣∣ψ2〉 = 0. Continuing with the cross terms we have:∣∣〈φ1

∣∣ψ2
〉∣∣ =

∣∣〈ψ2
∣∣φ1
〉∣∣ =

∣∣〈ψ2
∣∣ψ1
〉〈

ψ
1
∣∣φ<x+d

〉∣∣ =
∣∣〈ψ2

∣∣ψ1
〉∣∣ ∣∣〈ψ1

∣∣φ<x+d
〉∣∣ ≤ ∣∣〈ψ2

∣∣ψ1
〉∣∣ ≤ h(Q, d),

∣∣〈φ1
∣∣ψ3
〉∣∣ =

∣∣〈ψ3
∣∣φ1
〉∣∣ =

∣∣〈ψ3
∣∣ψ1
〉〈

ψ
1
∣∣φ<x+d

〉∣∣ =
∣∣〈ψ3

∣∣ψ1
〉∣∣ ∣∣〈ψ1

∣∣φ<x+d
〉∣∣ ≤ ∣∣〈ψ3

∣∣ψ1
〉∣∣ ≤ h(Q, d),
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where the last inequality follows from Equation 26. And, since we already have
∣∣〈φ3

∣∣ψ1〉∣∣ ≤
h(Q, d) from Equation 25, the final inner product to bound is:∣∣〈φ2∣∣ψ3〉∣∣ =

∣∣〈φ|<x+d
(
I −

∣∣ψ1〉 〈ψ1∣∣) ∣∣ψ3〉∣∣
≤
∣∣〈φ<x+d

∣∣ψ3〉∣∣+
∣∣〈φ<x+d

∣∣ψ1〉 〈ψ1∣∣ψ3〉∣∣
=
∣∣〈φ<x+d

∣∣φ3〉 〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉 〈ψ1∣∣ψ3〉∣∣
=
∣∣〈φ<x+d

∣∣φ3〉∣∣ ∣∣〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣ψ3〉∣∣
= |〈φ<x+d|φ>x+d〉|

∣∣〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣ψ3〉∣∣
≤ 0 +

∣∣〈ψ1∣∣ψ3〉∣∣ ≤ h(Q, d),

where the last inequality follows by Equation 26. J

D Proof of Lemma 18

Proof. Given two states |χ〉 =
∑
i∈X
√
χi |i〉 ⊗ |i〉 and |υ〉 =

∑
j∈Y
√
υj |j〉 ⊗ |j〉, let ω(i, j) :

X × Y → R≥0 be the joint distribution on X × Y which satisfies the `∞ Earth Mover
conditions for |χ〉 and |υ〉, and acheives the optimal earth mover bound d∞(|χ〉 , |υ〉). That is,
for all i ∈ X,

∑
j∈Y ω(i, j) = χi, for all j ∈ Y ,

∑
i∈X ω(i, j) = υj , and ω(i, j) = 0 whenever

| log(χi)− log(υj)| > d∞(|χ〉 , |υ〉).
Define |ρ〉 ≡

∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

√
ρj,k |j〉 ⊗ |k〉 ⊗ |j〉 ⊗ |k〉, where

ρj,k ≡ υj/2dd∞(|χ〉,|υ〉)e+2.

We now define the intermediate state

|γ〉 ≡
∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

∑
r∈[2dd∞(|χ〉,|υ〉)e+2]

√
γj,k,r |j〉 ⊗ |k〉 ⊗ |r〉 ⊗ |j〉 ⊗ |k〉 |r〉 ,

where the Schmidt coefficients γj,k,r are left unspecified for now.
In order to specify the Schmidt coefficients of the intermediate state |γ〉 as well as the

Right Index-1 Flow from |χ〉 to |γ〉, and the Left Index-1 Flow from |γ〉 to |ρ〉 we will first
define “bins” for the Schmidt coefficients of |υ〉 as follows:

For l ∈ N ∪ {0} let Υl ≡ {j ∈ Y : 2−l ≥ υj ≥ 2−(l+1)}, and Xl ≡ {i ∈ X : 2−l ≥ χi ≥
2−(l+1)}. Define ω(Xm,Υl) ≡

∑
(i,j)∈Xm×Υl ω(i, j).

I Fact 26. If |m− l| > d∞(|χ〉 , |υ〉) + 1, then ω(Xm,Υl) = 0

Proof. Given i ∈ Xm, and j ∈ Υl we have by definition that 2−l ≥ υj ≥ 2−(l+1), and
2−m ≥ χi ≥ 2−(m+1), and therefore that | log(χi) − log(υj)| ≥ |m − l| − 1 > d∞(|χ〉 , |υ〉),
where the last equality follows by assumption. It follows by definition of d∞(|χ〉 , |υ〉) and of
ω, that ω(i, j) = 0. Since this is true for all (i, j) ∈ Xm ×Υl, the claim follows. J

We will now specify an iterative, “greedy” procedure to define the Schmidt coefficients
γj,k,c as a function of the |χ〉 and |ρ〉.

For each (m, l) ∈ N ∪ {0} × N ∪ {0} such that ω(Xm,Υl) > 0 we first note that by Fact
26 that |m− l| < d∞(|χ〉 , |υ〉) + 1. Thus, for each (i, j) ∈ Xm ×Υl,

χi ≥ 2−(m+1) ≥ 2−l−d∞(|χ〉,|υ〉)−2 ≥ 2−l/2dd∞(|χ〉,|υ〉)e+2 ≥ υj/2dd∞(|χ〉,|υ〉)e+2 ≡ ρj,k

for all k ∈ [2dd∞(|χ〉,|υ〉)e+2].
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Algorithm 1.
1: For all i set tempi = χi
2: Set im = min{Xm} for all m
3: for l ∈ N ∪ {0} do
4: Set j := min{Yl};
5: Set k = 0;
6: Set overflow = 0
7: for m ∈ N ∪ {0} do
8: if ω(Xm,Υl) > 0 then
9: Set tempω = ω(Xm,Υl)

10: while tempω > 0 do
11: if

∑
r≤overflow γj,k,r < ρj,k then

12: while tempω ≥ ρj,k −
∑
r≤overflow γj,k,r do

13: if k = 2dd∞(|χ〉,|υ〉)e+2 then
14: Set j = j + 1
15: Set overflow = 0
16: Set k = 0
17: if tempim < ρj,k −

∑
r≤overflow γj,k,r then

18: Set γj,k,overflow+1 = tempim
19: Set tempω = tempω − tempim
20: Set tempim = 0
21: Add an edge in the flow graph from im to (j, k, overflow + 1)
22: Set im = im + 1
23: Set overflow = overflow + 1
24: if tempim ≥ ρj,k−

∑
r≤overflow γj,k,r and tempω ≥ ρj,k−

∑
r≤overflow γj,k,r then

25: Set γj,k,overflow+1 = ρj,k −
∑
r≤overflow γj,k,r

26: Set tempω = tempω − γj,k,overflow+1
27: Set tempim = tempim − γj,k,overflow+1
28: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
29: Set k = k + 1
30: Set overflow = 0
31: if k = 2dd∞(|χ〉,|υ〉)e+2 then
32: Set j = j + 1
33: Set overflow = 0
34: Set k = 0
35: if tempω < ρj,k −

∑
r≤overflow γj,k,r then

36: if tempim ≤ tempω then
37: Set γj,k,overflow+1 = tempim
38: Set tempω = tempω − tempim
39: Set tempim = 0
40: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
41: Set im = im + 1
42: Set overflow = overflow + 1
43: if tempim ≥ tempω then
44: Set γj,k,overflow+1 = tempω
45: Set tempω = 0
46: Set tempim = tempim − tempω
47: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
48: Set overflow = overflow + 1
49: if k = 2dd∞(|χ〉,|υ〉)e+2 then
50: Set j = j + 1
51: Set overflow = 0
52: Set k = 0
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One may check that Algorithm 1 defines Schmidt coefficients γj,k,r, satisfying∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

∑
r∈[2dd∞(|χ〉,|υ〉)e+2]

γj,k,r =
∑
i∈X

χi = 1,

as well as a Right Index-1 Flow from |χ〉 to |γ〉, with degree at most 2dd∞(|χ〉,|υ〉)e+2 ·
2dd∞(|χ〉,|υ〉)e+2 = 22dd∞(|χ〉,|υ〉)e+4. In particular the Right Index-1 Flow from |χ〉 to |γ〉 is
constructed in Algorithm 1 by iteratively adding edges to form the bipartite flow-graph GX,Z
where Z ≡ (Y, [2dd∞(|χ〉,|υ〉)e+2], [2dd∞(|χ〉,|υ〉)e+2]). Each line in the pseudocode which reads
“Add an edge in the flow graph from im to (j, k, overflow + 1)”, or similar, adds a single edge
to the graph GX,Z and the union of all these edges forms the bipartite flow GX,Z between
X and Z. Furthermore, for the γj,k,r defined by Algorithm 1,∑

r∈[2dd∞(|χ〉,|υ〉)e+2]

γj,k,r = ρj,k,

so that there is a Left Index-1 flow from |γ〉 to |ρ〉 defined by a bipartite graph between
the Schmidt coefficients of |γ〉 and |ρ〉 respectively, in which, for every (j, k, r) ∈ Y ×
[2dd∞(|χ〉,|υ〉)e+2]× [2dd∞(|χ〉,|υ〉)e+2], there is an edge from γj,k,r to ρj,k of weight γj,k,r. This
Left Index-1 flow then clearly has degree 2dd∞(|χ〉,|υ〉)e+2.

Finally, recall that,∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

ρj,k =
∑

k∈[2dd∞(|χ〉,|υ〉)e+2]

υj/2dd∞(|χ〉,|υ〉)e+2 = νj

So, by very similar reasoning, there is a Left Index-1 flow from |ρ〉 to |ν〉 with degree
exactly 2dd∞(|χ〉,|υ〉)e+2. J

E Proof of Lemma 19

Proof. By assumption there is a Right Index-1 Flow from |τ〉 to |κ〉 with degree at most
2Q, so there exists a bipartite graph GX,Y with vertex set X ∪ Y , and edge set EX,Y (where
X,Y represents the bipartition of the vertices), such that:

Each vertex in j ∈ Y has degree 1 in GX,Y .
For all i ∈ X, τi =

∑
j∈Y :(i,j)∈EX,Y κj .

The maximum degree of any vertex i ∈ X in GX,Y is 2Q.

The protocol for Alice and Bob to start with shared state |τ〉 and end up with shared
state |κ〉 will proceed as follows: Beginning with the state |τ〉 shared between Alice and
Bob, we will refer to the register containing the Alice half of |τ〉 as A, and the register
containing the Bob half as B. Alice will append two additional registers, of Q qubits each,
and initialize each of them to the all zeros state. We will call these two new registers C1 and
C2 respectively. Alice will then perform a controlled unitary operation between A and the
registers C1 and C2. She will then pass the register C2 to Bob using Q qubits of quantum
communication to do so. Bob will then perform a controlled unitary between B and C2,
Alice will perform a controlled unitary between A and C1, and after that Alice and Bob will
share the state |κ〉.

To describe the protocol more precisely we will define the specific controlled unitaries
performed by Alice and Bob at each step. Beginning with a shared state |τ〉, after Alice
appends the two additionalQ-qubit registers to her side of |τ〉, the shared state looks as follows:

|τ〉 =
∑
i∈X

√
τi
∣∣0⊗Q〉

C1
⊗
∣∣0⊗Q〉

C2
⊗ |i〉A ⊗ |i〉B
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Where, initially, Alice holds the registers A, C1, and C2. Alice now performs a controlled
unitary operation, acting on registers C1 and C2 and controlled on register A. To describe
this controlled unitary concisely we will need to imagine that there is some total order on the
elements j ∈ Y (any total order will do, one can simply imagine that the j’s are indexed by bit
strings which encode integers), and we will define sij ≡ |{j′ ∈ Y : j′ < j, and (i, j′) ∈ EX,Y }|.
Note that, since every i ∈ X has degree at most 2Q, sij is always an integer between 0 and
2Q, so it can always be expressed in binary as a Q-bit binary number. We will take this
convention in the following argument.

Now to define Alice’s controlled unitary: When controlled on |i〉A Alice’s unitary moves the
state

∣∣0⊗Q〉
C1
⊗
∣∣0⊗Q〉

C2
to the state |i-controlled〉C1C2

≡
∑
j∈Y :(i,j)∈EX,Y

√
κj/τi |sij〉C1

⊗
|sij〉C2

. Note that since sij is always a Q-bit binary string, it can always be contained in the
Q-qubit registers C1 and C2. Further note that, since τi =

∑
j∈Y :(i,j)∈EX,Y κj by assumption,

|i-controlled〉C1C2
is a normalized pure state. Thus there exists a unitary operation that

moves
∣∣0⊗Q〉

C1
⊗
∣∣0⊗Q〉

C2
to |i-controlled〉C1C2

and Alice need only perform this specific
unitary when the control register is in state |i〉A. So, when Alice applies this controlled
unitary to her registers C1, C2 and A (where A is the controlling register), the resulting new
shared state between Alice and Bob is:

|τ〉 =
∑
i∈X
|i-controlled〉C1C2

⊗ |i〉A ⊗ |i〉B (27)

=
∑
i∈X

∑
j∈Y :(i,j)∈EX,Y

√
τi ·
√
κj/τi |sij〉C1

⊗ |sij〉C2
⊗ |i〉A ⊗ |i〉B (28)

=
∑
i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |sij〉C1

⊗ |sij〉C2
⊗ |i〉A ⊗ |i〉B (29)

At this point Alice uses Q qubits of communication to pass the Q-qubit register C2 to
Bob. The resulting shared state is:∑

i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |sij〉C1

⊗ |i〉A ⊗ |i〉B ⊗ |sij〉C2

Where Alice owns registers C1 and A, and Bob owns registers C2 and B. Now it is not
hard to see from the definition of sij and the fact that every j ∈ Y has degree exactly 1 in
the graph GX,Y , that there is a bijection mapping each j ∈ Y to the tuple (i, sij). Alice and
Bob both know this bijection since they know the description of GX,Y , and since bijections
are invertible, Alice and Bob can now both apply a local unitary which relabels the basis
element |i〉 ⊗ |sij〉 to the basis element j. The resulting shared state is:∑

i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |j〉A ⊗ |j〉B =

∑
j∈Y

√
κj |j〉A ⊗ |j〉B ≡ |κ〉

Where the first equality follows because each j ∈ Y appears in the initial sum exactly
once (because j has degree exactly one in GX,Y ).

This completes the protocol. J

F Proof of Corollary 20

Proof. By definition, if there is a Left Index-1 Flow from |κ〉 to |τ〉, then there is a Right
Index-1 Flow from |τ〉 to |κ〉 (which is the starting assumption of Lemma 19). One can check
that, in the proof Lemma 19, every operation performed by Alice and Bob was reversible.
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Therefore, the proof of this corollary is simply to start at the end of the proof of Lemma
19, and “reverse” every step of the proof in order from end to beginning (including the
communication step...now communication goes from Bob to Alice rather than Alice to Bob).
The result is the desired quantum communication protocol, which converts the shared state
|κ〉 to the shared state |τ〉 using Q qubits of communication. J

G Fact 27

I Fact 27. For p ∈ [0, 1] and 0 ≤ ε ≤ p,
√
p− ε√p+

√
1− p

√
1− p+ ε ≤ 1− 1

8ε
2

Proof. Define f(x) ≡
√
p− x√p+

√
1− p

√
1− p+ x. Note that f ′(x) = −

√
p

2
√
p−x+

√
1−p

2
√

1−p+x ,

and f ′′(x) = −1/4
( √

p

(p−x)3/2 +
√

1−p
(1−p+x)3/2

)
. So, f(0) = 1, f ′(0) = 0, and

f ′′(x) = −1/4
( √

p

(p− x)3/2 +
√

1− p
(1− p+ x)3/2

)
≤ −1/4

√
p

(p− x)3/2 ≤ −1/41
p
≤ −1/4

for all p ∈ [0, 1] and 0 ≤ x ≤ p. It follows by integration that:

f(x) = 1 +
∫ x

0

∫ z

0
f ′′(y)dydz ≤ 1 +

∫ x

0

∫ z

0
(−1/4)dydz = 1− 1

8x
2

So,

√
p− ε√p+

√
1− p

√
1− p+ ε = f(ε) ≤ 1− 1

8ε
2. J
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