35,805 research outputs found

    Elementary recursive complexity results in real algebraic geometry (Women in Mathematics)

    Get PDF
    I shall discuss two important results in real algebraic geometry - quantifier elimination, proving that the projection of a semi-algebraic set is semi-algebraic - Hilbert 17th problem, proving that a non negative polynomial is always a sum of squares of rational functions from the point of view of effectivity and complexity. The two problems look at first sight totally un related at all but it turns out that modern computer algebra techniques play a key role in proving elementary recursive complexity results for both these problems

    Complexity vs energy: theory of computation and theoretical physics

    No full text

    On the alleged simplicity of impure proof

    Get PDF
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Software Engineering and Complexity in Effective Algebraic Geometry

    Get PDF
    We introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally we exhibit a class of simple elimination problems of effective Algebraic Geometry which require exponential time to be solved by branching parsimonious algorithms of our computation model.Comment: 70 pages. arXiv admin note: substantial text overlap with arXiv:1201.434

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause
    • 

    corecore