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1. Introduction

We introduce and motivate a new computation model which is well-adapted to scientific
computing in effective Algebraic Geometry and especially to elimination theory. This model is based
on the symbolic manipulation of arithmetic circuits which evaluate rational functions.
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Most algorithms in effective Algebraic Geometry may be formulated as routines which operate on
polynomials and rational functions and this suggests the representation of these mathematical entities
by arithmetic circuits. Thus, we shall consider arithmetic circuits as objects (in the sense of object
oriented programming) which become mapped into abstract data types consisting of polynomials
and rational functions. Inputs and outputs of the routines of our computation model will therefore
be arithmetic circuits. These circuits will appear as parameterized in the sense that they depend
on two distinct ingredients, namely on piecewise polynomial functions called “basic parameters”
and indeterminates, called “input variables”. On the other hand, so called “elementary routines”
will constitute the basic building block of our computation model. They will be branching-free and
therefore our parameterized arithmetic circuits will be branching-free too.

However, in effective Algebraic Geometry, divisions are sometimes unavoidable and divisions may
lead to branchings. Nevertheless, in typical situations, they may be replaced by limit processes. In
order to capture this situation, we introduce in Section 3.1 the notion of a robust parameterized
arithmetic circuit.

An important issue will be the concept of well behavedness of routines, under certain modifications
of the input circuits. This concept will appear in Section 3.3 in different disguises, called well
behavedness under restrictions and reductions, (output) isoparametricity and coalescence.

All these technical notions have in common that they allow to formulate algorithmical restrictions
on the routines of our computation model which are motivated by specific quality attributes of
programs in Software Engineering.

In this sense we establish first in Section 3.3.2 a branching-free variant of our computation model
which operates on robust parameterized arithmetic circuits. The algorithms captured by this variant
are the elementary routines mentioned before.

In order to capture the whole spectrum of really existing elimination algorithms in Algebraic
Geometry, we extend our computation model in Section 3.3.3 admitting some limited branchings.
The resulting algorithms are called branching parsimonious. Moreover we introduce the concept of
a procedure as a branching parsimonious algorithm with a particular architecture. Procedures are
well suited to discuss computational issues in effective elimination theory. In Section 4, we apply
our computation model to this task.

Before we are going to enter into the details of these applications we look closer to our computation
model. The basic construction method of elementary routines is recursion. Mimicking the directed
acyclic graph structure of a given robust parameterized arithmetic circuit we compose the graphs of
previously fixed computations in order to obtain a new parameterized arithmetic circuit. To guarantee
that the resulting circuit is again robust, we require that these compositions behave well under
restrictions. Moreover, we require that at corresponding nodes the intermediate results of the two
circuits become directly linked by a continuous, piecewise rational map and call this requirement
isoparametricity. This means that our computation model includes also formal specifications. We
develop this aspect in Sections 3.1.2 and 3.3.2.4.

In Section 4 we use our computation model to show that already very elementary elimination
problems require exponential time for their solution (see Theorem 10, Proposition 11 and
Theorem 12).

In particular, we exhibit in Section 4.3 a family of parameterized Boolean circuits whose (standard)
arithmetizations represent an elimination problem which requires exponential time to be solved in
our model (see Theorem 13).

As a major outcome of this paper we exhibit in Section 4.5 an infinite family of parameter
dependent elimination polynomials which require essentially division-free, robust parameterized
arithmetic circuits of exponential size for their evaluation, whereas the circuit size of the
corresponding input problems grows only polynomially. We observe that essentially division-free,
robust parameterized arithmetic circuits for elimination polynomials capture the intuitive meaning
of an algorithmic solution with few equations and branchings of the underlying elimination problem.

The proof of this result, which is absolutely new in his kind, is astonishingly elementary and simple.

In Section 4.6 we arrive at the conclusion that our method to show lower complexity bounds
consists of counting how many steps are necessary to decompose a given rational map into a sequence
of “simple” blowups and a polynomial map.
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Finally in Section 4.7 we establish a link between our computation model and our lower bound
results with other complexity views in geometric elimination theory. In this context we discuss the
BSS-model of [8] and the view of interactive protocols.

Our computation model and complexity results are based on the concept of a geometrically robust
constructible map. This concept was introduced in [18] and we develop it further in Section 2, which
is devoted to the algebraic geometric underpinning of the present paper.

The relevance of the lower complexity bounds of this paper for elimination problems depends
on the “naturalness” of the computation model. Therefore we emphasize throughout this article the
arguments which justify our computation model. Of course, these arguments cannot be entirely of
mathematical nature. In this paper they are borrowed from Software Engineering which constitutes
a discipline which analyses and qualifies practical programming issues. In these terms we show that
a circuit based algorithm which solves most elementary parametric elimination problems and which
is programmed under the application of the most common rules of Software Engineering, can never
be efficient.

This paper is based on the idea to represent, e.g., in the case of elimination algorithms, polynomials
by arithmetic circuits, which are not considered as algorithms but as data structures. This has
sometimes certain advantages. For example, the generic n x m determinant has as polynomial in
the matrix entries n! terms but it can be evaluated by division and branching-free arithmetic circuit of
size O(n°) [48]. More generally, an arbitrary elimination polynomial of degree § and m variables has
always a circuit representation which is essentially of order §°(*’, whereas the representation by its
coefficients may become of order §?™ (see [23,19] for details).

The idea of the circuit representation of polynomials was introduced in Theoretical Computer
Science at the beginning of the eighties by the first author in collaboration with Malte Sieveking
(Frankfurt/Main). However, the first publications on this subject treated only the case of the
elimination of a single variable (see e.g. [35,38,16]).

In the case of the simultaneous elimination of several variables, substantial progress was made
in the nineties by the first author in collaboration with Marc Giusti (Paris) and Jacques Morgenstern
(Nice). A series of paper give account of this development (see e.g. [20,33,23,19]). In particular the
work with Jacques Morgenstern lead to new views which influenced this paper.

2. Concepts and tools from Algebraic Geometry

In this section, we use freely standard notions and notations from Commutative Algebra and
Algebraic Geometry. These can be found for example in [41,59,40,53]. In Sections 2.2 and 2.3, we
introduce the notions and definitions which constitute our fundamental tool for the modelling of
elimination problems and algorithms. Most of these notions and their definitions are taken from [18].

2.1. Basic notions and notations

For any n € N, we denote by A" := A"(C) the n-dimensional affine space C" equipped with its
respective Zariski and Euclidean topologies over C. In Algebraic Geometry, the Euclidean topology of
A" is also called the strong topology. We shall use this terminology only exceptionally.

Let X1, ..., X, be indeterminates over C and let X := (X, ..., X;;). We denote by C[X] the ring of
polynomials in the variables X with complex coefficients.

Let V be a closed affine subvariety of A". As usual, we write dimV for the dimension of the
variety V. Let Cy, ..., C; be the irreducible components of V. For 1 < j < s we define the degree
of C; as the number of points which arise when we intersect (; with dim (; many generic affine
hyperplanes of A". Observe that this number is a well-determined positive integer which we denote
by deg C;. The (geometric) degree deg V of V is defined by deg V := >, <j<s deg C;. This notion of degree
satisfies the so called Bézout Inequality. Namely, for another closed affine subvariety W of A" we have
degVNW <degV -degW.

For details we refer to [29], where the notion of geometric degree was introduced and the Bézout
Inequality was proved for the first time (other references are [17,58]).
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Forfi, ..., fs, g € C[X]we shall use the notation {f; =0, ..., f; = 0} in order to denote the closed
affine subvariety V of A" defined by fi, ..., f; and the notation {f; = 0, ...,f; = 0,g # 0} in order
to denote the Zariski open subset V,; of V defined by the intersection of V with the complement of
{g = 0}. Observe that V, is a locally closed affine subvariety of A".

We denote by I(V) := {f € C[X] : f(x) = 0 for any x € V} the ideal of definition of V in C[X] and
by C[V] := {¢ : V — C; there exists f € C[X] with ¢(x) = f(x) for any x € V} its coordinate ring.
Observe that C[V] is isomorphic to the quotient C-algebra C[V] := C[X]/I(V).If V is irreducible, then
C[V]is zero-divisor free and we denote by C(V) the field formed by the rational functions of V with
maximal domain (C(V) is called the rational function field of V). Observe that C(V) is isomorphic to
the fraction field of the integral domain C[V].

In the general situation where V is an arbitrary closed affine subvariety of A", the notion of a
rational function of V has also a precise meaning. The only point to underline is that the domain,
say U, of a rational function of V has to be a maximal Zariski open and dense subset of V to which the
given rational function can be extended. In particular, U has a nonempty intersection with any of the
irreducible components of V.

As in the case where V is irreducible, we denote by C(V) the C-algebra formed by the rational
functions of V. In algebraic terms, C(V) is the total quotient ring of C[V] and is isomorphic to the
direct product of the rational function fields of the irreducible components of V.

Let be given a partial map ¢ : V --» W, where V and W are closed subvarieties of some affine
spaces A" and A™, and let ¢1, ..., ¢, be the components of ¢. With these notations we have the
following definitions:

Definition 1 (Polynomial Map). The map ¢ is called a morphism of affine varieties or just polynomial
map if the complex valued functions ¢1, . .., ¢, belong to C[V]. Thus, in particular, ¢ is a total map.

Definition 2 (Rational Map). We call ¢ a rational map of V to W, if the domain U of ¢ is a Zariski open
and dense subset of V and ¢, .. ., ¢y, are the restrictions of suitable rational functions of V to U.

Observe that our definition of a rational map differs from the usual one in Algebraic Geometry,
since we do not require that the domain U of ¢ is maximal. Hence, in the case m := 1, our concepts
of rational function and rational map do not coincide (see also [18]).

2.1.1. Constructible sets and constructible maps
Let M be a subset of some affine space A" and, for a given nonnegative integer m, let ¢ : M --» A™
be a partial map.

Definition 3 (Constructible Set). We call the set M constructible if M is definable by a Boolean
combination of polynomial equations.

A basic fact we shall use in the sequel is that if M is constructible, then its Zariski closure is equal
to its Euclidean closure (see, e.g., [49, Chapter I, Section 10, Corollary 1]). In the same vein we have the
following definition.

Definition 4 (Constructible Map). We call the partial map ¢ constructible if the graph of ¢ is
constructible as a subset of the affine space A" x A™.

We say that ¢ is polynomial if ¢ is the restriction of a morphism of affine varieties A" — A™ to the
constructible subset M of A" and hence a total map from M to A™. Furthermore, we call ¢ a rational
map of M if the domain U of ¢ is contained in M and ¢ is the restriction to .M of a rational map of the
Zariski closure M of M. In this case U is a Zariski open and dense subset of M.

Since the elementary, i.e., first-order theory of algebraically closed fields with constants in C
admits quantifier elimination, constructibility means just elementary definability. In particular, ¢ is
constructible implies that the domain and the image of ¢ are constructible subsets of A" and A™,
respectively.
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Remark 1. A partial map ¢ : M --» A™ is constructible if and only if it is piecewise rational. If ¢ is
constructible there exists a Zariski open and dense subset U of M such that the restriction ¢|y of ¢ to
U is a rational map of M (and of M).

For details we refer to [18, Lemma 1].

2.2. Weakly continuous, strongly continuous, topologically robust and hereditary maps

We are now going to present the notions of a weakly continuous, a strongly continuous, a
topologically robust, a geometrically robust and a hereditary map of a constructible set .M. These
five notions will constitute our fundamental tool for the modelling of elimination problems and
algorithms.

Definition 5. Let M be a constructible subset of A™ and let ¢ : M — A™ be a (total) constructible
map. We consider the following four conditions:

(i) there exists a Zariski open and dense subset U of .M such that the restriction ¢|y of ¢ to U is a

rational map of M and the graph of ¢ is contained in the Zariski closure of the graph of ¢|y in
M x A™;

(ii) ¢ is continuous with respect to the Euclidean, i.e., strong, topologies of M and A™;

(iii) for any sequence (xy)ken Of points of M which converges in the Euclidean topology to a point of
M, the sequence (¢ (Xx))ken is bounded;

(iv) for any constructible subset & of .M the restriction ¢|y : & — A™ is an extension of a rational
map of N and the graph of ¢|  is contained in the Zariski closure of the graph of this rational
map in & x A™,

We call the map ¢

weakly continuous if ¢ satisfies condition (i),

strongly continuous if ¢ satisfies condition (ii),
topologically robust if ¢ satisfies conditions (i) and (iii),
hereditary if ¢ satisfies condition (iv).

In all these cases we shall refer to .M as the domain of definition of ¢ or we shall say that ¢ is
defined on M.

Lemma 2 ([18, Lemma 4]). A strongly continuous constructible map is always weakly continuous,
topologically robust and hereditary.

In Section 2.3, we shall establish an algebraic condition, namely geometric robustness, which
implies hereditarity.

2.3. The concept of robustness for constructible maps

In this section we introduce the algebraic-geometric tools we shall use in Sections 3 and 4 for
the mathematical modelling of algorithms which solve parameterized computational problems. The
main issue of this section will be the notion of a geometrically robust constructible map which captures
simultaneously the concepts of topological robustness and hereditarity introduced in Section 2.2

We first characterize in algebraic terms the concept of topological robustness (Theorem 3). In
Section 3 we shall interpret topological robustness as the informal concept of coalescence (we call
it informal because distinct authors introduce it differently, following the context). For example in
Interpolation Theory coalescence refers to certain types of “convergence” of problems and algorithms
(see [6,12,50,18] for details). In this paper coalescence will be the algorithmic counterpart of
topological robustness.

Finally, we introduce the notion of a geometrically robust constructible map and show that such
maps are always hereditary. In particular they are topologically robust and give rise to coalescent
algorithms.
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2.3.1. An algebraic characterization of the notion of topological robustness

In this subsection, we present an algebraic-geometric result of [18] which will be relevant in
Sections 2.3.2, 3 and 4.

For the moment let us fix a constructible subset M of the affine space A" and a (total) constructible
map ¢ : M — A™ with components ¢+, ..., Pm.

We consider now the Zariski closure .M of the constructible subset M of A", Observe that M is a
closed affine subvariety of A" and that we may interpret C(M) as a C[.M]-module (or C[.M]-algebra).

Fix now an arbitrary point x of M. By 9, we denote the maximal ideal of coordinate functions of
C[M] which vanish at the point x. By C[.M oz, we denote the local C-algebra of the variety M at the
point , i.e., the localization of C[.M] at the maximal ideal 90,. By C(M)gy, we denote the localization
of the C[.M]-module C(M) at 9iy.

Following Remark 1, we may interpret ¢, ..., ¢, as rational functions of the affine variety M
and therefore as elements of the total fraction ring C(M) of C[M]. Thus C[M][¢1, ..., ¢m] and
C[ Ml [#1, - . ., ¢m] are C-subalgebras of C(M) and C(M)qr, which contain C[M] and C[M]gy,,
respectively.

With these notations we are able to formulate the following statement which establishes the bridge
to an algebraic understanding of the notion of topological robustness.

Theorem 3 ([18, Corollary 11]). Let notations and assumptions be as before and suppose that the
constructible map ¢ : M — A™ is weakly continuous. Then ¢ is topologically robust if and only if for
any point x of M the C-algebra C[M]o,[P1, . .., dm] is a finite C[M]oy,-module.

The only if part of Theorem 3 is an almost immediate consequence of [11, Lemma 3], which in its
turn is based on a non-elementary and deep result from Algebraic Geometry, namely Zariski’'s Main
Theorem (see, e.g., |36, Section IV.2]).

Let ¢ : M — A™ be a topologically robust constructible map and let u be an arbitrary point of M.
From Theorem 3 one deduces easily that for all sequences (uy)yen Of points u, € M which converge
to u, the sequences (¢ (uy))ren have only finitely many accumulation points.

2.3.2. The notion of geometrical robustness
The main mathematical tool of Section 3 of this paper is the notion of geometrical robustness we
are going to introduce now. We shall use the same notations as in Section 2.3.1.

Definition 6. Let M be a constructible subset of a suitable affine space and let¢ : M — A™ be a(total)
constructible map with components ¢+, .. ., ¢n. According to Remark 1 we may interpret ¢4, ..., ¢n
as rational functions of M. We call ¢ geometrically robust if for any point x € M the following two
conditions are satisfied:

(i) C[M]a,[@1, - - -, dm] is a finite C[M ]y, -module.
(il) C[M]p,[@1, - - -, Pm] is a local C[M]yy, -algebra whose maximal ideal is generated by 9i, and
$1— P1(X), ..., P — Pm(X).

Observe that the notion of a geometrically robust map makes also sense when C is replaced by an
arbitrary algebraically closed field (of any characteristic). In view of Theorem 3 the same is true for
the notion of a topologically robust map.

In this paper we shall restrict our attention to the algebraically closed field C. In this particular case
we have the following characterization of geometrically robust constructible maps.

Theorem 4. Let assumptions and notations be as before. Then the constructible map ¢ : M — A™ is
geometrically robust if and only if ¢ is strongly continuous.

Proof. Suppose that the constructible map ¢ is geometrically robust. We are first going to show that
¢ is weakly continuous.

By Remark 1 there exists a Zariski open and dense subset U of M such that the restriction map
¢|y is rational. Let Yy, ..., Y, be new indeterminates, Y := (Yi,...,Yy) and suppose that the
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affine ambient space of M has dimension n. Observe that any (n + m)-variate polynomial over C
which vanishes on the graph of the rational map ¢|y gives rise to a polynomial A € C[M][Y] with
Algr, ..., ¢l =0. _

Let x be an arbitrary point of M and consider A as an element of C[.M]oy, [Y]. Denote by A(x, ¢(x))
the value of A at (x, ¢ (x)). Then condition (ii) of Definition 6 implies that A[¢1, ..., ¢n] — AX, ¢ (X))
belongs to the maximal ideal of C[M]o [¢1, ..., dm]. From Al ..., ¢m] = 0 we deduce now
Alx, p(x)) = 0.

Since the choice of x € M was arbitrary, we conclude that A vanishes on the graph of ¢. This
implies that the graph of ¢ is contained in the Zariski closure of the graph of ¢|y. Hence ¢ is weakly
continuous.

Let be given an arbitrary point x € M and a sequence (Xy)ken, Xk € M, which converges to x in the
strong topology of M. We are now going to show that the sequence (¢ (x;))ren CcOnverges to ¢ (x).

Since ¢ is weakly continuous, we deduce from condition (i) of Definition 6 and Theorem 3 that the
sequence (¢ (x,))ren contains at least one accumulation point, say a = (ay, ..., ay), which belongs
to A™. Let a be the ideal of all polynomials A € C[M]gy, [Y] that vanish at the point (x, a) € A" x A™.
Without loss of generality we may assume that the sequence (¢ (xx))ren converges to a. Let @ :=
{A($); A € a} be the image of the ideal a under the surjective C[.M]yy, -algebra homomorphism
C[ Mo, [Y] = C[M]on 1, ..., dm] which maps Yy, ..., Y, onto ¢, ..., ¢y, Observe that @ is an
ideal of C[M]on, [P1, - - - » D).

We are now going to show the following statement.

Claim 5. The ideal d is proper.

Proof of Claim 5. Suppose that the ideal @ is not proper. Then there exists a polynomial A =
D ivim Grn Y1 - Yo' of a, with aj;, € C[M]m,, which satisfies the condition ), .
Gjyeijm q&];‘ ‘e qumm = A(¢) = 1.Since for any m-tuple of indices j, . . ., ji, the rational function g, ..;,, of
M is defined at x and the sequence (x;)ren CONverges to x, we may assume without loss of generality
that aj, .., is defined at x, for any k € N and that (aj,..,, (X) )ken cONverges to aj,..;, (x). We may
therefore write A®) := Y G KDYV € C[Y]for X = xorx = x¢, k € N.FromA € a
we deduce A¥ (a) = 0. By assumption (¢ (x,))rey converges to a. Hence the sequence of complex
numbers (A% (¢(x¢)))ren converges to A¥(a) = 0. On the other hand A(¢) = 1 and the weak
continuity of ¢ imply A® (¢(x,)) = 1 for any k € N. This contradiction proves our claim. O

From condition (ii) of Definition 6 we deduce that the C[M]yy, -algebra C[M]on, [P1, - - - , Pm]
contains a single maximal ideal, say 99, and that 91 is generated by 9, and ¢1 — 1 (%), . . ., P —Pm (X).

Since by Claim 5 the ideal @ is proper, @ must be contained in 9. Observe that the polynomials
Y, —ay, ..., Yy — a, belong to a. Hence ¢; — ay, ..., ¢, — an, belong to d and therefore also to 9.
Since 90 is proper, this is only possible if a; = ¢1(x), ..., am = ¢m(x) holds.

Thus the sequence (¢ (xi))ken CcONnverges to ¢(x).

Suppose now that the constructible map ¢ is strongly continuous. From Lemma 2 we deduce that
¢ is topologically robust. Theorem 3 implies now that ¢ satisfies condition (i) of Definition 6 at any
point of M.

Let x be an arbitrary point of M. We have to show that ¢ satisfies at x condition (ii) of Definition 6.

Since the graph of ¢ is constructible, its strong and Zariski closures in M x A™ coincide. Moreover,
since ¢ is by assumption strongly continuous, its graph is closed with respect to the strong topology
of M x A™ and therefore also with respect to the Zariski topology. Let a be an arbitrary maximal
ideal of the (C[ﬁ]gmx—algebra (C[ﬂ]gmx [¢1, ..., ¢m]. Then there exists a point a = (aq, ..., an,) of
A™ such that a is generated by 9, and ¢ — a1, ..., ¢ — apm. Thus (x,a) € M x A™ belongs to
the Zariski closure of the graph of ¢ in M x A™ and therefore to the graph of ¢ itself. This implies
a = ¢(x). With other words, a is generated by i, and ¢; — ¢1(X), ..., ¢m — Pm(x). There is
exactly one ideal of C[M]yn, [¢1, - - - » @] Which satisfies this condition. Therefore the C[M ]on, -algebra
(C[ﬂ]mx [¢1, - .., @m]is local and condition (ii) and Definition 6 is satisfied at the pointx € M. O
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Theorem 4 implies immediately the following result which will be fundamental in the sequel.

Corollary 6. Geometrically robust constructible maps are weakly continuous, hereditary and even
topologically robust. If we restrict a geometrically robust constructible map to a constructible subset
of its domain of definition we obtain again a geometrically robust map. Moreover the composition
and the Cartesian product of two geometrically robust constructible maps are geometrically robust. The
geometrically robust constructible functions form a commutative C-algebra which contains the polynomial
functions.

Notice that Corollary 6 remains mutatis mutandis true if the notions of geometrical and topological
robustness are applied to constructible maps defined over an arbitrary algebraically closed field k.

Adapting the corresponding proofs to this more general situation, one sees that weak continuity
and hereditarity of geometrically robust constructible maps with irreducible domains of definition
follows from [18, Proposition 16, Theorem 17 and Corollary 18]. These results imply also that
restrictions of such maps to irreducible constructible subsets of their domains of definition are again
geometrically robust. From this one deduces immediately the same statements for the case of arbitrary
domains of definition. Topological robustness is a direct consequence of Definition 6. Closedness under
composition follows from the transitivity law for integral dependence. One infers from Definition 6
closedness under Cartesian products and that the geometrically robust constructible functions form
a commutative k-algebra which contains the polynomial functions.

Theorem 4 is new. It gives a topological motivation for the rather abstract, algebraic notion of
geometrical robustness. The reader not acquainted with commutative algebra may just identify the
concept of geometrical robustness with that of strong continuity of constructible maps.

The origin of the concept of a geometrically robust map can be found, implicitly, in [21]. It was
introduced explicitly for constructible maps with irreducible domains of definition in [ 18], where it is
used to analyse the complexity character of multivariate Hermite-Lagrange interpolation.

3. Asoftware architecture based model for computations with parameterized arithmetic circuits

3.1. Parameterized arithmetic circuits and their semantics

The routines of our computation model, which will be introduced in Section 3.3, operate
with circuits representing parameter dependent rational functions. They will behave well under
restrictions. In this spirit, the objects of our abstract data types will be parameter dependent
multivariate rational functions over C, the concrete objects of our classes will be parameterized
arithmetic circuits and our abstraction function will associate circuits with rational functions. In what
follows, C may always be replaced, mutatis mutandis, by an arbitrary algebraically closed field (of any
characteristic).

Let us fix natural numbers n and r, indeterminates Xy, . . ., X; and a non-empty constructible subset
M of A". By 4, ..., mr we denote the restrictions to .M of the canonical projections A" — Al.

A (by M) parameterized arithmetic circuit 8 (with basic parameters iy, . .., m, and inputs Xy, ..., Xy)
is a labelled directed acyclic graph (labelled DAG) satisfying the following conditions: each node of
indegree zerois labelled by a scalar from C, a basic parameter 71, . . ., 77, orainput variable Xy, .. ., X,,.
Following the case, we shall refer to the scalar, basic parameter and (standard) input nodes of §. All
other nodes of 8 have indegree two and are called internal. They are labelled by arithmetic operations
(addition, subtraction, multiplication, division). A parameter node of 8 depends only on scalar and
basic parameter nodes, but not on any input node of 8 (here “dependence” refers to the existence of a
connecting path). An addition or multiplication node whose two ingoing edges depend on an input is
called essential. The same terminology is applied to division nodes whose second argument depends
on an input. Moreover, at least one circuit node becomes labelled as output. Without loss of generality
we may suppose that all nodes of outdegree zero are outputs of .

We consider $ as a syntactical object which we wish to equip with a certain semantics. In principle
there exists a canonical evaluation procedure of 8 assigning to each node a rational function of M x A"
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which, in case of a parameter node, may also be interpreted as a rational function of .M. In either
situation we call such a rational function an intermediate result of S.

The evaluation procedure may fail if we divide at some node an intermediate result by another one
which vanishes on a Zariski dense subset of a whole irreducible component of M x A™. If this occurs,
we call the labelled DAG B inconsistent, otherwise consistent. From [11, Corollary 2] (compare also
[34, Theorem 4.4] and [21, Lemma 3]) one deduces easily that testing whether an intermediate result
of B vanishes on a Zariski dense subset of a whole irreducible component of M x A" can efficiently
be reduced to the same task for circuit represented rational functions of M (the procedure is of non-
uniform deterministic or alternatively of uniform probabilistic nature).

Mutatis mutandis the same is true for identity checking between intermediate results of 8. If M is
irreducible, both tasks boil down to an identity-to-zero test on M. In case that .M is not Zariski dense
in A", this issue presents a major open problem in modern Theoretical Computer Science (see [52,55]
for details).

If nothing else is said, we shall from now on assume that § is a consistent parameterized arithmetic
circuit. The intermediate results associated with output nodes will be called final results of g.

We call an intermediate result associated with a parameter node a parameter of 8 and interpret it
generally as a rational function of .M. A parameter associated with a node which has an outgoing edge
into a node which depends on some input of § is called essential. In the sequel we shall refer to the
constructible set M as the parameter domain of S.

We consider 8 as a syntactic object which represents the final results of 8, i.e., the rational functions
of M x A™ assigned to its output nodes. In this way becomes introduced an abstraction function which
associates 8 with these rational functions. This abstraction function assigns therefore to 8 a rational
map M x A" --» A9, where q is the number of output nodes of 8. On its turn, this rational map may
also be understood as a (by M) parameterized family of rational maps A" --» A9,

Now we suppose that the parameterized arithmetic circuit 8 has been equipped with an additional
structure, linked to the semantics of 8. We assume that for each node p of B there is given a total
constructible map M x A" — A' which extends the intermediate result associated with p. In this
way, if 8 has K nodes, we obtain a total constructible map £ : M x A" — AKX which extends the
rational map M x A" --» AX given by the labels at the indegree zero nodes and the intermediate
results of .

Definition 7 (Robust Circuit). Let notations and assumptions be as before. The pair (8, £2) is called a
robust parameterized arithmetic circuit if the constructible map 2 is geometrically robust.

We shall make the following two observations to this definition.

We state our first observation. Suppose that (3, £2) is robust. This means that the constructible map
£ : M x A" — AKis geometrically and hence also topologically robust and hereditary. Moreover, the
above rational map M x A" --» AK can be extended to at most one geometrically robust constructible
map 2 : M x A" — AK, Therefore we shall apply from now on the term “robust” also to the circuit

B.

Let us now state our second observation. We may consider the parameterized circuit 8 as a program
which solves the problem to evaluate, for any sufficiently generic parameter instance u € M, the
rational map A" --» A9 which we obtain by specializing to the point u the first argument of the rational
map M x A" --» A9 defined by the final results of 8. In this sense, the “computational problem” solved
by B is given by the final results of 8.

Being robust becomes now an architectural requirement for the circuit 8 and for its output. Robust
parameterized arithmetic circuits may be restricted as follows:

Let .V be a constructible subset of M and suppose that (3, £2) is robust. Then Corollary 6 implies
that the restriction §2|,n of the constructible map §2 to & x A" is still a geometrically robust
constructible map.

This implies that (8, £2) induces a by & parameterized arithmetical circuit §,. Observe that 8
may become inconsistent. If 8, is consistent then (B, £2|xxan) is robust. The nodes where the
evaluation of S, fails correspond to divisions of zero by zero which may be replaced by so called
approximative algorithms having unique limits (see Section 3.3.2). These limits are given by the map
2| yxan. We call (By, §2| yxan), or simply B, the restriction of (8, £2) or B to N.
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We say that the parameterized arithmetic circuit § is totally division-free if any division node of
corresponds to a division by a non-zero complex scalar.

We call B essentially division-free if only parameter nodes are labelled by divisions. Thus the
property of B being totally division-free implies that § is essentially division-free, but not vice versa.
Moreover, if 8 is totally division-free, the rational map given by the intermediate results of g is
polynomial and therefore a geometrically robust constructible map. Thus, any by M parameterized,
totally division-free circuit is in a natural way robust.

In the sequel, we shall need the following elementary fact.

Lemma 7. Let notations and assumptions be as before and suppose that the parameterized arithmetic
circuit B is robust. Then all intermediate results of B are polynomials in Xy, . . ., X, over the C-algebra of
geometrically robust constructible functions defined on M.

Proof. Without loss of generality we may assume that M is irreducible. Let p be a node of 8 which
computes the intermediate result G, : M x A" — Al. Definition 6(i) and the irreducibility of M
imply that G, is a polynomial of C(M)[X1, ..., X,]. Observe that any x € A" induces a geometrically
robust constructible map M — A! whose value at the point u € M is G, (u, x). Using interpolation
at suitable points of A", we see that the coefficients of the polynomial G, are geometrically robust
constructible functions with domain of definition M. O

The statement of this lemma should not lead to confusions with the notion of an essentially
division-free parameterized circuit. We say just that the intermediate results of 8 are polynomials
inXy, ..., X, and do not restrict the type of arithmetic operations contained in 8 (as we did defining
the notion of an essentially division-free parameterized circuit).

Whether a division of a polynomial by one of its factors may always be substituted efficiently by
additions and multiplications is an important issue in Theoretical Computer Science (compare [57]).

To our parameterized arithmetic circuit 8 we may associate different complexity measures and
models. In this paper we shall mainly be concerned with sequential computing time, measured by
the size of 8. Here we refer with “size” to the number of internal nodes of 8 which count for the
given complexity measure. Our basic complexity measure is the non-scalar one (also called Ostrowski
measure) over the ground field C. This means that we count, at unit costs, only essential multiplications
and divisions (involving basic parameters or input variables in both arguments in the case of a
multiplication and in the second argument in the case of a division), whereas C-linear operations
are free (see [9] for details).

3.1.1. Operations with robust parameterized arithmetic circuits

3.1.1.1. The operation join. Let y; and y, be two robust parameterized arithmetic circuits with
parameter domain .M and suppose that there is given a one-to-one correspondence A which identifies
the output nodes of y; with the input nodes of y, (thus they must have the same number). Using this
identification we may now join the circuit y; with the circuit y, in order to obtain a new parameterized
arithmetic circuit y; %, y; with parameter domain M. The circuit y, *; 7 has the same input nodes
as y; and the same output nodes as ), and one deduces easily from Lemma 7 and Corollary 6 that the
circuit y; *; ¥4 is robust and represents a composition of the rational maps defined by y; and y», if
5 %, 1 is consistent. The (consistent) circuit y; *; y; is called the (consistent) join of y; with y».
Observe that the final results of a given robust parameterized arithmetic circuit may constitute a
vector of parameters. The join of such a circuit with another robust parameterized arithmetic circuit,
say B, is again a robust parameterized arithmetic circuit which is called an evaluation of 8. Hence,
mutatis mutandis, the notion of join of two routines includes also the case of circuit evaluation.

3.1.1.2. The operations reduction and broadcasting. We describe now how, based on its semantics, a
given parameterized arithmetic circuit 8 with parameter domain .M may be rewritten as a new circuit
over .M which computes the same final results as 8.

The resulting two rewriting procedures, called reduction and broadcasting, will neither be unique,
nor generally confluent. To help understanding, the reader may suppose that there is given an
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(efficient) algorithm which allows identity checking between intermediate results of 5. However, we
shall not make explicit reference to this assumption. We are now going to explain the first rewriting
procedure.

Suppose that the parameterized arithmetic circuit 8 computes at two different nodes, say p and
o', the same intermediate result. Assume first that p neither depends on o', nor o’ on p. Then we may
erase p’ and its two ingoing edges (if o’ is an internal node) and draw an outgoing edge from p to any
other node of 8 which is reached by an outgoing edge of p’. If p’ is an output node, we label p also as
output node. Observe that in this manner a possible indexing of the output nodes of 8§ may become
changed but not the final results of 8 themselves.

Suppose now that o’ depends on p. Since the DAG 8 is acyclic, p does not depend on p’. We may
now proceed in the same way as before, erasing the node p'.

Let B’ be the parameterized arithmetic circuit obtained, as described before, by erasing the node
p’. Then we call 8 a reduction of B and call the way we obtained 8’ from 8 a reduction step. A reduction
procedure is a sequence of successive reduction steps.

One sees now easily that a reduction procedure applied to § produces a new parameterized
arithmetic circuit 8* (also called a reduction of 8) with the same basic parameter and input nodes,
which computes the same final results as 8 (although their possible indexing may be changed).
Moreover, if 8 is a robust parameterized circuit, then 8* is robust too. Observe also that in the case of
robust parameterized circuits our reduction commutes with restriction.

Now we introduce the second rewriting procedure.

Let assumptions and notations be as before and let be given a set P of nodes of 8 and a robust
parameterized arithmetic circuit y with parameter domain M and #P input nodes, namely for each
p € P one which becomes labelled by a new input variable Y,. We obtain a new parameterized
arithmetic circuit, denoted by y *p 8, when we join y with 8, replacing for each p € P the input node
of y, which is labelled by the variable Y, by the node p of 8. The output nodes of 8 constitute also
the output nodes of y *p 8. Thus § and y *xp B compute the same final results. Observe that y xp 8
is robust if it is consistent. We call the circuit y *p 8 and all its reductions broadcastings of 5. Thus
broadcasting a robust parameterized arithmetic circuit means rewriting it using only valid polynomial
identities.

If we consider arithmetic circuits as computer programs, then reduction and broadcasting
represent a kind of program transformations.

3.1.2. A specification language for circuits

Computer programs (or “programmable algorithms”) written in high level languages are not the
same thing as just “algorithms” in Complexity Theory. Whereas in the uniform view algorithms
become implemented by suitable machine models and in the non-uniform view by devices like
circuits; specifications and correctness proofs are not treated by the general theory, but only, if
necessary, outside of it in a case-by-case ad hoc manner. The meaning of “algorithm” in Complexity
Theory is therefore of syntactic nature.

On the other hand, computer programs, as well as their subroutines (modules) include
specifications and correctness proofs, typically written in languages organized by a hierarchy of
different abstraction levels. In this sense programmable algorithms become equipped with semantics.
This is probably the main difference between Complexity Theory and Software Engineering.

In this paper, we are only interested in algorithms which in some sense are programmable. The
routines of our computation model will operate on parameterized arithmetic circuits (see Section 3.3).
Therefore we are now going to fix a (many-sorted) first-order specification language £ for these
circuits.

The language £ will include the following non-logical symbols:

- 0,1, +, —, %, and a constant for each complex number,
- variables

Ny, ..., Ng...

a® L a®
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B, B
P15 1
My, oo, My
U(l), .,U(m)
x® .,X(h)
Y, Y@,

to denote non-negative integers and vectors of them, robust parameterized arithmetic circuits,
their nodes, their parameter domains, their parameter instances, their input variable vectors and
instances of input variable vectors in suitable affine spaces,

- suitable binary predicate symbols to express relations like “p is a node of the circuit 8",
“multiplication is the label of the node p of the circuit 8”, “.M is the parameter domain of the
circuit 8”, “U is a parameter instance of the circuit 8”, “r is a non-negative integer and the vector
length of U is r”, “X is the input variable vector of the circuit §” and “n is a non-negative integer
and the vector length of X is n”,

- aternary predicate symbol to express “p; and p, are nodes of the circuit 8 and there is an edge of
B from p; to p;",

- binary function symbols to express “U is a parameter instance, k is a natural number and Uy is the
k-th entry of U” and “X is an input variable vector, n is a natural number and X, is the n-th entry
of X" and “Y is a variable vector instance, n is a natural number and Y;, is the n-th entry of Y”,

- a unary function and a binary predicate symbol to express “the set of output nodes of the circuit
B and “p is an output node of the circuit 8",

- aquaternary function symbol G, (8; U; X) to express “p is a node of the circuit 8, U is a parameter
instance and X is the input variable vector of 8 and G,(8; U; X) is the intermediate result of 8 at
the node p and the parameter instance U”,

- a predicate symbol for equality for any of the sorts just introduced.

For the treatment of non-negative integers we add the Presburger arithmetic to our first-order
specification language £.

At our convenience we may add new function and predicate symbols and variable sorts to
L. Typical examples are for 8 a circuit, U a parameter instance, X the input variable vector
and p, p1,..., pm nodes of B: “degree of G,(B;U;X)” and “the vector lengths of X and Y
are equal (say n) and Y is a point of the closed subvariety of A" defined by the polynomials
Gy (B U X). ... Gy (B UL X)™.

In the same spirit, we may increase the expressive power of .£ in order to be able to express for
a robust parameterized circuit 8 with irreducible parameter domain, U a parameter instance, X the
input variable vector, p anode of 8 and « a vector of non-negative integers of the same length as X (say
n), “the coefficient of the monomial X* occurring in the polynomial G,(8; U; X)” (recall Lemma 7).
Here we denote forX := (Xq, ..., X,) anda = (a4, ..., a,;) by X* the monomial X¢ := X;’”, D L

The semantics of the specification language £ is determined by the universe of all robust
parameterized arithmetic circuits, where we interpret all variables, function symbols and predicates
as explained before. We call this universe the standard model of .£. The set of all closed formulae of .£
which are true in this model form the elementary theory of L.

3.2. Generic computations

In the sequel, we shall use ordinary arithmetic circuits over C as generic computations [9] (also
called computation schemes in [30]). The indegree zero nodes of these arithmetic circuits are labelled
by scalars and parameter and input variables.

The aim is to represent different parameterized arithmetic circuits of similar size and appearance
by different specializations (i.e., instantiations) of the parameter variables in one and the same generic
computation. For a suitable specialization of the parameter variables, the original parameterized
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arithmetic circuit may then be recovered by an appropriate reduction process applied to the
specialized generic computation.

This alternative view of parameterized arithmetic circuits will be fundamental for the design of
routines of the branching-free computation model we are going to describe in Section 3.3.2. The
routines of our computation model will operate on robust parameterized arithmetic circuits and their
basic ingredients will be subroutines which calculate parameter instances of suitable, by the model
previously fixed, generic computations. These generic computations will be organized in finitely many
families which will only depend on a constant number of discrete parameters. These discrete families
constitute the basic building block of our model for branching-free computation.

We shall now exemplify these abstract considerations in the concrete situation of the given
parameterized arithmetic circuit 8. Mutatis mutandis we shall follow the exposition of [39, Section
2].Letl, Ly, ..., L1 withly > r4+n+ 1and L, > q be given natural numbers. Without loss of
generality we may suppose that the non-scalar depth of § is positive and at most [, and that 8 has
an oblivious levelled structure of I + 2 levels of width at most Lo, ..., Liy1. Let Uy, ..., U; be new
indeterminates (they will play the role of a set of “special” parameter variables which will only be
instantiated by 74, ..., 7).

We shall need the following indexed families of “scalar” parameter variables (which will only be
instantiated by complex numbers):

- forn+r < j < Ly the indeterminate V;;
-forl1<i<lL1<j<L, 0<h<i 1<k <L theindeterminates Afﬁ’k), Bfg’k) and S;j, T j;
- for1 <j <Ly, 1<k <L the indeterminate Cj".

We consider now the following function Q which assigns to every pair (i,j), 1 <i <1, 1 <j <L
and (I 4+ 1,j), 1 <j < L, the rational expressions defined below:

QO,] = Uls ~-~7Q0,r =U,
QO,r+l = Xl, ey QO,H—n = Xru
QO,r+n+1 =Vt oo QO,LO = VLO-

For1 <i<land1 <j <, the value Q;; of the function Q is recursively defined by

h,k n K
Q=S| Y A Y. B Qwe

0<h<i o<k <i
1=k=Ly 1=K <Ly,

h,k 0K
| A 3 e

O<h<i 0<h’<i
T=ksLy 1<K <Ly

Finally, for (I + 1, /), 1 <j < L1 we define Quy1 ) = Yy, G Q-

We interpret the function Q as a (consistent) ordinary arithmetic circuit, say I", over Z (and hence
over C) whose indegree zero nodes are labelled by the “standard” input variables Xi, ..., X;, the
special parameter variables Uy, . .., U; and the scalar parameter variables just introduced.

We consider first the result of instantiating the scalar parameter variables contained in I" by
complex numbers. We call such an instantiation a specialization of I". It is determined by a point in a
suitable affine space. Not all possible specializations are consistent, giving rise to an assignment of a
rational function of C(Uy, ..., Uy, X1, ..., X,) to each node of I" as intermediate result.

We call the specializations which produce a failing assignment inconsistent. If in the context
of a given specialization of the scalar parameter variables of I we instantiate for each index pair
(i,j),1 <i <l 1<j<Lthevariables S;; and T;; by two different values from {0, 1}, the labelled
directed acyclic graph I becomes an ordinary arithmetic circuit over C of non-scalar depth at most |
and non-scalar size at most Ly + - - - 4+ L; with the inputs Uy, ..., U;, X1, ..., X.
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We may now find a suitable specialization of the circuit I” into a new circuit I"’ over C such that the
following condition is satisfied: the (by .M ) parameterized circuit obtained from I"’ by replacing the
special parameter variables Uy, ..., U, by mq, ..., 7, is consistent and can be reduced to the circuit S.

We may consider the circuit I" as a generic computation which allows to recover 8 by means
of a suitable specialization of its scalar and special parameter variables into complex numbers and

basic parameters 7y, . .., 7t and by means of circuit reductions. Moreover, any by .M parameterized,
consistent arithmetic circuit of non-scalar depth at most [, with inputs Xy, . . ., X, and q outputs, which
has an oblivious level structure with [ 4+ 2 levels of width at most Ly, ..., L1, may be recovered

from I by suitable specializations and reductions (see [9, Chapter 9] for more details on generic
computations).

3.3. Amodel for branching-free computation

3.3.1. Requirements to be satisfied by our branching-free computation model. Informal discussion

We are now going to introduce a model of branching-free computation with parameterized
arithmetic circuits. We shall first require that the routines of this computation model should be well
behaved under restrictions of the inputs. We discuss this issue first informally.

Suppose for the moment that our branching-free computation model is already established.
Then its routines transform a given robust parameterized arithmetic (input) circuit into another
parameterized (output) circuit such that both circuits have the same parameter domain. Well
behavedness under restrictions will be a property of circuit transformation that guarantees that the
output circuit is still robust. In particular, we wish that the following requirement is satisfied.

Let A be a routine of our branching-free computation model and consider the previously
introduced parameterized circuit . Let .V be a constructible subset of M and suppose that 8 is an
admissible input for the routine 4. Then + produces on input 8 a parameterized arithmetic output
circuit with parameter domain M which we denote by A(f8). In order to formulate for the routine +4
our requirement, we must be able to restrict 8 and A(8) to . Thus 8 and 4(8) should be robust, B
should be a consistent admissible input circuit for 4 and 4(8,) should be consistent too.

Our architectural requirement on the routine +4 may now be formulated as follows:

The parameterized arithmetic circuit A(B8,) can be recovered from A(fB) by restriction to & and
circuit reduction.

Routines which are well behaved under restrictions will automatically satisfy this requirement.

The routine 4 performs with the parameterized arithmetic circuit g a transformation whose
crucial feature is that only nodes which depend on the inputs Xj, ..., X; of 8 become modified,
whereas parameter nodes remain substantially preserved. This needs an explicitation.

Suppose that 8 has t essential parameter nodes. Then the essential parameters (intermediate
results) of B associated with these nodes define a geometrically robust constructible map 6 : M —
A!. The image 7 of 0 is a constructible subset of Af. We require now that, as far as 4 performs
arithmetic operations with parameters of 8, 4 does it only with essential ones, and that all essential
parameters of 4(f) are obtained in this way. Further we require that there exists a geometrically
robust constructible map v defined on 7 (e.g., a polynomial map) such that the results of these
arithmetic operations occur as entries of the composition map v o 6. From Corollary 6 we deduce
that v o 0 is a geometrically robust constructible map.

Our basic construction method of routines will be recursion. A routine of our computation model
which can be obtained in this way is called recursive.

Suppose now that 4 is a recursive routine of our computation model. Then 4 should be organized
in such a way that for each internal node p of 8, which depends on at least one input, there exists a set
of nodes of 4(), also denoted by p, with the following property: the elements of the set p of nodes
of A(B) represent the outcome of the action of 4 at the node p of g.

We fix now a node p of 8 which depends on at least one input. Let G, be the intermediate result
associated with the node p of 8 and let F, be a vector whose entries are the intermediate results of
A(pB) at the nodes contained in the set p of nodes of 4(8). Thus F, is a vector of rational functions in
a suitable tuple of (standard) variables, say X'.
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Recall that by assumption 8 and + () are robust parameterized arithmetic circuits with parameter
domain M. Therefore we deduce from Lemma 7 that G, and the entries of F,, are in fact polynomials in
X1, ..., X, and X/, respectively, and that their coefficients are geometrically robust functions defined
on M.

As part of our second and main requirement of our computation model we demand now that 4
satisfies at the node p of B the following isoparametricity condition:

(i) for any two parameter instances u, and u, of M the assumption
Go(u1, X1, ..., Xn) = Gp(uz, X1, ..., Xp)
implies
Fo(u1, X") = Fy(u, X").

Let 6, be the coefficient vector of G, and observe that 6, is a geometrically robust constructible
map defined on M, whose image, say 7, is a constructible subset of a suitable affine space.

Since the first-order theory of the algebraically closed field C admits quantifier elimination, one
concludes easily that condition (i) is satisfied if and only if there exists a constructible map o, defined
on 7, such that the composition map o, o 6, (which is also constructible) represents the coefficient
vector of (all entries of) F,.

In the sequel we shall need that the dependence o, of the coefficient vector of F, on the coefficient
vector of G, is in some stronger sense uniform (and not just constructible). Therefore we include the
following condition in our requirement:

(i) the constructible map o, is geometrically robust.

The map o, is uniquely determined by condition (i). Moreover, the map o, depends on the
(combinatorial) labelled DAG structure of § below the node p, but not directly on the basic parameters
14, ..., . This is the essence of the isoparametric nature of conditions (i) and (ii). We shall therefore
require that our recursive routine is isoparametric in this sense, i.e., that - satisfies conditions (i) and
(ii) at any internal node p of 8 which depends at least on one input.

Observe that the geometrically robust constructible map o, (which depends on 8 as well as on p)
is not an artefact, but emerges naturally from the recursive construction of a circuit semantic within
the paradigm of object-oriented programming. To explain this, let notations and assumptions be as
before and suppose that + is a isoparametric recursive routine of our model and that we apply # to
the robust parameterized arithmetic circuit 8. Let p again be a node of 8 which depends at least on one
input. Let u be a parameter instance of .M and denote by 8™, G, A(8)™ and F{"’ the instantiations
of B, G,, #4(B) and F, at u (observe that the intermediate results of 3™ and A(B8)™ are well defined
although we do not require that these circuits are consistent). Then the intermediate results of 4(8)®
contained in F{" depend only on the intermediate result G’ of 8 and not on the parameter instance
u itself. In this spirit we may consider the sets I, :== {G\;u € M} and @, = {F";u € M}
as abstract data types and 8 and () as syntactic descriptions of two abstraction functions which
associate to any concrete object u € M the abstract objects Gﬁ,”) and F/(,“), respectively. The identity
map idy : M — M induces now an abstract function [45] from I, to @,, namely o, : I, — &,.
In this terminology, id 4 is just an implementation of o,,. If we now consider that each recursive step
of the routine + on input 8 has to be realized by some routine of the object-oriented programming
paradigm, we arrive to a situation which requires the existence of a geometrically robust constructible
mapo, : I, — @, as above.

We may interpret the map o, : I, — @, also as an ingredient of a specification of the recursive
routine 4. The map o, may be thought as an operational specification which determines F,, in function
of G,. A weaker specification would be a descriptive one which relates G, and F, without determining
F, from G, completely.

In order to motivate the requirement that the recursive routine + should be isoparametric, we
shall consider the following condition for recursive routines which we call well behavedness under
reductions.
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We only outline here this condition and leave the details until Section 3.3.2.

Suppose now that we apply a reduction procedure to the robust parameterized input circuit 8
producing thus another robust, by M parameterized circuit 8* which computes the same final results
as B. Then the reduced circuit 8* should also be an admissible input for the routine 4. We call the
recursive routine 4 well behaved under reductions if on input f it is possible to extend the given
reduction procedure to the output circuit 4 () in such a way, that the extended reduction procedure,
applied to 4 (), reproduces the circuit A4(8*).

Obviously well behavedness under reductions limits the structure of A(f). Later, in Section 3.3.2,
we shall see that, cum grano salis, any recursive routine, which is well behaved under restrictions and
reductions, is necessarily isoparametric. Since well behavedness under restrictions and reductions are
very natural quality attributes for routines which transform robust parameterized arithmetic circuits,
the weaker requirement, namely that recursive routines should be isoparametric, turns out to be well
motivated.

In Section 3.3.2, we shall formally introduce our branching-free computation model. We postpone
for then the precise definitions of the notions of well behavedness under restrictions and reductions.

There exists a second reason to limit the recursive routines of our branching-free computation
model to isoparametric ones. Isoparametric recursive routines have considerable advantages for
program specification and verification by means of Hoare Logics (see [2]). We shall come back to this
issue in Section 3.3.2.4.

3.3.2. The branching-free computation model

The computation model we are going to introduce in this and the next subsection will be
comprehensive enough to capture the essence of all known circuit based elimination algorithms in
effective Algebraic Geometry and, mutatis mutandis, also of all other (linear algebra and truncated
rewriting) elimination procedures (see Sections 3.3.3 and 4, [46,47], and the references cited therein,
and for truncated rewriting methods especially [13]). The only algorithm from symbolic arithmetic
circuit manipulation which will escape from our model is the Baur-Strassen gradient computation
[9, Chapter 7.2].

In the sequel we shall distinguish sharply between the notions of input variable and parameter and
the corresponding categories of circuit nodes.

Input variables, called “standard”, will occur in parameterized arithmetic circuits and generic
computations. The input variables of generic computations will appear subdivided in three sorts,
namely as “parameter”, “argument” and “standard” input variables.

The branching-free computation model we are going to introduce in this subsection will assume
different shapes, each shape being determined by a finite number of a priori given discrete (i.e., by
tuples of natural numbers indexed) families of generic computations. The labels of the inputs of the
ordinary arithmetic circuits which represent these generic computations will become subdivided into
parameter, argument and standard input variables. We shall use the letters like U, U’, U”, ... and
W, W', W” to denote vectors of parameters, Y, Y’, Y”,...and Z, Z’, Z" to denote vectors of argument
and X, X', X", ... to denote vectors of standard input variables (see Section 3.2).

We shall not write down explicitly the indexations of our generic computations by tuples of
natural numbers. Generic computations will simply be distinguished by subscripts and superscripts,
if necessary.

Ordinary arithmetic circuits of the form
R, Wi X)), R (Wa; X,
Ry, (Wyi XT0), Ry (Wa: XP)),

represent a first type of a discrete family of generic computations (for each variable X;, X5, ..., X, we
suppose to have at least one generic computation). Other types of families of generic computations
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are of the form
R.(W;U,Y;X), R, W3U,Y;X), R.(W"U",Y"X")
R,(W;U,Y;X), Rf/(W/; u,Y'; x), Rf//(W”; u’,Y"; X"
R W:Y,Z: X), R W/; Y/,Z/; X/ , R’ W//; Y//,Z//;X//
add( . . ) /add( /. ! /. 2 ‘?/dd( 1", 4 ", /2
Rnue(W;Y,Z:X), RoyuW'Y',Z:X), RouW"Y", 2" X")

mult
and

Raiv(W;Y,Z;X), Ry (WY, Z5X), Rg (W' Y7, 2" X7)
Here the subscripts refer to addition of, and multiplication or division by a parameter (or scalar) and

to essential addition, multiplication and division. A final type of families of generic computations is of
the form

RW;Y;X),RW' Y ; X),R"W"; Y"; X"), ...
We recall from Section 3.3.1 that the objects handled by the routines of any shape of our computation
model will always be robust parameterized arithmetic circuits. The inputs of these circuits will only
consist of standard variables.
From now on we have in mind a previously fixed shape when we refer to the branching-free

computation model we are going to introduce. We start with a given finite set of discrete families
of generic computations which constitute a shape as described before.

3.3.2.1. The notion of well behavedness under restrictions. A fundamental issue is how we recursively
transform a given input circuit into another one with the same parameter domain. During such a
transformation we make an iterative use of previously fixed generic computations. On their turn these
determine the corresponding recursive routine of our branching-free computation model.

We consider again our input circuit 8. We suppose that we have already chosen for each node p,
which depends at least on one of the input variables X1, .. ., X;, a generic computation

Ry (W,: X9,

RS?)(W/ﬁ Up, Yﬂ;x<p))’
R (Wi Up, Ypi X'7),
Rgg?i(wp; Yp,Zp;X(p)),
R (Wp: Y, Zp: X,

mul
REN(W,; Yy, Z,; X9,

and that this choice was made according to the label of p, namely X;, 1 < i < n, or addition of, or
multiplication or division by an essential parameter, or essential addition, multiplication or division.
Here we suppose that U, is a single variable, whereas W,, Y,, Z, and X may be arbitrary vectors of
variables.

Furthermore, we suppose that we have already precomputed for each node p of 8, which depends
at least on one input, a vector w,, of geometrically robust constructible functions defined on M. If p
is an input node we assume that w, is a vector of complex numbers. Moreover, we assume that the
length of w, equals the length of the variable vector W,. We call the entries of w, the parameters at
the node p of the routine 4 applied to the input circuit S.

We are now going to develop the routine « step by step. The routine - takes over all computations
of B which involve only parameter nodes, without modifying them.

Consider an arbitrary internal node p of 8 which depends at least on one input. The node p has
two ingoing edges which come from two other nodes of 8, say p; and p,. Suppose that the routine
#, on input B, has already computed two results, namely F,, and F,,, corresponding to the nodes
p1 and p,. Suppose inductively that these results are vectors of polynomials depending on those
standard input variables that occur in the vectors of the form X ) where p’ is any predecessor node
of p. Furthermore, we assume that the coefficients of these polynomials constitute the entries of a
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geometrically robust, constructible map defined on M. Finally we suppose that the lengths of the
vectors F,, and Y, (or U,) and F,, and Z, coincide.

The parameter vector w,, of the routine 4 forms a geometrically robust, constructible map defined
on M, whose image we denote by X ,. Observe that X, is a constructible subset of the affine space of
the same dimension as the length of the vectors w, and W,,. Denote by «, the vector of the restrictions
to X, of the canonical projections of this affine space. We consider X, as a new parameter domain
with basic parameters «,. For the sake of simplicity we suppose that the node p is labelled by a
multiplication. Thus the corresponding generic computation has the form

RO (W3 U, Y1 X (1)
or
Rinae(Wps Yy, Zp; X7, 2)

Let the specialized generic computations
RO (e, Uy, Yp, X)) and R (), Y, Zp, X))

be the by X, parameterized arithmetic circuits obtained by substituting in the generic computations
(1) and (2) for the vector of parameter variables W, the basic parameters «,. At the node p we shall
now make the following requirement on the routine -+ applied to the input circuit 3:

(A) The by X, parameterized arithmetic circuit which corresponds to the current case, namely
( . . y(p)
R (kp3 Uy, Y3 X2
or
(») . .
Rie (€3 Yo, Zp: x®,
should be consistent and robust.

Observe that the requirement (A) is automatically satisfied if all the generic computations of our
shape are realized by totally division-free ordinary arithmetic circuits.

Assume now that the routine 4 applied to the circuit g satisfies the requirement (A) at the node p
of B.

Let us first suppose that the node p is labelled by a multiplication involving an essential parameter.
Recall that in this case we assumed earlier that the length of the vector F,,, is one, that F,, is an essential
parameter of 8 and that the vectors F,, and Y, have the same length. Joining now with the generic
computation R (W,; U, Y,; X)) at W, U, and Y, the previous computations of w,, F,, and F,,
we obtain a parameterized arithmetic circuit with parameter domain M, whose final results are the
entries of a vector which we denote by F,,.

Suppose now that the node p is labelled by an essential multiplication. Recall again that in this
second case we assumed earlier the vectors F,, and Y, and F,, and Z,, have the same length. Joining
with the generic computation

Rg)lt(wp; Yo, Zp; X

u

at W,,Y, and Z, the previous computations of w,, F,, and F,, we obtain also a parameterized
arithmetic circuit with parameter domain M, whose final results are the entries of a vector which
we denote again by F,.

One deduces easily from our assumptions on w,, F,, and F,, and from the requirement (A) in
combination with Lemma 7 and Corollary 6, that in both cases the resulting parameterized arithmetic
circuit is robust if it is consistent. The other possible labellings of the node p by arithmetic operations
are treated similarly. In particular, in case that p is an input node labelled by the variable X;, 1 <i < n,

the requirement (A) implies that the ordinary arithmetic circuit Rg(f ) (wp; X (”)) is consistent and robust

and that all its intermediate results are polynomials in X over C (although R)(g)(wp; X®)Y may
contain divisions).
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In view of our comments in Section 3.3.1, we call the recursive routine 4 (on input g8) well
behaved under restrictions if the requirement (A) is satisfied at any node p of 8 which depends
at least on one input and if joining the corresponding generic computation with w,, F,, and F,,
produces a consistent circuit (observe that this last condition is automatically satisfied when the
specialized generic computation of (A) is totally division-free at each node). If the routine 4 is well
behaved under restrictions, then + transforms step by step the input circuit 8 into another consistent
robust arithmetic circuit, namely +(8), with parameter domain .M. Thus, well behavedness under
restrictions guarantees that the recursive routine 4 transforms robust parameterized arithmetic
circuits in robust ones.

As a consequence of the recursive structure of 4 (), each node p of B generates a subcircuit of
A (B) which we call the component of 4(8) generated by p. The output nodes of each component
of A(B) form the hypernodes of a hypergraph #.,, whose hyperedges are given by the paths
connecting the nodes of 4 (8) contained in distinct hypernodes of #,4(g). The hypergraph #,5) may
be shrunk to the DAG structure of 8 and therefore we denote the hypernodes of # 4, in the same
way as the nodes of 8. Notice that well behavedness under restrictions is in fact a property which
concerns the hypergraph # 4g).

We call 4 a (recursive) parameter routine if 4 does not introduce new standard variables. In the
previous recursive construction of the routine -+, the parameters at the nodes of 8, used for the
realization of the circuit A(f), are supposed to be generated by recursive parameter routines.

3.3.2.2. The notion of isoparametricity. We are now going to consider another requirement of our
recursive routine -, which will lead us to the notion of isoparametricity of . Isoparametricity will
guarantee that the recursive routine 4 may be specified (see Section 3.3.2.4).

Let us turn back to the previous situation at the node p of the input circuit 8. Notations and
assumptions will be the same as before. From Lemma 7 we deduce that the intermediate result of 8
associated with the node p, say G,,, is a polynomial in Xy, . . ., X, whose coefficients form the entries
of a geometrically robust, constructible map defined on M, say 6,. Let 7, be the image of this map
and observe that 7, is a constructible subset of a suitable affine space. The intermediate results of the
circuit #4(f8) at the elements of the hypernode p of F,4s) constitute a polynomial vector which we
denote by F,.

We shall now make another requirement on the routine »4 at the node p of g.

(B) There exists a geometrically robust constructible map o, defined on 7, such that o, o 6, constitutes
the coefficient vector of F,,.

In view of the comments made in Section 3.3.1 we call the recursive routine + isoparametric (on
input B) if requirements (A) and (B) are satisfied at any node p of 8 which depends at least on one
input.

Let assumptions and notations be as before and consider again the node p of the circuit 8. Assume
that the recursive routine -4 is well behaved under restrictions and denote by 7, the coefficient vector
of F,,. Observe that 7, is a geometrically robust constructible map defined on M. Assume, furthermore,
that +, applied to the circuit §, fulfils the requirement (B) at p. Then the topological robustness (which
is a consequence of the geometrical robustness) of o, implies that the following condition is satisfied:

(B') Let (uy)ren be a(not necessarily convergent ) sequence of parameter instances u, € M and let u € M
such that (6, (ux))ren converges to 6, (u). Then the sequence (T, (ux))ken is bounded.

Suppose now that the recursive routine + is well behaved under restrictions and satisfies instead
of (B) only condition (B’) at the node p of 8. Let u € M be an arbitrary parameter instance. Then
Theorem 3 implies that 7, takes on the set {u’ € M;6,(u') = 6,(u)} only finitely many values.
In particular, for 9, being the vanishing ideal of the C-algebra C[6,] at 6, (u), the entries of 7, are
integral over the local C-algebra C[6,, ]y, (the argument for that relies on Zariski’s Main Theorem and
is exhibited in [11, Sections 3.2 and 5.1]). This algebraic characterization implies that for givenu € M
all the sequences (t, (ux))ken Of condition (B’) have only finitely many distinct accumulation points.
This shows that requirement (B) and condition (B’) are closely related.

Adopting the terminology of [18], we call A coalescent (on input ), if 4 is well behaved under
restrictions and satisfies condition (B") for any node p of 8. Thus isoparametricity implies coalescence
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for -4, but not vice versa. Nevertheless the notions of isoparametricity and coalescence become quite
close for recursive routines which are well behaved under restrictions.

3.3.2.3. The notion of well behavedness under reductions. Suppose again that the recursive routine + is
well behaved under restrictions. We call A well behaved under reductions (on input ) if A(f) satisfies
the following requirement:

Let p and p’ be distinct nodes of B which compute the same intermediate results. Then the
intermediate results at the hypernodes p and p’ of # g, are identical. Mutatis mutandis the same
is true for the computation of the parameters of 4 at any node of B.

Assume that the routine + is recursive and well behaved under reductions. One verifies then easily
that, taking into account the hypergraph structure # g of 4(f8), any reduction procedure on § may
canonically be extended to a reduction procedure of 4(8).

In Section 3.3.1 we claimed that, cum grano salis, the requirement of well behavedness under
reductions implies the requirement of isoparametricity for recursive routines. We are going now to
prove this.

Let notations and assumptions be as before and let us analyse what happens to the recursive
routine »4 at the node p of . For this purpose we shall use the following broadcasting argument.

Recall that G, and the entries of F, are the intermediate results of 8 and A(f) associated with
p, Where p is interpreted as a node of the input circuit 8 in the first case and as a hypernode of
H.ap) in the second one. Moreover recall that G, is a polynomial in Xy, . . ., X;, that the geometrically
robust, constructible map 6, defined on M, represents the coefficient vector of G, and that the
irreducible constructible set 7, is the image of 6,. Observe that the entries of 6, may be computed
from gy, ..., 7 by arobust arithmetic circuit (e.g., by interpolation of G, in sufficiently generic points
of A™). We consider now the robust parameterized arithmetic circuit y, which realizes the following
trivial evaluation of the polynomial G,:

- compute simultaneously from 7y, ..., 7. all entries of 6, and from X, ..., X, all monomials
occurring in G,
- compute G, as a linear combination of the monomials of G, using as coefficients the entries of 6.

The circuit y, has a single output node, say p’, which computes the polynomial G,,.

Now we paste, as disjointly as possible, the circuit y, to the circuit 8 obtaining thus a new robust,
parameterized arithmetic circuit 8, with parameter domain .M. Observe that 8, contains 8 and y,, as
subcircuits and that p and p’ are distinct nodes of 8, which compute the same intermediate result,
namely G,. The entries of 6, are essential parameters of y, and hence also of 8,. We suppose now
that B, is, like 8, an admissible input for the recursive routine . Let F,» be a vector whose entries are
the intermediate results at the nodes of A(f,) contained in the hypernode p" of #,g,). Analysing
now how 4 operates on the structure of the subcircuit y, of 8,, we see immediately that there
exists a geometrically robust constructible map o, defined on 7, such that the composition map
o, o 6, constitutes the coefficient vector of F, . Since by assumption the recursive routine A is well
behaved under reductions and the intermediate results of 8, at the nodes p and p’ consist of the same
polynomial G,, we conclude that the intermediate results at the hypernodes p and p’ of #,s ,) are
also the same. Therefore we may assume without loss of generality F, = F,,. Hence the geometrically
robust, constructible map o, o 6, constitutes the coefficient vector of F,.

This proves that the recursive routine +4 satisfies, on input 8 and at the node p, the requirement (B).
Since B8 was an arbitrary admissible input circuit for the recursive routine A and p was an arbitrary
node of 8 which depends on at least one input, we may conclude that «4 is isoparametric. The only
assumption we made to draw this conclusion was that the extended circuit 8, is an admissible input
for the routine «. This conclusion is however not very restrictive because 8 and g, compute the same
final results.

3.3.2.4. Isoparametricity and program specification. In Section 3.3.1, we mentioned that isoparametric
routines are advantageous for program specification and verification. We are now going to explain
this.
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Let notations and assumptions be as before and let in particular 4 be a recursive routine of our
computation model which behaves well under restrictions. Assume that § is an admissible input for
4 and consider the specification language £ introduced in Section 3.1.2. Suppose that the routine 4
is given by an asserted program I7 formulated in the elementary Hoare Logics of £ [2]. The standard
model of the elementary theory of .£ provides us with the states which define the semantics of /7. The
asserted program I7 represents the routine + as a loop which transforms node by node the labelled
DAG structure of 8 into the labelled DAG structure of A(S).

At each step of the loop a purely syntactic action, namely a graph manipulation, takes place. This
action consists of the join of two or more labelled directed acyclic graphs. Simultaneously, in order to
guarantee the correctness of the program I7, a loop invariant, formulated in our specification language
L, has to be satisfied.

This involves the semantics of .£ consisting of the universe of all robust parameterized arithmetic
circuits. A loop invariant as above is given by a formula A (81, B2, M1, p1) of £ containing the free
variables 1, B, for circuits over the same parameter domain .M, and p; for a node of 8; and a linked
hypernode of f,, such that these free variables become instantiated by 8, A4(8), M and the node p
of B or the hypernode p of 4 (B). The variables UV, ..., U™ ... and the standard input variable

vectors XV, ..., X® . occur only bounded in A(B1, B2, M1, p1) and the variables p1, ..., oy, ...
occur all bounded except one, namely p;.
For w := (my, ..., ) and given variables X, X’ and p expressing a parameter instantiation, the

input variable vectors of 8 and A(8) and a node of 8, we denote by G,(8; ; X) and F, (A(B); m; X')
the function symbols (or vectors of them) which express the intermediate results of 8 or A4(8)
corresponding to p.

We require now that any formula of .£ built up by G,,, ..., G, and Fp{, R FP{" and containing
only 8, M and p; as free variables is equivalent to a formula built up only by G,,, ..., G, and
qu, el Gp[/' This implies that in £ the intermediate result F, of A(f) is definable in terms of the

intermediate result G, of 8. Applied to the node p of the concrete circuit 8 with parameter domain
M, this means that for 6, and 7, being the coefficient vectors of G,(8, 7, X) and F,(4(B), 7, X")
and 7, being the image of 6, there exists a constructible map o, with domain of definition 7, such
that t, = o, o 6, holds. In particular, for v, u” € M the assumption 0,(u') = 0,(u”) implies
T,(W) = 1,(W").

For the modelling of elimination algorithms this is a reasonable requirement (see Section 4). If we
require additionally that the transformation of G, (8, 7, X) into F,(A(B8), 7, X’) is continuous, then
the constructible map o, has to be geometrically robust (see Section 3.3.1).

In terms of the specification language .£, this reasoning may be formulated as follows.

Let B4, B2, M1 and p; be variables for robust parameterized arithmetic circuits, their parameter
domains and their (hyper)nodes. We assume that there exist a formula

9(1317 /32! CMlv 101)

in the free variables 1, 82, M1, p1 such that for any concrete, for 4 admissible circuit 8 with
parameter domain M and basic parameter vector v and for any node p of 8 the following condition
is satisfied:

(%) £2(8, A(B), M, p) determines the polynomial F,(+4(B), , X’) in terms of G, (8, 7, X).

If £ and 4 satisfy this assumption we say in the spirit of Hoare Logics that .£ is expressive for the
routine A.

Observe that condition (x) guarantees that a postcondition for the circuit 4(8) can always be
translated into an equivalent precondition for the circuit §.

3.3.2.5. Operations with routines. Let 4 and B be recursive routines as before and suppose that they
are well behaved under restrictions and isoparametric or even well behaved under reductions. Assume
that 4(8) is an admissible input for 8. We define the composed routine B o « in such a way that
(B o A)(B) becomes the parameterized arithmetic circuit B(4(8)). Since the routines A and 8B are
well behaved under restrictions, we see easily that (8 o +)() is a consistent, robust parameterized
arithmetic circuit with parameter domain M. From Lemma 7 and Corollary 6 we deduce that 8 o 4
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is a isoparametric recursive routine if 4 and $B are isoparametric. In case that 4 and 8 are well
behaved under reductions, one verifies immediately that 8B o + is also well behaved under reductions.
Therefore, under these assumptions, we shall consider 8 o + also as a routine of our computation
model.

Unfortunately, the composition of two arbitrary coalescent recursive routines need not to be
coalescent. Therefore we shall focus in the sequel our attention on isoparametric recursive routines
as basic building blocks of the branching-free computation model we are going to introduce.

The identity routine is trivially well behaved under restrictions and reductions and in particular
isoparametric.

Let A and 8B be two routines of our computation model and suppose for the sake of simplicity
that they are recursive and well behaved under restrictions. Assume that the robust parameterized
arithmetic circuit 8 is an admissible input for 4 and 8 and that there is given a one-to-one
correspondence ) which identifies the output nodes of 4(8) with the input nodes of 8(8). Often,
for a given input circuit 8, the correspondence X is clear by the context. If we limit ourselves to input
circuits 8 where this occurs, we obtain from 4 and B a new routine, called their join, which transforms
the input circuit 8 into the output circuit B(8) *; A(B) (here we suppose that B(f8) *; A(B) is
consistent). Analysing now B(f) %, 4(8), we see that the join of 4 with B is well behaved under
restrictions in the most obvious sense. Since by assumption the routines 4 and 8 are recursive,
the circuits A(8) and B(B) inherit from 8 a superstructure given by the hypergraphs # ) and
Haz(p). Analysing again this situation, we see that any reduction procedure on 8 can be extended
in a canonical way to the circuit 8(8) *, (). This means that the join of A with B is also well
behaved under reductions if the same is true for 44 and 8. More caution is at order with the notions
of isoparametricity and coalescence. In a strict sense, the join of two isoparametric or coalescent
recursive routines 4 and B is not necessarily isoparametric or coalescent. However, conditions (B)
or (B') are still satisfied between the output nodes of 8 and B(B) *; 4(8). A routine with one of
these two properties is called output isoparametric or output coalescent, respectively.

The union of the routines A and B assigns to the input circuit 8 the juxtaposition of A(S) and
B(B). Thus, on input B, the final results of the union of 4 and B are the final results of A(8) and
B(B) (taken separately in case of ambiguity). The union of 4 and 8B behaves well under restrictions
and reductions and is isoparametric if the same is true for 4 and 3.

Observe also that for a recursive routine 4 which behaves well under restrictions and reductions
the following holds: let 8 be a robust parameterized arithmetic circuit that broadcasts to a circuit g*
and assume that 8 and B8* are admissible circuits for 4. Then 4(8) broadcasts to 4 (5*).

3.3.2.6. End of the description of the branching-free computation model. From these considerations we
conclude that routines, constructed as before by iterated applications of the operations isoparametric
recursion, composition, join and union, are still, in a suitable sense, well behaved under restrictions
and output isoparametric. If only recursive routines become involved that behave well under
reductions, we may also allow broadcastings at the interface of two such operations.

This remains true when we introduce, as we shall do now, in our computational model the
following additional type of routine construction.

Let B be the robust, parameterized circuit considered before, and let R(W; Y; X) be a generic
computation belonging to our shape list. Let wg be a precomputed vector of geometrically robust
constructible functions with domain of definition M and suppose that wg and W have the same vector
length and that the entries of wg are the final results of an output isoparametric parameter routine
applied to the circuit . Moreover suppose that the final results of 8 form a vector of the same length
asy.

Let X be the image of wg. Observe that X is a constructible subset of the affine space which has
the same dimension as the vector length of W. Denote by « the vector of the restrictions to X of the
canonical projections of this affine space. We denote by R(«; Y; X) the ordinary arithmetic circuit over
C obtained by substituting in the generic computation R(W; Y; X) the vector of parameter variables
W by k. We shall now make the following requirement:

(C) The ordinary arithmetic circuit R(«; Y; X) should be consistent and robust.
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Observe that requirement (C) is obsolete when R(W; Y; X) is a totally division-free ordinary
arithmetic circuit.

Suppose now that requirement (C) is satisfied. A new routine, say 8, is obtained in the following
way: on input 8 the routine 8 joins with the generic computation R(W; Y; X) at W and Y the previous
computation of wg and the circuit .

From Lemma 7 and Corollary 6 we deduce that the resulting parameterized arithmetic circuit
B(B) has parameter domain M and is robust if it is consistent. We shall therefore require that B(f)
is consistent (this condition is automatically satisfied if R(«x; Y; X) is essentially division-free). One
sees immediately that the routine 8 is well behaved under restrictions and reductions and is output
isoparametric.

From now on we shall always suppose that all our recursive routines are isoparametric and that
requirement (C) is satisfied when we apply this last type of routine construction.

An elementary routine of our simplified branching-free computation model is finally obtained by
the iterated application of all these construction patterns, in particular the last one, isoparametric
recursion, composition, join and union. As far as only recursion becomes involved that is well behaved
under reductions, we allow also broadcastings and reductions at the interface of two constructions. Of
course, the identity routine belongs also to our model. The set of all these routines is therefore closed
under these constructions and operations.

We call an elementary routine essentially division-free if it admits as input only essentially division-
free, robust parameterized arithmetic circuits and all specialized generic computations used to
compose it are essentially division-free. The outputs of essentially division-free elementary routines
are always essentially division-free robust circuits. The set of all essentially division-free elementary
routines is also closed under the mentioned constructions and operations.

We have seen that elementary routines are, in a suitable sense, well behaved under restrictions. In
the following statement we formulate explicitly the property of an elementary routine to be output
isoparametric. This will be fundamental in our subsequent complexity considerations.

Proposition 8. Let 4 be an elementary routine of our branching-free computation model. Then A is
output isoparametric. More explicitly, let 8 be a robust, parameterized arithmetic circuit with parameter
domain M. Suppose that § is an admissible input for 4. Let 6 be a geometrically robust, constructible map
defined on M such that 6 represents the coefficient vector of the final results of B and let 7 be the image
of 6. Then T is a constructible subset of a suitable affine space and there exists a geometrically robust,
constructible map o defined on 7 such that the composition map o o 6 represents the coefficient vector of
the final results of A(B).

A complete proof of this proposition follows with some extra work from our previous argumenta-
tion and will be omitted here. In case that «4 is a recursive routine, Proposition 8 expresses nothing
but the requirement (B) applied to the output nodes of §.

Let assumptions and notations be as in Proposition 8 and suppose that there is given a (not
necessarily convergent) sequence (uy)ren Of parameter instances u; € M and that there exists a
(possibly unknown) parameter instance u € M such that the sequence (6 (uy))ken converges to
6 (u). In the spirit of [1], [42, Section A] and [9] the sequence of (not necessarily consistent) ordinary
arithmetic circuits (8®)),cy represents an approximative algorithm for the instantiation of the final
results of 8 at u. From Theorem 4 we conclude that the constructible map o is strongly continuous and
therefore the sequence (4(8) )y represents also an approximative algorithm for the instantiation
of the final results of A(B8) at u.

One sees easily that this property characterizes output parametricity of routines which are well
behaved under restrictions.

Let us observe that Proposition 8 implies the following result.

Corollary 9. Let assumptions and notations be as in Proposition 8. Then the routine # is output coalescent

and satisfies the following condition:

(%) Let u be an arbitrary parameter instance of M and let 90, be the vanishing ideal of the C-algebra C[0]
at the point 6 (u). Then the entries of the coefficient vector of the final results of A () are integral over
the local C-algebra C[0]ay,.
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The output coalescence of 4 and condition (x) are straight-forward consequences of the
output isoparametricity of 4. We remark here that condition () follows already directly from the
output coalescence of ». This highlights again the close connection between isoparametricity and
coalescence. The argument requires Zariski’s Main theorem. For details we refer to [11, Sections 3.2
and 5.1].

3.3.3. The extended computation model

We are now going to extend our simplified branching-free computation model of elementary
routines by a new model consisting of algorithms and procedures which may contain some limited
branchings. Our description of this model will be rather informal. An algorithm will be a dynamic DAG
of elementary routines which will be interpreted as pipes. At the end points of the pipes, decisions may
be taken which depend on testing the validity of suitable universally quantified Boolean combinations
of equalities between robust constructible functions defined on the parameter domain under
consideration. The output of such an equality test is a bit vector which determines the next elementary
routine (i.e., pipe) to be applied to the output circuit produced by the preceding elementary routine
(pipe). This gives rise to an extended computation model which contains branchings. These branchings
depend on a limited type of decisions at the level of the underlying abstract data type, namely the
mentioned equality tests. We need to include this type of branchings in our extended computation
model in order to capture the whole spectrum of known elimination procedures in effective Algebraic
Geometry. Because of this limitation of branchings, we shall call the algorithms of our model branching
parsimonious (compare [21,11]). A branching parsimonious algorithm 4 which accepts a robust
parameterized arithmetic circuit 8 with parameter domain M as input produces a new robust circuit
A4 (B) with parameter domain M. In particular 4 (8) does not contain any branchings.

Recall that our two main constructions of elementary routines depend on a previous selection of
generic computations from a given shape list. This selection may be handled by calculations with the
indexing of the shape list. We shall think that these calculations become realized by deterministic
Turing machines. At the beginning, for a given robust parametric input circuit 8 with parameter
domain M, a tuple of fixed (i.e., of 8 independent) length of natural numbers is determined. This
tuple constitutes an initial configuration of a Turing machine computation which determines the
generic computations of our shape list that intervene in the elementary routine under construction.
The entries of this tuple of natural numbers are called invariants of the circuit 8. These invariants,
whose values may also be Boolean (i.e., realized by the natural numbers 0 or 1), depend mainly on
algebraic or geometric properties of the final results of 5. However, they may also depend on structural
properties of the labelled DAG g.

For example, the invariants of 8 may express that 8 has r parameters, n inputs and outputs, (over
C) non-scalar size and depth at most L and [, that g is totally division-free, that the final results of 8
have degree at most d < 2! and that for any parameter instance their specializations form a reduced
regular sequence in C[Xy, ..., X;,], where X1, .. ., X, are the inputs of 8.

Some of these invariants (e.g., the syntactical ones like number of parameters, inputs and outputs
and non-scalar size and depth) may simply be read-off from the labelled DAG structure of 8. Others,
like the truth value of the statement that the specializations of the final results of 8 at any parameter
instance form a reduced regular sequence, have to be precomputed by an elimination algorithm from
a previously given software library in effective Commutative Algebra or Algebraic Geometry or their
value has to be fixed in advance as a precondition for the elementary routine which becomes applied
to 8.

In the same vein we may equip any elementary routine 4 with a Turing computable function which
from the values of the invariants of a given input circuit 8 decides whether 8 is admissible for +,
and, if this is the case, determines the generic computations of our shape list which intervene in the
application of 4 to B.

We shall now go a step further letting depend the internal structure of the computation on the
circuit 8. In the simplest case this means that we admit that the vector of invariants of 8, denoted
by inv(B), determines the architecture of a first elementary routine, say #inys), Which admits 8 as
input. Observe that the architectures of the elementary routines of our computation model may be
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characterized by tuples of fixed length of natural numbers. We consider this characterization as an
indexing of the elementary routines of our computation model. We may now use this indexing in
order to combine dynamically elementary routines by composition, join and union. Let us restrict our
attention to the case of composition. In this case the output circuit of one elementary routine is the
input for the next routine. The elementary routines which compose this display become implemented
as pipes which start with a robust input circuit and end with a robust output circuit. Given such a pipe
and an input circuit y for the elementary routine B representing the pipe, we may apply suitable
equality tests to the final results of 8(y) in order to determine a bit vector which we use to compute
the index of the next elementary routine (seen as a new pipe) which will be applied to 8(y) as input.

A low level program of our extended computation model is now a text, namely the transition table
of a deterministic Turing machine, which computes a function i realizing the following tasks.

Let as before 8 be a robust parameterized arithmetic circuit. Then i returns first on input inv(8)
a Boolean value, zero or one, where one is interpreted as the informal statement “4 is an admissible
input”. If this is the case, then v returns on inv(8) the index of an elementary routine, say inv(g),
which admits 8 as input. Then ¥ determines the equality tests which have to be realized with the
final results of Ainy(g) (8). Depending on the outcome of these equality tests y» determines an index
value corresponding to a new elementary routine which admits Ay g)(8) as input. Continuing in
this way one obtains as end result an elementary routine 4, which applied to 8, produces a final
output circuit 4® (8). The function v represents all these index computations. We denote by 1/ (8)
the dynamic vector of all data computed by ¥ on input B.

The algorithm represented by 1 is the partial map between robust parametric arithmetic circuits
that assigns to each admissible input S the circuit 4’ (8) as output. Observe that elementary routines
are particular algorithms. This kind of algorithms constitute our extended computation model. We
remark that any algorithm of this model is output isoparametric. If the pipes of an algorithm are all
represented by essentially division-free elementary routines, we call the algorithm itself essentially
division-free.

One sees easily that the “Kronecker algorithm” [25] (compare also [23,19,24]) for solving non-
degenerate polynomial equation systems over the complex numbers may be programmed in our
extended computation model. Observe that the Kronecker algorithm requires more than a single
elementary routine for its design. In order to understand this, recall that the Kronecker algorithm
accepts as input an ordinary division-free arithmetic circuit which represents by its output nodes a
reduced regular sequence of polynomials Gy, ..., G, belonging to C[Xj, ..., X,]. In their turn, the
polynomials Gy, ..., G, determine a degree pattern, say A = (§1,...,6,), with §; := deg{G; =
0,....,G=0}for1<i<n.

After putting the variables X1, . . ., X, in generic position with respect to Gy, . . ., G, the algorithm
performs n recursive steps to eliminate them, one after the other. Finally the Kronecker algorithm
produces an ordinary arithmetic circuit which computes the coefficients of n + 1 univariate

polynomials P, Vq, ..., V, over C. These polynomials constitute a “geometric solution” (see [25]) of
the equation system G; = 0,...,G, = 0 because they represent the zero dimensional algebraic
variety V := {G; = 0, ..., G, = 0} in the following “parameterized” form:

Vo= {(Vi(D), ..., Va(t)); t € C, P(t) =0}.

Let B be any robust, parameterized arithmetic circuit with the same number of inputs and outputs, say
X1, ..., Xy, and G1(U, Xy, ...,Xy),...,Gu(U, Xq, ..., Xpy), respectively. Suppose that the parameter
domain of B, say M, is irreducible and that inv(8) expresses that for each parameter instance
u € M the polynomials G (u, X1, ..., Xp), ..., Gy,(u, Xy, ..., X,) form a reduced regular sequence
in C[Xy, ..., X,] with fixed (i.e., from u € M independent) degree pattern. Suppose, furthermore,
that the degrees of the individual polynomials G (u, X1, ..., Xy), ..., Ga(u, X, ..., Xy) are also fixed
and that the variables Xy, ..., X, are in generic position with respect to the varieties {G(u, X) =
0,...,Gi(u,X) =0}, 1 <i < n.Then,oninput 8, the Kronecker algorithm runs a certain number
(which depends on A) of elementary routines of our computation model which finally become
combined by consistent iterative joins until the desired output is produced.

Another non-trivial example for an algorithm of our extended computation model, which involves
only limited branchings, is the Gaussian elimination procedure of [14] (or [4]) applied to matrices
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whose entries are polynomials represented by ordinary arithmetic circuits in combination with a
identity-to-zero test for such polynomials. The variables of these polynomials are considered as basic
parameters and any admissible input circuit has to satisfy a certain precondition formulated as the
non-vanishing of suitable minors of the given polynomial matrix. Details and applications of this type
of Gaussian elimination for polynomial matrices can be found in [29].

3.3.3.1. Procedures. We say that a given algorithm A of our extended model computes (only)
parameters if 4 satisfies the following condition:

for any admissible input B the final results of A(B) are all parameters.

Suppose that « is such an algorithm and g is the robust parametric arithmetic circuit with
parameter domain M which we have considered before. Observe that 4(8) contains the input
variables X1, ..., X, and that possibly new variables, which we call auxiliary, become introduced
during the execution of the algorithm + on input . Since the algorithm + computes only parameters,
the input and auxiliary variables become finally eliminated by the application of recursive parameter
routines and evaluations. We may therefore collect garbage in order to reduce 4 () to a final output
circuit Agna (8) whose intermediate results are only parameters.

If we consider the algorithm 4 as a partial map which assigns to each admissible input circuit 8
its final output circuit #Agna(8), we call 4 a procedure.

In this case, if ¢ is a low level program defining -4, we call v a low level procedure program.

A particular feature of our extended computation model is the following: there exists a non-
negative integer f (depending on the recursion depth of ) and non-decreasing real valued functions
G > 0,...,Cp > 0 depending on one and the same dynamic integer vector, such that with the
previous notations and Lg, L) denoting the non-scalar sizes of the circuits 8 and #4(8) the condition

Lag) < GBI + - + Co(¥ (B))

is satisfied.

In the case of the Kronecker algorithm (and most other elimination algorithms of effective
Algebraic Geometry) we have f := 1, because the recursion depth of the basic routines which
intervene is one.

In the sequel we shall need a particular variant of the notion of a procedure which enables us to
capture the following situation.

Suppose we have to find a computational solution for a formally specified general algorithmic
problem and that the formulation of the problem depends on certain parameter variables, say
Ui, ..., U, input variables, say Xi, ..., X, and output variables, say Y1, ..., Y;. Let such a problem
formulation be given and suppose that its input is implemented by the robust parameterized
arithmetic circuit 8 considered before, interpreting the parameter variables Uy, ..., U, as the basic
parameters 7y, . . ., 7.

Then an algorithm 4 of our extended computation model which solves the given algorithmic
problem should satisfy the architectural requirement we are going to describe now.

The algorithm + should be the composition of two subalgorithms 4" and A® of our computation
model which satisfy on input § the following conditions:

(i) The subalgorithm AM computes only parameters, 8 is admissible for A" and none of the

indeterminates Y1, . .., Ys is introduced in A (8) as auxiliary variable (all other auxiliary variables
become eliminated during the execution of the subalgorithm A" on the input circuit ).

(ii) The circuit AL, (B) is an admissible input for the subalgorithm 4@, the indeterminates Yy, .. ., Ys
occur as auxiliary variables in A® (A (8)) and the final results of 4@ (A% (8)) depend only on
nl,...,nranle,...,YS.

To the circuit AQ)(A“) (B)) we may, as in the case when we compute only parameters, apply

final
garbage collection. In this manner 4® (Aéi]n)al (B)) becomes reduced to a final output circuit #Agpa(8)

with parameter domain M which contains only the inputs Yy, ..., Y.
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Observe that the subalgorithm 4" is by Proposition 8 an output isoparametric procedure of our
extended computation model (the same is also true for the subalgorithm 4%, but this will not be
relevant in the sequel).

We consider the algorithm -, as well as the subalgorithms 4™ and A®, as procedures of our
extended computation model. In case that the subprocedures A and 4A® are essentially division-
free, we call also the procedure A essentially division-free. This will be of importance in Section 4.

The architectural requirement given by conditions (i) and (ii) may be interpreted as follows:
the subprocedure A" is a pipeline which transmits only parameters to the subprocedure 4®. In
particular, no (true) polynomial is transmitted from 4™ to A®.

Nevertheless, let us observe that on input 8 the procedure A establishes by means of the
underlying low level program v an additional link between 8 and the subprocedure 4® applied
to the input A1 (). The elementary routines which constitute 4® on input 4 (8) become
determined by index computations which realizes ¢ on inv(8) and certain equality tests between the
intermediate results of 4 (). In this sense the subprocedure 4! transmits not only parameters to
the subprocedure but also a limited amount of digital information which stems from the input circuit
B.

The decomposition of the procedure s into two subprocedures 4" and 4® satisfying conditions
(i) and (ii) represents an architectural restriction which is justified when it makes sense to require that
on input B the number of essential additions and multiplications contained in g, (8) is bounded
by a function which depends only on inv(f). In Section 4.1, we shall make a substantial use of this
restriction and give such a justification in the particular case of elimination algorithms.

Here, we shall only point out the following consequence of this restriction. Let assumptions and
notations be as before, let G, v and F be vectors composed by the final results of 8, A (8) and
Asinal (B), respectively, and let 6 and ¢ be the coefficient vectors of G and F. Then the images of 6 and
v are constructible subsets 7 and 7’ of suitable affine spaces and there exist geometrically robust
constructible maps o and ¢’ defined on 7 and 7' withv =0 ofandgp =0’ ov =0" 00 0 6.

Based on [31,22], we shall develop in future work a high level specification language for algorithms
and procedures of our computation model. The idea is to use the generalized variant of the extended
constraint data base model introduced in [31] in order to specify algorithmic problems in symbolic
Scientific Computing, especially in effective Algebraic Geometry. In this sense the procedure 4, which
solves the algorithmic problem considered before, will turn out to be a query computation composed
by two subprocedures namely 4™ and 4® which compute each a subquery of the query which
specifies the given algorithmic problem. All these queries are called geometric because the procedures
AD | A® and 4 are output isoparametric (see [22]).

4. Applications of the extended computation model to complexity issues of effective elimination
theory

In this section we shall always work with procedures of our extended, branching parsimonious
computation model. We shall study representative examples of elimination problems in effective
Algebraic Geometry which certify, to a different extent, that branching parsimonious elimination
procedures based on our computation paradigm cannot run in polynomial time.

4.1. Flat families of zero-dimensional elimination problems

We first introduce, in terms of abstract data types, the notion of a flat family of zero-dimensional
elimination problems (see also [21,11]). Then we fix the classes of (concrete) objects, namely robust
parameterized arithmetic circuits with suitable parameter domains, which represent (“implement”)
these problems by means of a suitable abstraction function.

Throughout this section, we suppose that there are given indeterminates Uy, ..., U, X1, ..., X,
and Y over C.

As concrete objects we shall consider robust parameterized arithmetic input and output circuits
with parameter domain A". The indeterminates Uy, . . ., U, will play the role of the basic parameters.
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The input nodes of the input circuits will be labelled by X, ..., X, whereas the output circuits will
have a single input node, labelled by Y.
Let us now define the meaning of the term “flat family of zero-dimensional elimination problems”

(in the basic parameters Uy, ..., U, and the inputs X, ...,X;,). Let U := (Uq,...,U;) and X =
(Xq,...,Xy) and let Gq,...,G, and H be polynomials belonging to the C-algebra C[U, X] =
ClUy,...,U;, X4, ..., X,]. Suppose that the polynomials G, ..., G, form a regular sequence in

C[U, X], thus defining an equidimensional subvariety V := {G; =0, ..., G, = 0} of the (n + r)-
dimensional affine space A" x A". The algebraic variety V has dimension r. Let § be the (geometric)
degree of V (observe that this degree does not take into account multiplicities or components at
infinity). Suppose, furthermore, that the morphism of affine varieties # : V — A', induced by the
canonical projection of A" x A" onto A", is finite and generically unramified (this implies that 7 is flat

and that the ideal generated by Gy, . .., G, in C[U, X] is radical). Let 7 : V — A™*! be the morphism
defined by 7 (v) = (;r(v), H(v)) for any point v of the variety V. The image of 7 is a hypersurface
of A™! whose minimal equation is a polynomial of C[U, Y] := C[Uy, ..., U, Y] which we denote by

F. Let us write degF for the total degree of the polynomial F and degy F for its partial degree in the
variable Y. Observe that F is monic in Y and that degF < § degH holds. Furthermore, for a Zariski
dense set of points u of A", we have that degy F is the cardinality of the image of the restriction of H
to the finite set 7 = (u). The polynomial F (U, H) vanishes on the variety V.

Let us consider an arbitrary point u := (uq, ..., u,;) of A". For given polynomials A € C[U, X]
and B € CJ[U,Y], we denote by A® and B® the polynomials A(us, ..., ur,Xs,...,X,) and
B(uy, ..., u, Y) which belong to C[X] := C[Xq, ..., X,] and C[Y] respectively. Similarly we denote
for an arbitrary polynomial C € C[U] by C® the value C(uy, . . ., u;) which belongs to the field C. The
polynomials G(u), e, Gﬁ,”) define the zero-dimensional subvariety

v =6 =0,....60 =0} =7 '

of the affine space A™. The degree (i.e., the cardinality) of V™ is bounded by §. Denote by #® : V® —
A the morphism induced by the polynomial H™ on the variety V®. Observe that the polynomial
F® vanishes on the (finite) image of the morphism 7 ™. Observe also that the polynomial F® is not
necessarily the minimal equation of the image of 7 ™.

We call the equation system G; = 0,...,G, = 0 and the polynomial H a flat family of
zero-dimensional elimination problems depending on the basic parameters Uy, ..., U, and the inputs
X1, ..., X, and we call F the associated elimination polynomial. A point u € A’ is considered as
a parameter instance which determines a particular problem instance, consisting of the equations
G =0,...,G" = 0and the polynomial H®. A power of the polynomial F® is called a solution of
this particular problem instance.

We suppose now that the given flat family of elimination problems is implemented by an
essentially division-free, robust parameterized arithmetic circuit 8 with parameter domain A" and
inputs Xy, ..., X,,, whose final results are the polynomials G4, . . ., G, and H. The task is to find another
essentially division-free, robust parameterized arithmetic circuit y with parameter domain A" having
a single output node which computes for a suitable integer ¢ € N the power F? of the associated
elimination polynomial F. We suppose, furthermore, that this goal is achieved by the application of
an essentially division-free procedure 4 of our extended computation model to the input circuit 8.
Thus we may put y := Agna(B) and y may be interpreted as an essentially division-free circuit over
C[U] with a single input Y (observe that the parameters computed by the robust circuits 8, 4(8)
and Agna(B) are geometrically robust constructible functions with domain of definition A™ which
belong by [18, Corollary 12] to the C-algebra C[U]). Using the geometric properties of flat families
of zero-dimensional problems, we deduce from [23,19,24,25] or alternatively from [10,13] that
such essentially division-free procedures always exist and that they compute even the elimination
polynomial F (the reader may notice that one needs for this argument the full expressivity of our
computation model which includes divisions by parameters).

We say that the essentially division-free procedure 4 solves algorithmically the general instance of
the given flat family of zero-dimensional elimination problems if A computes F or a power of it.
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From now on we suppose that there is given a procedure 4 of our extended computation model,
decomposed in two essentially division-free subprocedures 4™ and 4 as in Section 3.3.3, such that
A solves algorithmically the general instance of any given flat family of zero-dimensional elimination
problems. Our circuit g is therefore an admissible input for +4 and hence for A, The final results
of A (B) constitute a geometrically robust constructible map v defined on A" which represents

by means of A;Qa, (B) an admissible input for the procedure 4A®. Moreover, y = sgna(8) is an
essentially division-free parameterized arithmetic circuit with parameter domain A" and input Y.

Let 8 be the image of the geometrically robust constructible map v. Then 4§ is an irreducible
constructible subset of a suitable affine space. Analysing now the internal structure of the essentially
division-free, robust parameterized arithmetic circuit 4 (AM (B8)), one sees easily that there exists
a geometrically robust constructible map v defined on & such that the entries of the geometrically
robust composition map v* := i o v constitute the essential parameters of the circuit y. Let m be
the number of components of the map v*. Since v and v* are composed by geometrically robust
constructible functions defined on A", we deduce from [18, Corollary 12] that v and v* may be
interpreted as vectors of polynomials of C[U].

The circuit y is essentially division-free. Hence there exists a vector w of m-variate polynomials
over C such that the polynomials of C[U], which constitute the entries of w(v*), become the
coefficients of the elimination polynomial F with respect to the main indeterminate Y (see [39, Section
2.1]). Observe that we may write w(v*) = wo v* interpreting the entries of v* as polynomials of C[U].

We are now going to see what happens at a particular parameter instance u € A" Since 8, A1 (8),
A(B) and y = Agna(B) are essentially division-free, robust parameterized arithmetic circuits with
parameter domain A", we may specialize the vector U of basic parameters to the parameter instance
u € AT, obtaining thus ordinary division-free arithmetic circuits over C with the same inputs.
We denote them by the superscript u, namely by 8™, (A ()W, (A(B)® and y®. One sees
immediately that G, ..., G and H® are the final results of 8®, that the entries of v(u) are the
final results of (4™ (8))® and that (F®)4 is the final result of A(8)® and y ™. Observe that the
division-free circuit y ™ uses only the entries of v*(u) and fixed rational numbers as scalars.

In the same spirit as before, we say that the procedure A solves algorithmically the particular
instance, which is determined by u, of the given flat family of zero-dimensional elimination problems.

Let us here clarify how all this is linked to the rest of the terminology used in [11]. In this
terminology the polynomial map given by w defines a “holomorphic encoding” of the set of solutions
of all particular problem instances and v*(u) is a “code” of the particular solution (F®)4, In the
same context the robust constructible map v* is called an “elimination procedure” which is “robust”
since the procedure 4" is output isoparametric and since v* is geometrically robust (compare
[11, Definition 5], taking into account Lemma 7, Proposition 8 and Corollary 9 above).

In this sense, we speak about families of zero-dimensional elimination problems and their instances
and not simply about a single (particular or general) zero-dimensional elimination problem.

Let us now turn back to the discussion of the given essentially division-free procedure 4
which solves algorithmically the general instance of any flat family of zero-dimensional elimination
problems.

We are now going to show the main result of this paper, namely that the given procedure - cannot
run in polynomial time.

Theorem 10. Let notations and assumptions be as before. For any natural number n there exists an

essentially division-free, robust parameterized arithmetic circuit 8, with basic parameters T, Uy, ..., U,
and inputs X1, ..., X, which for U .= (Uy,...,Uy) and X = (Xq,...,X,) computes polynomials
Gﬁ”), ...,G e C[X]and H™ e C[T, U, X] such that the following conditions are satisfied:
(i) The equation system G\” = 0,...,Gu” = 0 and the polynomial H™ constitute a flat family of
zero-dimensional elimination problems, depending on the parameters T, Uy, ..., U, and the inputs
Xy, ..., Xy, with associated elimination polynomial F™ e C[T, U, Y].
(ii) By is an ordinary division-free arithmetic circuit of size O(n) over C with inputs T, Uy, ..., Uy,

X1,y X
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(iii) v = Amna(Bn) is an essentially division-free, robust parameterized arithmetic circuit with basic
parameters T, Uy, ..., U, and input Y such that y, computes for a suitable integer q, € N the
polynomial (F™)%. The circuit y, performs at least 9(2%) essential multiplications and at least
£2(2™) multiplications with parameters. Therefore y, has, as ordinary arithmetic circuit over C with
inputs T, Uy, ..., U, and Y, non-scalar size at least §2(2").

Proof. During our argumentation we shall tacitly adapt to the new context the notations introduced
before. We shall follow the main technical ideas behind the papers [21,11,18]. We fix now the natural
number n and consider the polynomials

G =G =X —Xy,...,Gpi=GC" 1= X — X,
and

H:=H® = Z 25X 4+ T H 1+ U — DX)

1<i<n 1<i<n

which belong to C[X] and to CI[T, U, X], respectively.

Observe that Gy, ..., G, and H may be evaluated by a division-free ordinary arithmetic circuit
B := Bnover C which has non-scalar size O(n) and inputs T, Uy, ..., Uy, X, ..., X,.As parameterized
arithmetic circuit 8 is therefore robust. Hence j satisfies condition (ii) of the theorem.

One sees easily that G; = 0,...,G, = 0 and H constitute a flat family of zero-dimensional
elimination problems depending on the parameters T, Uy, ..., U, and the inputs X1, ..., X,.

Let us write H as a polynomial in the main indeterminates Xy, ..., X, with coefficients 6, ., €
C[T, U], k1, ..., kq € {0, 1}, namely

— K1 Kn
= Y XX

K1yeees xkn€f{0,1}
Observe that for k1, ..., k; € {0, 1} the polynomial ,, . ., (0, U) € C[U] is of degree at most zero,
i.e., a constant complex number, independent of Uy, ..., Uy.

LetO := (Oc,,...n)xy,...cnef0,1y and observe that the vector 6 (0, U) is a fixed point of the affine space

AZ". We denote by 91 the vanishing ideal of the C-algebra C[8] at this point.
Consider now the polynomial

F=F":= T] (y - <j+T I1 UF“))
0<j<21—1 1<i<n

of C[T, U, Y], where [j]; denotes the i-th digit of the binary representation of the integerj, 0 < j <
2" —1, 1 <i<n.letq:= qp. '

From the identity [T.c;q. 0 (Y —H(T, U, €)) = [Tojcpn_; (Y —G+T [ 1,21, U'")) one deduces that
F is the elimination polynomial associated with the given flat family of zero-dimensional elimination
problems G; =0, ...,G, = 0and H.

Let us write F9 as a polynomial in the main indeterminate Y with coefficients ¢, € C[T, U], 1 <
k < 2"g, namely

FI=Y2 4 o v2' 0 o o,
Observe that for 1 < « < 2"q the polynomial ¢, (0,U) € C[U] is of degree at most zero. Let
A = @c(0,U), A := (A)1<e<ong and @ = (@) 1<c<2nq. Observe that A is a fixed point of the affine
space A2"9,
Recall that g is an admissible input for the procedure 4 and hence for 4", that the final results of
AD (B) constitute the entries of the robust constructible map v defined on A", that v represents (by
means of the circuit Aéiln)al (B)) an admissible input for the procedure A® and that y = Agna(8) is an

essentially division-free, parameterized arithmetic circuit with parameter domain A™! and input Y.
Furthermore, recall that there exists a geometrically robust constructible map i defined on the
image 4 of v such that the entries of v* = ¥ o v constitute the essential parameters of the circuit
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y, that the entries of v and v* may be interpreted as polynomials of C[T, U] and that for m being
the number of components of the map v*, there exists a vector w of m-variate polynomials over C
such that the polynomials of C[T, U] which constitute the entries of w(v*) = w o v* become the
coefficients of the polynomial F¢ with respect to the main indeterminate Y. Let 7 be the image of
the coefficient vector 6 of H, and interpret 6 as a geometrically robust constructible map defined on
A™1, Observe that 7 is a constructible subset of A". Since H is the unique final result of the circuit B
which depends on parameters, we deduce from Proposition 8 that there exists a geometrically robust
constructible map o defined on 7 satisfying the condition v = o o 6. This implies v* = ¢y oo 0 0
and, following Definition 6(i) and [18, Corollary 12], that the entries of v* are polynomials of C[T, U]
which are integral over the local C-subalgebra C[6 ]y of C(T, U).

Let u € C[T, U] be such an entry. Then there exists an integer s and polynomials ag, a;, ..., as €
C[0] with ag & 9 such that the algebraic dependence relation

Qo + a4+ a,=0 (3)
is satisfied in C[T, U]. From (3) we deduce the algebraic dependence relation
ao(0, U)e(0, UY* 4 a1 (0, U)pe(0, Uy ™" + -+ 4+ a5(0, U) = 0 (4)
in (C[U] n
Since the polynomials ag, a, . . ., a; belong to C[#] and (0, U) is a fixed point of A2", we conclude
that oy = ap(0, U), @y := a;(0,U), ..., a5 = as(0, U) are complex numbers. Moreover, ag ¢ I

implies o # 0.
Thus (4) may be rewritten into the algebraic dependence relation
aoi(0,U)° + (0, Uy '+ -+ 0o, =0 (5)

in C[U] with a9 # 0.

This implies that the polynomial 1 (0, U) of C[U] is of degree at most zero. Therefore w := v*(0, U)
is a fixed point of the affine space A™.

Since y computes the polynomial F9 and F? has the form F? = Y2"9 + ¢, Y?"9~1 4 ... + gn, with
¢ € C[T, U], 1 <k < 2"q, we see that ¢ = (¢,)1<c<2nq may be decomposed as follows:

¢ =wl) =wov’.

Recall that A = (A )1<e<ong With A, == ¢, (0, U), 1 < k < 2"q, is afixed point of the affine space A"
For 1 < k < 2"q we may write the polynomial ¢, € C[T, U] as follows:

Oc = M + AT + terms of higher degree in T (6)

with Ar,]( € (C[LT{]. From [11, Lemma 6] we deduce that the elimination polynomial F has the form
F=Y? +B;Y?2 "' 4... 4By, where for 1 < | < 2" the coefficient B; is an element of C[T, U] of the
form

B = (-1 Z Jj1-+-Ji + TL; + terms of higher degree in T,

I<jp<--<jp<2?
where Ly, ..., L;n € C[U] are C-linearly independent.
Choose now different complex numbers 71, ..., n; fromC — {j € Z; 0 < j < 2"} and observe

that for 1 < «’ < 2" the identities
JF1 _
57 0. U, 1) = gF*7' (0, U, nm (o Unod)=q [ e =0"" Y L2
0<j<2n 1<l<2n
and

JF .
87(07U7 77;(’) = Z Aknz’q

1<k <2"q

hold.
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Since Lq,...,L,; are C-linearly independent, we deduce from the non-singularity of the
Vandermonde matrix (1;/37_')15,,,(/5@ that 2" many of the polynomials Ay, ..., Ay of C[U] are
C-linearly independent.

Consider now an arbitrary point u € A" and let e, : A' — A™and 8, : A — A2"7 be the
polynomial maps defined for t € A! by €,(t) := v*(t,u) and 8,(t) = ¢(t, u). Then we have
€,(0) = v*(0,u) = w and §,(0) = ¢(0, u) = A, independently of u. Moreover, from ¢ = w o v* we
deduce §, = w o €.

Thus (6) implies

a
(A1(w), ..., Apg(u)) = af(f(O, u) = 8,(0) = (Dw).(€,(0)), (7)

where (Dw),, denotes the (first) derivative of the m-variate polynomial map w at the point w € A™
and §/,(0) and €, (0) are the derivatives of the parameterized curves 8, and ¢, at the point 0 € Al
We rewrite now (7) in matrix form, replacing (Dw),, by the corresponding transposed Jacobi matrix
M e A™<2"0 apd 8/(0) and €/ (0) by the corresponding points of A>'? and A™, respectively.

Then (7) takes the form

(Al(u)7 R AZ"q(u)) = GL(O)M’ (8)

where the complex (m x 2"q)-matrix M is independent of u.
Since 2" many of the polynomials Ay, ..., Ayn € C[U] are C-linearly independent, we may choose
points uy, ..., us;n € A" such that the complex (2" x 2"q)-matrix
N = (A (W) 1=i=2n
1<k <2Mq
has rank 2".
Let K be the complex (2" x m)-matrix whose rows are e[ll 0, ..., e{,zn (0).
Then (8) implies the matrix identity

N=K-M.
Since N has rank 2", the rank of the complex (m x 2")-matrix M is at least 2". This implies
m > 2" (9)

Therefore the circuit y contains m > 2" essential parameters.

Let L be the number of essential multiplications executed by the parameterized arithmetic circuit
y and let L’ be the total number of multiplications of y, excepting those by scalars from C. Then, after a
well-known standard rearrangement [51] of y, we may suppose without loss of generality, that there

exists a constant ¢ > 0 (independent of the input circuit y and the procedure +) such that L > cm?
and L’ > cm holds. .

From the estimation (9) we deduce now that the circuit y performs at least £2(22) essential
multiplications and at least §2(2") multiplications, including also multiplications with parameters.
This finishes the proof of the theorem. O

Observations. Let assumptions and notations be as before. In the proof of Theorem 10 we made a
substantial use of the output isoparametricity of the procedure 4" when we applied Proposition 8
in order to guarantee the existence of a geometrically robust constructible map o defined on 7~ which
satisfies the condition v = o o 6. The conclusion was that the entries of v* = y o v are polynomials
of C[T, U] which are integral over C[6]yy;. This implied finally that v*(0, U) is a fixed point of the
affine space A™. Taking into account the results of [11, Sections 3.2 and 5.1] it suffices to require that
the procedure 4" is output coalescent in order to arrive to the same conclusion. This means that
Theorem 10 remains valid if we require only that the procedure 4 is output coalescent.

In the proof of Theorem 10 we have exhibited an infinite sequence of flat families of zero-
dimensional elimination problems represented by robust parameterized arithmetic circuits of small
size, such that any implementation of their associated elimination polynomials, obtained by a
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procedure of our extended computation model which solves the given elimination task for any
instance, requires circuits of exponential size.

The statement of Theorem 10 may also be interpreted in terms of a mathematically certified
trade-off of quality attributes. Suppose for the moment that we had built our model for branching
parsimonious computation in the same way as in Section 3.3, omitting the requirement of
isoparametricity for recursive routines, however. Recall that this requirement implies the output
isoparametricity of any algorithm of our extended computation model and recall from Section 3.3.2
that well behavedness under reduction is a quality attribute which implies output isoparametricity
and therefore also the conclusion of Theorem 10.

A complexity class like “exponential time in worst case” represents also a quality attribute.
Thus we see that the quality attribute “well behavedness under reduction” implies the quality
attribute “exponential time in worst case” for any essentially division-free procedure of our extended
computation model which solves algorithmically the general instance of any given flat family of zero-
dimensional problems.

The proof of Theorem 10 depends substantially on the decomposition of the elimination procedure
4 into two subprocedures 4" and 4® satisfying conditions (i) and (ii) of Section 3.3.3. We are now
going to justify this architectural restriction on the procedure + for the particular case of elimination
algorithms.

As at the beginning of this section, let U = (Uy,...,U;),X = Xi,...,X),G1,...,Gy,
H € C[U,X]and F € C[U, Y] such that Gy = 0,...,G, = 0 and H constitute a flat family of
zero-dimensional elimination problems and F its associated elimination polynomial. Suppose that
G1, ..., G, and H are implemented by an essentially division-free, robust parameterized arithmetic
circuit 8 with parameter domain A" and inputs Xy, ..., X;.

All known algorithms which solve the general instance of any flat family of zero-dimensional
elimination problems may be interpreted as belonging to our restricted set of procedures. They
compute directly the elimination polynomial F (and not an arbitrary power of it). Thus let 4 be such
a known algorithm and let A and 4@ be the subalgorithms which compose 4 in the same way as
before. Then 4V computes the coefficients of F, where F is considered as a polynomial over C[U] in
the indeterminate Y. The subalgorithm +4® may be interpreted as the Horner scheme which evaluates
F from its precomputed coefficients and Y.

Observe that F, and hence degy F, depends only on the polynomials Gy, ..., G, and H, but not on
the particular circuit 8. Therefore degy F is determined by ¥ (8), where v is the low level program of
the algorithm .

For any parameter instance u € A" we may think (A®(8))® as a constraint database (in the
sense of [31,22]) which allows to evaluate the univariate polynomial F® e C[Y] as often as desired
for arbitrary inputs y € A, using each time a number of arithmetic operations in C, namely deg, F,
which does not depend on the non-scalar size of S.

Moreover 4 satisfies the following condition:

(D) There exist non-decreasing real valued functions C; > 0 and C; > 0 depending on dynamic integer
vectors, such that for Lg and L 4g), being the non-scalar sizes of the circuits B and A (), the inequality

Lagy < G (B))Lg + G (¥ (B))
holds.

Let now # be an arbitrary, essentially division-free algorithm of our extended computation model
which solves the general instance of any flat family of zero-dimensional elimination problems and
let B be an input circuit for 4 which represents a particular family of such problems. Let F be the
associated elimination polynomial.

Then the complexity of the algorithm « is only competitive with known elimination algorithms
if we require that the number of essential additions and multiplications of Agna(8) is bounded by
2 - degy F. This leads us to the requirement that .4 must be decomposable in two subalgorithms 4"
and 4® as above.

Therefore any elimination algorithm of our extended computation model which is claimed to
improve upon known algorithms for all admissible input circuits 8, must have this architectural
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structure. In particular, such an algorithm cannot call the input circuit 8 when the output variable
Y became already involved. This justifies the architectural restriction we made in the statement and
proof of Theorem 10.

Observe that the final results of the circuit 4" (8) form a geometrically robust constructible map
defined on the parameter domain of the circuit 8. For a given parameter instance, the value of this
map allows to compute the value of the coefficient vector of the elimination polynomial F on this
instance.

Moreover, the competitivity of 4 with known elimination algorithms requires that A must satisfy
condition (D).

From Theorem 10 and its proof we deduce now the lower bound

n

8
max{Ci (¥ (Bn)), (¥ (Bn))} = £2 (Lﬁ) ,
n

where §, is the geometric degree of the subvariety of A" x A"™! defined by the polynomials
G, ...,G", Y — H™ (observe 8, = 2"). Adding to f, a suitable addition node we obtain a totally
division-free new circuit BF which represents G(ln), ...,G™ and Y — H™. Observe that for each
(s,u) € A' x A" the degree pattern of the polynomials Gﬁ"), ..., Gy — H(s,u,X) is constant
and the system degree is §,. The polynomial F™ is the output of the Kronecker algorithm applied to
B and the variable Y. Therefore the algorithm 4 produces on g, the same output as the Kronecker
algorithm applied to B and the variable Y. We conclude now from Lgx = O(n) that the Kronecker
algorithm is nearly optimal in our extended computation model.

In our computation model, algorithms are transformations of parameterized arithmetic circuits
over one and the same parameter domain. This represents a substantial ingredient for the proof of
Theorem 10. If we allow branchings which lead to subdivisions of the parameter domain of the input
circuit, the conclusion of Theorem 10 may become uncertain (see [26]).

Our computation model is also restrictive in another sense: suppose that there is given an
essentially division-free, robust parameterized arithmetic circuit 8, evaluating the polynomial H™ as
in the proof of Theorem 10 and an essentially division-free procedure 8 of our extended computation
model which recomputes H™ from the input S,. Then, the output of B on 8, is an essentially division-
free robust parameterized arithmetic circuit of size £2(2"), although the size of 8, is O(n).

4.2. The elimination of a block of existential quantifiers

Let notations be the same as in the proof of Theorem 10 in Section 4.1. Letn € N, Sq,..., S,
new indeterminates, S := (Sy, ..., Sy), ég”) =X —X; —S1,..., G .— X2 — X, — S, and again
H® =3 27X+ T[]0 (14 (Ui — DX)).

Observe that the polynomials 6("), .. f;f,") form a reduced regular sequence in C[S, T, U, X] and
that they define a subvariety Vn of the affme space A" x Al x A" x A" whichis 1somorph1c to A" x AT X A"
and hence irreducible and of dimension 2n + 1. Moreover, the morphism V — A" x A! x A"
which associates to any point (s t,u,x) € Vn the point (s, t, u), is finite and generically unramlfled
Therefore the morphism 7, : V — A" x A' x A" x A' which associates to any (s,t,u,x) € V the
point (s, t, u, HP(t, u, x)) € A" x A' x A" x Al is finite and its image nn(Vn) is a hypersurface of
A" x A1 x A" x Al with irreducible minimal equation F™ e C[S, T, U, Y].

Hence 65’“ =0,...,G = 0and H™ represent a flat family of zero-dimensional elimination
problems whose associated elimination polynomial is just F,

Observe that deg F™ = degy F™ = 2" and that for 0 € A" the identity

F™(,T,U,Y) = F"(T, U, Y) holds,

where F™ is the elimination polynomial associated with the flat family of zero dimensional
elimination problems given by X? — X; = 0,...,X? — X, = 0 and H™. Since F™ is irreducible,
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any equation of C[S, T, U, Y] which defines 7, (\7n) in A" x Al x A" x A is without loss of generality
a power of F™.

We considernow Sy, ..., Sy, T, Uy, ..., U, as basic parameters, X1, . . ., X, asinputand Y as output
variables.

Let A’ be an essentially division-free procedure of our extended computation model satisfying
the following condition: A’ accepts as input any robust parameterized arithmetic circuit 8 which
represents the general instance of a flat family of zero-dimensional elimination problems with
associated elimination polynomial F and s, ,(8) has a single input Y and a single final result which
defines the same hypersurface as F.

With this notions and notations we have the following result.

Proposition 11. There exist an ordinary division-free arithmetic circuit Bn of size O(n) over C with inputs
Sty.. s Sa, T, Uy, ..., Uy Xy, ..., X, and final results Gﬂ"), ..., G H™_ The essentially division-free,
robust parameterized arithmetic circuit p, = g, (Bn) depends on theAbasic parameters Sy, ..., S;, T,
Ui, ..., U, and the input Y and its single final result is a power of F™. The circuit 9, performs at

least .{2(2%) essential multiplications and at least §2(2™) multiplications with parameters. As ordinary
arithmetic circuit over C with inputs Sy, ..., Sy, T, Uy, ..., U, and Y, the circuit y, has non-scalar size
at least £2(2M).

Proof. The existence of an ordinary division-free arithmetic circuit as in the statement of
Proposition 11 is evident. The rest follows immediately from the proof of Theorem 10 in Section 4.1
by restricting the parameter domain A" x A! x A" of ,3,1 and 7, to A! x A", i.e., by specializing S to
0 € A™. Observe that this restriction of 7, may become an inconsistent circuit, but this does not affect
the argumentation which is based on the consideration of suitable geometrically robust constructible
functions. O

Suppose now that there is given another essentially division-free procedure " of our extended
computation model satisfying the following condition: A" accepts as input any robust arithmetic
circuit 8 which represents the general instance of a flat family of zero-dimensional elimination
problems with associated elimination polynomial F and there exists a Boolean circuit b in as many
variables as the number of final results of 4f ., (8) such that the algebraic variety defined by F
coincides with the constructible set which can be described by plugging into b the final results of

fina(B) as polynomial equations.

Observe that this represents the most general architecture we can employ to adapt in the spirit of
Section 3.3.3 our extended computation model for functions to parametric decision problems.

Lets € Nand Ay, ..., As new indeterminates with A := (A, ..., As). We suppose that there is
given an essentially division-free procedure B of our extended computation model which accepts
as input any essentially division-free, robust parameterized arithmetic circuit y with the basic
parameters Ay, ..., As and the input variable Y, such that 8,2 () represents, by its output nodes,
in C[A, Y] the multiplicative decomposition of the final results of y by their greatest common divisor
and complementary factors.

In this sense, we call the procedure 8 a GCD algorithm.

Let ¥4 and g be the given low level programs of the procedures A” and 8. We require
that A” and B are competitive with known algorithms which solve the same tasks. Following our
argumentation in Section 4.1 we may therefore suppose that there exist four non-decreasing real
valued functions C; > 0, C, > 0and D; > 0, D, > 0 which depend on dynamic integer vectors and
which satisfy the estimates

Largy = G (B))Lp + G (Yar (B))

and
Lay) < D1(¥s(¥))L, + D2(¥g(y)).

We consider again the ordinary division-free arithmetic circuit Bn of Proposition 8 which
represents the polynomials G, ..., G and H®.
With these notions and notations we may now formulate the following statement.
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Theorem 12. Let assumptions and notations be as before. Then we have

. A 2"
max{Gi (Y7 (Bn)), Di(¥z (Agna (B)); 1= 1,2} = 2 <7) :

Proof. If we plug into the Boolean circuit b the final results of g, (Bn) as polynomial equations, we
obtain by assumption a description of the hypersurface 7 (\7”) of the affine space A" x A! x A" x Al,
This implies that between the final results of ¢, (B,) there exists a selection, say the polynomials

Pi,...,PpandRq,...,R: of C[S, T, U, Y] such that the formula
Pi=0A---APp=0AR; #ZO0OA---AR #0

deﬁnesla nonempty Zariski open (and dense) subset of the irreducible surface ﬁ(Vn) of A" x Al x
A" x A

Let R := R;---R; and observe that the greatest common divisor of P, ..., P, has the form
(I:"("))q - Q, where g belongs to N and Q is the greatest common divisor of Py, ..., Py, R. Therefore
we may compute (F™)4 in the following way: erasing suitable nodes from the circuit Agnal(ﬁn) and
adding t — 1 multiplication nodes we obtain two robust parameterized arithmetic circuits yl(”) and
yz(”) with basic parameters Sy, ..., S,, T, Uy, ..., U, and input Y whose final results are Py, ..., Py,
and Py, ..., Py, R respectively.

Between the final results of Bﬁml(yl(")) and :Bﬁnal(yz(")) are the polynomials (F™)? - Q and Q.

Applying the procedure 8 to the union of Bﬁnal(yl(") ) and i)’ﬁnal(yz(”)) we obtain finally an essentially
division-free, robust parameterized arithmetic circuit with basic parameters Sy, ..., S,, T, Uy, ..., U,
and input Y whose single final result is (F")9.

Joining the circuits A”(Bn), £ﬁna](y1(n) ), £ﬁna](y2(n) ) and the final division node we obtain an
ordinary arithmetic circuit of non-scalar size at most

14 2001 (3 (A B)Ly 3y + D2 (W (Afia (B)))
< 1+ 2G(Wa(B))D1 (Y (A (B)))Lj,
+2G (WA (B)) D1 (Wis (A (B))) + Do (g (A (B))).

On the other hand we deduce from Theorem 10
Ly =0(m) and 1+42Lg, )= 22",

IA

T+ 2Lgr B

A

fal (Br)
This implies the estimate of Theorem 12. O

In a simple minded understanding, Theorem 12 says that in our extended computation model
either the elimination of a single existential quantifier block in a prenex first-order formula of the
elementary language of C or the computation of a greatest common divisor of a finite set of circuit
represented polynomials requires exponential time. Complexity results in this spirit were already
obtained in [21,11] (compare also Proposition 11 and Observation in Section 4.1).

4.3. Arithmetization techniques for Boolean circuits

Letm € NandletO, 1and Zy, ..., Z, be given constants and variables. Let Z = (Z1,...,Zn).
Following the context we shall interpret 0, 1 as Boolean values or the corresponding complex numbers
and Zi, ..., Zy as Boolean variables or indeterminates over C. With A, V,” we denote the Boolean
operations “and”, “or” and “not”. A Boolean circuit b with inputs Zy, . . ., Z,; is a DAG whose indegree
zero nodes are labelled by 0, 1 and Z1, ..., Z, and whose inner nodes have indegree two or one. In
the first case an inner node is labelled by A or V and in the second by~ Some inner nodes of b become
labelled as outputs. We associate with b a semantics as follows:

- indegree zero nodes which are labelled by 0, 1 become interpreted by the corresponding constant
functions {0, 1} — {0, 1},
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- indegree zero nodes which are labelled by Z1, ..., Z, become interpreted by the corresponding
projection function {0, 1}™ — {0, 1},

- let p be an inner node of b of indegree two whose parent nodes p; and p, are already interpreted
by Boolean functions g,,,8,, : {0, 1} — {0, 1}. If p is labelled by A, we interpret p by the
Boolean function g, := g,, A g,, and if p is labelled by v, we interpret o by the Boolean function
& = 8p V &py»

- let p be an inner node of b of indegree one whose parent node p’ became already interpreted by a
Boolean function g, : {0, 1} — {0, 1}. Then we interpret o by the Boolean function g, := g,'.

For anode p of b we call g, the intermediate result of b at p. If p is an output node, we call g, a final
result of b.

An arithmetization § of the Boolean circuit b consists of the same DAG as b with a different labelling
as follows.

Let U,V be new indeterminates over C. The constants 0, 1 become interpreted by the
correspondent complex numbers and 7y, . . ., Z,; as indeterminates over C. Let p be an inner node of
B.1f p has indegree two, then p becomes labelled by a polynomial R, € Z[U, V] and if p has indegree
one by a polynomial R, € Z[U]. The output nodes of 8 and b are the same.

Representing for each inner node p of 8 the polynomial G, by a division-free ordinary arithmetic
circuit over Z in the inputs U, V or U, we obtain an ordinary division-free arithmetic circuit over Z in
the inputs Z1, . .., Zy.

Just as we did in Section 3.3.2 we may associate with 8 a semantics which determines for each
node p of 8 a polynomial G, € Z[Z]. We say that g is an arithmetization of the Boolean circuit b if the
following condition is satisfied: for any node p of b and any argument z € {0, 1}™ the Boolean value
g, (2) coincides with the arithmetic value G, (z) (in a somewhat imprecise notation: g,(z) = G,(2)).

An example of an arithmetization procedure is given by the map which associates to each node p
of b a polynomial [g,] of Z[Z] satisfying the following conditions:

- [0] :07 [1] = ]’[21] :Z],...,[Zm] :Zm
- for p an inner node of indegree two of b with parents p; and p,:

[g,] = [gp,] [gp,] ifthelabelof pis A
and

lgo] = [8p] + (80,1 — [8p,] - [85,] ifthelabelof pis v
- for p an inner node of indegree one of b with parent p’:

[gp] =1- [g,o/]-

The resulting arithmetic circuit is called the standard arithmetization of b (see, e.g., [54,3]).

Letn,r € Nand Uy, ..., U, Xy, ..., X; be new variables. For m := n + r we replace now Z by U
and X, where U := (Uy,...,U;) and X := (Xq, ..., X;,). We shall interpret Uy, ..., U, as parameters
and X1, ..., X; as input variables.

Let b be a Boolean circuit with the inputs Uy, ..., U;, X1, ..., X, and just one final result h :
{o,1}" x {0, 1}" — {0, 1}.

We wish to describe the set of instances u € {0, 1}" where h(u, X, ..., X,) is a satisfiable Boolean
function.

For this purpose let us choose an arithmetization § of b. We interpret § as an ordinary arithmetic
circuit over Z with the parameters Uy, . .., U, and the inputs Xy, . .., X,,. The single final result of g is
a polynomial H € Z[U, X] which satisfies for any u € {0, 1}, x € {0, 1}" the following condition:

h(u, x) = H(u, x).

Without loss of generality we may suppose that the polynomials Xf —Xi, ..., X?—X, are intermediate
results of 8. We relabel now g such that these polynomials and H become the final results of 8.
Observe that X12 —-X; =0,... ,X,f — X, = 0 and H represent a flat family of zero-dimensional
elimination problems.
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Let Y be a new indeterminate and let F € Z[U, Y] the associated elimination polynomial. One
verifies easily the identity

FU,v)= [] (v =HU,x).

xe{0,1}"

Let 4 be an essentially division-free procedure of our extended computation model which solves
algorithmically the general instance of any flat family of zero-dimensional elimination problems. Then
B is an admissible input for 4 and there exists an integer ¢ € N such that F? is the final result of
Afinal (B).

We consider now the task to count for any u € {0, 1} the number k of instances x € {0, 1}" with
h(u,x) = 1.

The polynomial F? encodes two possible solutions of this task.

The first solution is the following: let [ be the order of the univariate polynomial F4(u, Y) at zero.

Then q divides | and we have k = 2" — é

The second and more interesting solution is the following: write F? = Y2"4 4 (plen‘?*1 +- - Fpag
with @1, ..., ¢ong € Z[U]. Then ¢;(u) is an integer which is divisible by g and we have k = —aw

Observe also deg ¢; < deg, H.

These considerations show the relevance of an efficient evaluation of the polynomial F9 (e.g., by
the circuit Agna (8)).

We ask therefore whether sy, (8) can be polynomial in the size of the Boolean circuit b. The
following example illustrates that the answer may become negative.

In the sequel we are going to exhibit for r := 2n+1aBoolean circuit b of size O(n) which evaluates a
function h : {0, 1}" x {0, 1}" — {0, 1} such that the standard arithmetization 8 of b represents a flat
family of zero-dimensional elimination problems with associated elimination polynomial F and such
that any essentially division-free procedure 4 of our extended computation model that accepts the
input 8 and computes by means of A, (8) a power of F, requires time £2(2") for this task. This means
that it is unlikely that algorithms designed following the paradigm of object-oriented programming
are able to evaluate the polynomial ¢, efficiently.

On the other hand, since the degree of ¢, is bounded by deg;; H and therefore “small”, there exists
a polynomial time interactive protocol which checks for any u € {0, 1} and any ¢ € Z the equation
¢1(u) = c. Thus this problem belongs to the complexity class IP (see [44] for details).

We are now going to exhibit an example of a Boolean circuit which highlights the infeasibility of
our computation task.

For this purpose letr := 2n+ 1and Sy, ...,S,, T, Uy, ..., U, parameters and Xj, ..., X, input
variables and let S := (S, ...,Sy) and U .= (Uy, ..., Up).

We consider the Boolean function h : {0, 1}*"*1 x {0, 1}* — {0, 1} defined by the Boolean formula

o=\ KV SAX)V (TA A ()@v(u,-Ax,-»).

1<i<n 1<i<n
From the structure of the formula ¢ we infer that h can be evaluated by a Boolean circuit b of size O(n)
inthe inputs Sy, ...,S,, T, Uy, ..., U,.
Let B be the standard arithmetization of the Boolean circuit b and let H be the final result of 8.
Observe that the total, and hence the non-scalar size of g8 is O(n). We have

H=[]a+6-0x)+ (1 - JJa+ei- 1)xi)) T[] a+wi-1x).

1<i<n 1<i<n 1<i<n

Observe that the equations X12 -X1=0,..., X,f —X,, = 0and the polynomial H represent a flat family
of zero-dimensional elimination problems. Let F be the associated elimination polynomial. Then F can
be written as

F = y2” +B1y2”71 4+ 4By = 1_[ (Y_ ( 1_[ glili + (1 _ 1_[ 5[1'],-) T 1_[ U'_[i]i))

0<j<2n 1<i<n 1<j<n 1<i<n
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with

B, = (_1)k Z 1_[ (l_[ Si[jh]i_l_ (l _ l—[ SiUh]i) T 1_[ Uiljnli)

0<ji<--<jg<2" 1<h<k \1<i<n 1<i<n 1<i<n

for1 <k <2
Let

L = (_1)k Z Z 1_[ Siljlli . (1 _ 1_[ SiUhJi) . l_[ SiUkJi l_[ UiUh]i’

0<ji<-<jg<2" 1<h<k 1<i<n 1<i<n 1<i<n 1<i<n

where 1 < k < 2™,
Then we have

B = (1) Z 1_[ sili.. 1_[ S [ - T + terms of higher degree in T.

0<jp < <jg<2M 1<i<n 1<i<n

Let € : A2 — A?" be the morphism of affine spaces which assigns to each point z € A2"
the values of the elementary symmetric functions in 2" variables at z. Observe that the Jacobian
of € at (JT;<i<, S")o<j<zn is @ non-singular (2" x 2")-matrix N(S). The polynomials L;, 1 < k <

2" are obtained by applying N(S) to (1 — [[;<i<, Sy [Ti<i<n Uimi)oikzn. Since the monomials

[Ti<i<n Ui[’]", 0 < j < 2" are linearly independent over C(S) we conclude that the polynomials
Ly, T < k < 2" have the same property.

With this preparation we are now able to repeat textually the arguments in the proof of Theorem 10
of Section 4.1 in order to show the following statement.

Theorem 13. Let assumptions and notations be as before and let A be an essentially division free
procedure of our extended computation model which accepts the arithmetic circuit § as input. Suppose
that Agna(B) has a unique final result and that it is a power of the elimination polynomial F. Then the
non-scalar size of Agna (B) is at least 2(2™).

4.4. The multivariate resultant

Let Uy, ..., Uy, be basic parameters and let Xq,..., X, or Xo, ..., X, be input variables. Let
G1, ..., Gy, H € C[U, X] be a flat family of zero-dimensional elimination problems such that for any
u € A™ the homogenizations of Gy (u, X), ..., G;(u, X) (by Xo) have no common zero at infinity. Let
F € C[U, Y] be the corresponding elimination polynomial and let R € C[U] be the (multivariate)
resultant of the homogenizations of Gy, . .., G,, H. Then we have R = F(U, 0).

On the other hand, F is the resultant of the homogenizations of Gy, ..., G, and H — Y. Thus,
multihomogeneous resultants and elimination polynomials of flat families of zero-dimensional
elimination problems are closely related from the algebraic point of view.

From the computational point of view this relation is more intricate.

To the degree pattern of the homogenizations of Gy, ..., G,, H there corresponds a generic
resultant. We may take a computation of this resultant and specialize its inputs to the coefficients
of Gy, ..., Gy, H— Y with respect to Xy, ..., X;. If this specialized computation can be simplified by
means of reductions, we may expect to gain something. Proceeding in this way we obtain an algorithm
which may be interpreted as an elementary routine of our computation model. Observe that this
elementary routine does not use joins of two subroutines that contain each a recursion.

We are going to show that reductions do not produce a general improvement of traditional
resultant computations in the sense described above.

Theorem 14. Consider the following, with respect to Xy, . . . , X, homogeneous, polynomials

X2 — XoXq, ..., X2 — XoXp, YXI — Z 271X — T ]_[ Xo + (U; — X)),

1<i<n 1<i<n
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which are supposed to be given by an essentially division-free arithmetic circuit g in the basic parameters
T,Ui,...,U, Y and the input variables Xy, ..., X,. Suppose furthermore that Y is the last basic
parameter introduced by B and observe that such a circuit 8 of size O(n) exists. Let 4 be an essentially
division-free elementary routine of our computation model which on input B evaluates the resultant of
the polynomials above with respect to the variables X, . . ., X,. Suppose that 4 does not use joins of two
subroutines that contain each a recursion. Then the output circuit Agna(B) has size at least $2(2").

Proof. Taking into account that Y is the last basic parameter introduced by g, that all recursive
subroutines of 4 are isoparametric and that A does not use joins of two subroutines that contain
each a recursion, we may decompose s in two subroutines 4" and 4@ such that A admits 8 as
input and produces a vector of parameters in T, Uy, ..., U, which themselves constitute the inputs
of A@ (the argument is somewhat tedious and is not given here). Only the routine 4® introduces
the parameter Y. Therefore A = (A", A®) constitutes a procedure of our computation model
with basic parameters T, Uy, ..., Uy, input variables Xy, . . ., X;, and output variable Y. Observing that
the resultant of the given polynomials equals the elimination polynomial of the flat family of zero-
dimensional elimination problems given by X? — X1, ..., X? — X0, > 1icn 27X + T [[1<in(1 +
(U; — 1)X;), we conclude from Theorem 10 that the size of A, (B) is at least 2(2"). O

4.5. A family of hard elimination polynomials

As a major result of this paper, we are now going to exhibit an infinite family of parameter
dependent elimination polynomials which require essentially division-free, robust parameterized
arithmetic circuits of exponential size for their evaluation, whereas the circuit size of the
corresponding input problems grows only polynomially. This result is valid without any architectural
assumption on the algorithm that computes these elimination polynomials.

Let notations be as before and consider again for given n € N the polynomial H® = ZKK”
271X + T 22, (1 + (Ui — 1X;) of Section 4.1. Observe that H™ can be evaluated using n — 1
non-scalar multiplications involving Xy, . . ., X,,.

Theset O == {} iy 27X + t [Ticy (1 + (Wi — DX0); (¢, Uy, - .., u) € A" 1} is contained in a
finite-dimensional C-linear subspace of C[X] and therefore @ and its closure O are constructible sets.

From [18, Section 3.3.3] we deduce the following facts: there exist K := 16n® + 2 integer points
£1,...,& € Z" of bit length at most 4n such that for any two polynomials f, g € © the equalities
f&) =g(&),1 <k <K,imply f = g. Thus the polynomial map = : @ — AK defined for f € O by
E() = (f&1), ..., f(&))isinjective. Moreover M := & () is anirreducible constructible subset of
AX and we have M = & (0). Finally, the constructible map ¢ := &', which maps .M onto @ (and M
onto @), is a restriction of a geometrically robust map and therefore by Corollary 6 itself geometrically
robust.

For € € {0, 1}" we denote by ¢, the map M — A! which assigns to each point v € M the value
¢(v)(€). From Corollary 6 we conclude that ¢, is a geometrically robust constructible function which
belongs to the function field C(.M) of the irreducible algebraic variety M.

Observe thatfort € Alandu e A" theidentities ¢ (5 (H™ (t, u, X)) = ¢(EHM(t, u, X)))(€) =
(B Yo BEYHM(t,u,X)))(e) = HP(t, u, €) hold.

Let F®™ = ], cio.yn (Y — @c). Then F™ is a geometrically robust constructible function which
maps M x A' (and hence M x A') into A'. Considering again the elimination polynomial F™ =
Mozjcon 1Y = G+ T [Tiizn U™ = [Tecioyr (Y — H™(T, U, €)) of Section 4.1, we have for t € A!
and u € A" the identities

F™(EH™(t, u,X)),Y)

[T v —e(EH @, u, %))

ec{0,1}"

(Y —H™(t,u, €)) = FV(t,u,Y). (10)
ec{0,1}"
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Let Sq, ..., Sk be new indeterminates and observe that the existential first order formula of the
elementary theory of C, namely

@X) - @X)@EN@EU) --- AQUDXE =X =0A - AXP =X, =0 A

A S =HOT, U, AY = HO(T, U, X)) (11)
1<j<K

describes the constructible subset {(s,y) € AKT';s € M,y € A F™(s,y) = 0} of AKT!,
Moreover, F™ is the greatest common divisor in C(M)[Y] of all polynomials of C[A][Y] which vanish
identically on the constructible subset of AK*! defined by the formula (11). Hence F™ e C(M)[Y] s
a (parameterized) elimination polynomial.

Observe that the polynomials contained in the formula (11) can be represented by a totally
division-free arithmetic circuit Bn of size O(n?). Therefore, the formula (11) is also of size O(n?).

Theorem 15. Let notations and assumptions be as before and let 7 be an essentially division-free, robust
parameterized arithmetic circuit with domain of definition M such that y evaluates the elimination
polynomial F™.

Then y performs at least .Q(Z%) essential multiplications and at least $2(2") multiplications with
parameters.

Proof. Let  be as in the statement of the theorem. Without loss of generality we may assume that
y has a single output node which evaluates the polynomial F™. There exists a totally division-
free arithmetic circuit , of size O(n®) which computes at its output nodes the polynomials
H™(T,U,&),1<k<K.

From (10) we deduce that the join y * j, of the circuit j,, with the circuit 7 at the basic parameter
nodes of y is an essentially division-free, robust parameterized arithmetic circuit which evaluates
the elimination polynomial F™. Observe that the outputs of y, are only parameters and that only
the circuit 7 introduces the variable Y. Moreover, there exists an isoparametry between H™ and the
outputs of 7,. We may therefore think that the circuit y * y, is produced by an essentially division-
free procedure of our extended computation model which becomes applied to the circuit Bn. From
Theorem 10 and its proof we deduce now that  * , contains at least £2(2") essential multiplications
and at least £2(2") multiplications with parameters. Since the size of y, is 0(n?), we draw the same
conclusion for y. O

Theorem 15 is essentially contained in the arguments of the proof of [21, Theorem 5] and
[11, Theorem 4].

Observe that a quantifier-free description of M by means of circuit represented polynomials,
together with an essentially division-free, robust parameterized arithmetic circuit y with domain
of definition M, which evaluates the elimination polynomial F™, captures the intuitive meaning of
an algorithmic solution of the elimination problem described by formula (11), when we restrict our
attention to solutions of this kind and minimize the number of equations and branchings. In particular,
the circuit  can be evaluated for any input point (s, y) withs € M andy € A' and the intermediate
results of y are polynomials of C(M)[Y] whose coefficients are geometrically robust constructible
functions defined on M.

4.6. Divisions and blowups

We are now going to analyse the main argument of the proof of Theorem 10 from a geometric point
of view.

We recall first some notations and assumptions we made during this proof.

With respect to the indeterminates Xy, ..., X,, we considered the vector 6 of coefficients of the
expression

H= Z 251X 4 T ]—[ (14 (U; — DX)

1<i<n 1<i<n
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as a polynomial map A"! — A2 with image 7. Recall that 7 is an irreducible constructible subset
of A",

Further, with respect to the indeterminate Y, we considered the vector ¢ of nontrivial coefficients
of the monic polynomial

L0 )
1<j<2n—1 1<i<n

also as a polynomial map A"™1! — A?",

One sees immediately that there exists a unique polynomial mapn : 7 — AZ2" such that @ =nob
holds. Using particular properties of 8 and ¢ we showed implicitly in the proof of Theorem 10 that n
satisfies the following condition:

Let m be a natural number, ¢ : T — A™ a geometrically robust constructible and = : A™ — A%
a polynomial map such that n = w o ¢ holds. Then the condition

m>2"
is satisfied.

This means that the following computational task cannot be solved efficiently:

Allowing certain restricted divisions, reduce the datum 6 consisting of 2" entries to a datum ¢
consisting of only m < 2" entries such that the vector 7 still may be recovered from ¢ without using
any division, i.e., by an ordinary division-free arithmetic circuit over C.

Here the allowed divisions involve only quotients which are geometrically robust functions defined
on7y.

In order to simplify the following discussion we shall assume without loss of generality that all our
constructible maps have geometrically robust extensions to 7.

Let f and g be two elements of the coordinate ring C[7 | of the affine variety 7 and suppose that
g # 0 holds and that the element é of the rational function field C(7) may be extended to a robust

constructible function defined on 7, which we denote also by é, since this extension is unique.

Then we have two cases: the coordinate function g divides f in C[7 ] or not. In the first case we may
compute g, by means of an ordinary division-free arithmetic circuit over C, from the restrictions to 7

of the canonical projections A2 — A'.Thus g belongs to the coordinate ring C[T ]. In the second case
this is not any more true and (C[J;][é] is a proper extension of C[7 ] in C(7). In both cases (C[J:][g]

is the coordinate ring of an affine chart of the blowup of C[7] at the ideal generated by f and g. We
refer to this situation as a division blowup which we call essential if L does not belong to C[T].

Therefore we have shown in the proof of Theorem 10 that essential division blowups do not help
to solve efficiently the reduction task formulated before.

A similar situation arises in multivariate polynomial interpolation (see [18, Theorem 23]).

Following [28, Theorem 7.2.1] any rational map may be decomposed into a finite sequence of
successive blowups followed by a regular morphism of algebraic varieties. Our method indicates the
interest to find lower bounds for the number of blowups (and their embedding dimensions) necessary
for an effective variant of this result.

Problem adapted methods for proving lower bounds for the number of blowups necessary to
resolve singularities would also give indications which order of complexity can be expected for
efficient desingularization algorithms (see [15]). At this moment only upper bound estimations are
known [5].

4.7. Comments on complexity models for geometric elimination
4.7.1. Relation to other complexity models

The question, whether P % NP or Pc # NP¢ holds in the classical or the BSS Turing Machine
setting, concerns only computational decision problems. These, on their turn, are closely related to
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the task to construct efficiently, for a given prenex existential formula, an equivalent, quantifier free
one (compare [8,33,56,7]). In the sequel we shall refer to this and to similar, geometrically motivated
computational tasks as “effective elimination”.

Theorem 10 in Section 4.1 does not establish a fact concerning decision problems like the Pc # NP¢
question. It deals with the evaluation of a function which assigns to suitable prenex existential formulae
over C canonical, equivalent and quantifier-free formulae of the same elementary language.

Theorem 10 says that in our computation model this function cannot be evaluated efficiently.
If we admit also non-canonical quantifier-free formulae as function values (i.e., as outputs of our
algorithms), then this conclusion remains true, provided that the calculation of parameterized greatest
common divisors is feasible and efficient in our model (see [11, Section 5]).

It is not clear what this implies for the P # NP question.

Intuitively speaking, our exponential lower complexity bound for effective geometric elimination
is only meaningful and true for computer programs designed in a professional way by software
engineers. Hacker programs are excluded from our considerations.

This constitutes an enormous difference between our approach and that of Turing machine based
complexity models, which always include the hacker aspect. Therefore the proof of a striking lower
bound for effective elimination becomes difficult in these models.

Our argumentation is based on the requirement of output parametricity which on its turn is the
consequence of two other requirements, a functional and a non-functional one, that we may employ
alternatively. More explicitly, we require that algorithms (and their specifications) are described by
branching parsimonious asserted programs or, alternatively, that they behave well under reductions
(see Sections 3.3.2 and 3.3.3).

Let us observe that the complexity statement of Theorem 10 refers to the relationship between
input and output and not to a particular property of the output alone. In particular, Theorem 10
does not imply that certain polynomials, discussed below, like the permanent or the Pochhammer
polynomials, are hard to evaluate.

Let notations and assumptions be as in Section 4.1. There we considered for arbitrary n € N the
flat family of zero dimensional elimination problems

" =0,...,G" =0,H™
given by

G"=Xx2—X;,...,G" = x% X,

and
H =" 27"+ T [ 0+ Wi — 1x).
1<i=n 1sisn
Let X;+1, - . ., X3p—1 be new indeterminates and let us consider the following polynomials
Gty =Xnp1 —2X2 — X1, ..., GV =X — X — 2 X1, n+2<j<2n—1,
Gy = Xon — UiXa + X1 — 1,
G = Xi — Uk—ans1 Xk 1 Xk—ant1 + Xee1iXi—ans1 — Xee1, 2n+1<k<3n—1
and
L™ = Xop—1 + TX3n_1.
One verifies easily that G\” = 0,...,G{" , = 0,L™ is another flat family of zero dimensional

elimination problems and that both families have the same associated elimination polynomial, namely

FO=T] (y - <j+ T[] U}”“)) .

1<i<n
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Suppose now that there is given an essential division-free procedure 4 of our extended computation
model which solves algorithmically the general instance of any given flat family of zero-dimensional
elimination problems.

Let B, and B be two essentially division-free, robust parameterized arithmetic circuits which
implement the first and the second flat family of zero dimensional elimination problems we are
considering.

Then B, and B, are necessarily distinct circuits. Therefore Afna(8n) and Arna (B;;) represent two
implementations of the elimination polynomial F® by essentially division-free, robust parameterized
arithmetic circuits.

From Theorem 10 and its proof we are only able to deduce that the circuit A, (8,) has non-scalar
size at least £2(2"), but we know nothing about the non-scalar size of Agna (B;).

In the past, many attempts to show the non-polynomial character of the elimination of just one
existential quantifier block in the arithmetic circuit based elementary language over C, employed
the reduction to the claim that an appropriate candidate family of specific polynomials was hard to
evaluate (this approach was introduced in [33] and became adapted to the BSS model in [56]).

The Pochhammer polynomials and the generic permanents discussed below form such candidate
families.

In Section 4.5 we exhibited a certified infinite family of parameter dependent elimination
polynomials which require essentially division-free, robust parameterized arithmetic circuits of
exponential size for their evaluation, whereas the circuit size of the corresponding input problems
grows polynomially.

Here the requirement of robustness modelizes the intuitive meaning of an algorithmic solution
with few equations and branchings of the underlying elimination problem.

4.7.2. The hacker aspect

Let us finish this section with a word about hacking and interactive (zero-knowledge) proofs.

Hackers work in an ad hoc manner and quality attributes are irrelevant for them. We may simulate
a hacker and his environment by an interactive proof system where the prover, identified with the
hacker, communicates with the verifier, i.e., the user of the hacker’s program. Thus, in our view, a
hacker disposes over unlimited computational power, but his behaviour is deterministic. Only his
communication with the user underlies some quantitative restrictions: communication channels are
tight. Hacker and user become linked by a protocol of zero-knowledge type which we are going to
explain now.

Inputs are natural numbers in unary representation. Each natural number represents a
mathematical object belonging to a previously fixed abstract data type of polynomials. For example
n € N may represent the 2"-th Pochhammer polynomial

=[] T-)

o<j<2n

or the n-th generic permanent

Perm,, := Z Xiz(1)s - - Xnz @y »

TeSym(n)

where T and X1y, . . ., X;;; are new indeterminates and Sym(n) denotes the symmetric group operating
on n elements.

On input n € N the hacker sends to the user a division-free labelled directed acyclic graph I,
(i.e., a division-free ordinary arithmetic circuit over Z) of size n°" and claims that I, evaluates the
polynomial represented by n.

The task of the user is now to check this claim in uniform, bounded probabilistic or non-uniform
polynomial time, namely in time n°®.

In the case of the Pochhammer polynomial and the permanent a suitable protocol exists. This can
be formulated as follows.
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Proposition 16. The languages
Lpoch = {(n, ([o<j<n); NEN, [isfor0 <j<n
a division-free labelled directed acyclic graph evaluating T;f}
and
Lrerm = {(n, ([ozjzn); €N, Tjisfor0<j<n
a labelled directed acyclic graph evaluating Perm;}
belong to the complexity class BPP and hence to P /poly (here n € N is given in unary representation).

Proof. We show only that «£p,, belongs to the complexity class P/poly. The proof that £p,, belongs
to BPP follows the same kind of argumentation and will be omitted here. The case of the language
Lperm €an be treated analogously and we shall not do it here (compare [37, Section 3]).

Let n € N and let I" be a division-free labelled directed acyclic graph with input T and a single
output node. Let I"” be the division-free labelled directed acyclic graph which is given by the following
construction:

- choose a labelled acyclic graph u, of size n + O(1) with input T and with T — 22" a5 single final
result

- take the union I" of the circuits I" and I" % p, and connect the two output nodes of I" by a
multiplication node which becomes then the single output node of the resulting circuit I"’.

From the polynomial identity T2 = TE(T) . TE(T — 22"71) one deduces easily that I’ computes
the polynomial T2 if and only if I" computes the polynomial T2

For 0 < j < nlet I be a division-free labelled directed acyclic graph with input T and a single
output node.

Suppose that in the previous construction the circuit I" is realized by the labelled directed acyclic
graph I',_;. Then one sees easily that (1, (/j)o<j<n) belongs to L if and only if the following
conditions are satisfied:

(i) the circuit I'y computes the polynomial T,
(ii) the circuits I"” and I, compute the same polynomial,
(iii) (n — 1, (I})o<j<n—1) belongs to Lpoch.
Therefore, if condition (ii) can be checked in non-uniform polynomial time, the claimed statement
follows.

For 0 < j < nletL; and L be the sizes of the labelled directed acyclic graphs Ij and I"’ and observe
that L = 2L, 1 + n+ O(1) holds.

Let P,_; and P be the final results of the circuits I';,_; and I"’. From [11, Corollary 2] we deduce
that there exist m := 4(L + 2)? + 2 integers y1, ..., ¥m € Z of bit length at most 2(L + 1) such that
the condition (ii) above is satisfied if and only if
(iv) Pooa(y1) =P(1), - s Puci(Ym) = P(ym)
holds.

From [27] we infer that condition (iv) can be checked by a nondeterministic Turing machine with
advise in (non-uniform) time O(L*) = O((L,—; + n)3).

Applying this argument recursively, we conclude that membership of (11, (I})o<j<n) t0 £Lpoch may be
decided in non-uniform time O(Zogq(Lj + j)?) and therefore in polynomial time in the input size.
Hence the language £p,c, belongs to the complexity class P/poly. The proof of the stronger result,
namely £Lpocn € BPP, is similar. O

Finally we observe that for n € N the Pochhammer polynomial T?" is the associated elimination
polynomial of the particular problem instance, given by T := 0, of the flat family of zero-dimensional
elimination problems G(ln) =0,...,G" =0, H™, which we considered in Section 4.1.

From the point of view of effective elimination, the sequence of Pochhammer polynomials
becomes discussed in [33] (see also [56]). From the point of view of factoring integers, Pochhammer
polynomials are treated in [43].
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4.7.3. Final comment

Let us mention that our approach to effective elimination theory, which led to Theorem 10 and
preliminary forms of it, was introduced in [32] and extended in [21,11].

The final outcome of our considerations in Sections 4.1 and 4.7 is the following: neither
mathematicians nor software engineers, nor a combination of them will ever produce a practically
satisfactory, generalistic software for elimination tasks in Algebraic Geometry. This is a job for hackers
which may find for particular elimination problems specific efficient solutions.
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