146 research outputs found

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    COUNTING SUBGRAPHS IN SOMEWHERE DENSE GRAPHS

    Get PDF

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph HH in a large host graph GG. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns HH. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)GO(1)f(H)\cdot |G|^{O(1)} for some computable function ff. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes G\mathcal{G} as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting kk-matchings in a graph GGG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. (2) Counting kk-independent sets in a graph GGG\in\mathcal{G} is fixed-parameter tractable if and only if G\mathcal{G} is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if G\mathcal{G} is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting kk-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in FF-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting kk-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).Comment: 35 pages, 3 figures, 4 tables, abstract shortened due to ArXiv requirement

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Improved bounds for the number of forests and acyclic orientations in the square lattice

    Get PDF
    In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice LnL_n. The authors gave the following bounds for the asymptotics of f(n)f(n), the number of forests of LnL_n, and α(n)\alpha(n), the number of acyclic orientations of LnL_n: 3.209912limnf(n)1/n23.841613.209912 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.84161 and 22/7limnα(n)3.7092522/7 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.70925. In this paper we improve these bounds as follows: 3.64497limnf(n)1/n23.741013.64497 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.74101 and 3.41358limnα(n)3.554493.41358 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.55449. We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices

    08201 Abstracts Collection -- Design and Analysis of Randomized and Approximation Algorithms

    Get PDF
    From 11.05.08 to 16.05.08, the Dagstuhl Seminar 08201 ``Design and Analysis of Randomized and Approximation Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research work, and ongoing work and open problems were discussed. Abstracts of the presentations which were given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full paper are provided, if available

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Acyclic homomorphisms to stars of graph Cartesian products and chordal bipartite graphs

    Get PDF
    AbstractHomomorphisms to a given graph H (H-colourings) are considered in the literature among other graph colouring concepts. We restrict our attention to a special class of H-colourings, namely H is assumed to be a star. Our additional requirement is that the set of vertices of a graph G mapped into the central vertex of the star and any other colour class induce in G an acyclic subgraph. We investigate the existence of such a homomorphism to a star of given order. The complexity of this problem is studied. Moreover, the smallest order of a star for which a homomorphism of a given graph G with desired features exists is considered. Some exact values and many bounds of this number for chordal bipartite graphs, cylinders, grids, in particular hypercubes, are given. As an application of these results, we obtain some bounds on the cardinality of the minimum feedback vertex set for specified graph classes
    corecore