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Abstract. We study the problems of counting copies and induced copies of a small pattern3
graph H in a large host graph G. Recent work fully classified the complexity of those problems4
according to structural restrictions on the patterns H. In this work, we address the more challenging5
task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask6
which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence7
of an algorithm running in time f(H) · |G|O(1) for some computable function f . Our main results8
present exhaustive and explicit complexity classifications for families that satisfy natural closure9
properties. Among others, we identify the problems of counting small matchings and independent10
sets in subgraph-closed graph classes G as our central objects of study and establish the following11
crisp dichotomies as consequences of the Exponential Time Hypothesis:12

• Counting k-matchings in a graph G ∈ G is fixed-parameter tractable if and only if G is13
nowhere dense.14

• Counting k-independent sets in a graph G ∈ G is fixed-parameter tractable if and only if15
G is nowhere dense.16

Moreover, we obtain almost tight conditional lower bounds if G is somewhere dense, i.e., not nowhere17
dense. These base cases of our classifications subsume a wide variety of previous results on the18
matching and independent set problem, such as counting k-matchings in bipartite graphs (Curtica-19
pean, Marx; FOCS 14), in F -colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs20
(Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean21
et al.; Algorithmica 19).22

At the same time our proofs are much simpler: using structural characterisations of somewhere23
dense graphs, we show that a colourful version of a recent breakthrough technique for analysing24
pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed25
somewhere dense class of graphs, yielding a unified view of our current understanding of the com-26
plexity of subgraph counting.27
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1. Introduction. We study the following subgraph counting problem: given two30

graphs H and G, compute the number of copies of H in G. For several decades this31

problem has received widespread attention from the theoretical community, leading32

to a rich algorithmic toolbox that draws from different techniques [50, 3, 10, 40] and33

to deep structural results in parameterised complexity theory [28, 18]. Since it was34

discovered that subgraph counts reveal global properties of complex networks [46, 47],35

subgraph counting has also found several applications in fields such as biology [2, 57]36

genetics [59], phylogeny [41], and data mining [60]. Unfortunately, the subgraph37

counting problem is in general intractable, since it contains as special cases hard38

problems such as Clique. This does not mean however that the problem is always39

intractable; it just means that it is tractable when the patternH is restricted to certain40
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graph families. Identifying these families of patterns that are efficiently countable has41

been a key question for the last twenty years. A long stream of research eventually42

showed that, unless standard conjectures fail, subgraph counting is tractable only for43

very restricted families of patterns [28, 23, 14, 20, 39, 45, 18, 55, 30].44

To circumvent this “wall of intractability”, in this work we restrict both the45

family of the pattern H and the family of the host G. Formally, given two classes46

of graphs H and G, we study the problems #Sub(H → G), #IndSub(H → G), and47

#Hom(H → G), defined as follows. For all of them, the input is a pair (H,G) with48

H ∈ H and G ∈ G. The outputs are respectively the number of subgraphs of G49

isomorphic to H, denoted by #Sub(H → G), the number of induced subgraphs of G50

isomorphic to H, denoted by #IndSub(H → G), and the number of homomorphisms51

(edge-preserving maps) from H to G, denoted by #Hom(H → G). Our goal is to52

determine for which H and G these three problems are tractable. To formalize what53

we mean by tractable, we adopt the framework of parameterized complexity [22]: we54

say that a problem is fixed-parameter tractable, or in the class FPT, if it is solvable55

in time f(|H|) · |G|O(1) for some computable function f (see Section 2 for a complete56

introduction). For instance, we consider as tractable a running time of 2O(|H|) · |G|57

but not one of |G|O(|H|). This captures the intuition that H is “small” compared58

to G, and is the main theoretical framework for subgraph counting [28]. Thus, the59

goal of this work is understanding the fixed-parameter tractability of #Sub(H → G),60

#IndSub(H → G), and #Hom(H → G) as a function of H and G. Moreover, when61

those problems are not fixed-parameter tractable we aim to show that they are hard62

for the complexity class #W[1], which can be thought of as the equivalent of NP for63

parameterized counting.64

We first briefly discuss which properties of G are worthy of attention. When G65

is the class of all graphs, it is well known that each of the three problems is either66

FPT or #W[1]-hard depending on whether certain structural parameters of H (such67

as treewidth or vertex cover number) are bounded. Thus, when G is the class of all68

graphs, the problem is solved. However, when G is arbitrary, no such characterization69

is known. This is partly due to the fact that “natural” structural properties related70

to subgraph counting are harder to find for G than for H; subgraph counting algo-71

rithms themselves usually exploit the structure of H but not that of G (think of tree72

decompositions). There is however one deep structural property that, if held by G,73

yields tractability: the property of being nowhere dense, introduced by Nešetřil and74

Ossona de Mendez [48]. In a nutshell G is nowhere dense if, for all r ∈ N0, its members75

do not contain as subgraphs the r-subdivisions of arbitrarily large cliques; it can be76

shown that this generalizes several natural definitions of sparsity, including having77

bounded degree or bounded local treewidth, or excluding some topological minor. In78

a remarkable result, Nešetřil and Ossona de Mendez proved:179

Theorem 1.1 (Theorem 18.9 in [49]). If G is nowhere dense then #Hom(H →
G), #Sub(H → G), and #IndSub(H → G) are fixed-parameter tractable and can be
solved in time f(|H|) · |V (G)|1+o(1) for some computable function f .

Thus the case of nowhere dense G is closed, and we can focus on its complement —80

the case where G is somewhere dense. Hence the question studied in this work is:81

when are #Sub(H → G), #IndSub(H → G), and #Hom(H → G) fixed-parameter82

tractable, provided G is somewhere dense?83

1In the realm of decision problems, an even more general meta-theorem is known for first-order
model-checking on nowhere dense graphs [36].
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1.1. Our Results. We prove dichotomies for #Sub(H → G), #IndSub(H →84

G), and #Hom(H → G) into FPT and #W[1]-hard cases, assuming that G is some-85

where dense. It is known [56] that a fully general dichotomy is impossible even86

assuming that G is somewhere dense; thus we focus on the natural cases where H87

and/or G are monotone (closed under taking subgraphs) or hereditary (closed under88

taking induced subgraphs). Our dichotomies are expressed in terms of the finiteness89

of combinatorial parameters of H and G, such as their clique number or their induced90

matching number. Existing complexity dichotomies for subgraph counting are based91

on using interpolation to evaluate linear combinations of homomorphism counts [18].92

This technique has been exploited for families of host graphs that are closed under93

tensoring — the closure is used to create new instances for the interpolation. The host94

graphs in our dichotomy theorems do not have this closure property. Nevertheless, we95

obtain a dichotomy for all somewhere dense classes using a combination of techniques96

involving graph fractures and colourings.97

The rest of this section presents our main conceptual contribution (Section 1.1.1),98

gives a detailed walk-through of our complexity dichotomies (Section 1.1.2, Sec-99

tion 1.1.3, Section 1.1.4), provides some context (Section 1.2), and overviews the100

techniques behind our proofs (Section 1.3). For full proofs of our claims see Section 2101

onward.102

Basic preliminaries.. We concisely state some necessary definitions and obser-103

vations which are given in more detail in Section 2. We denote by U the class of104

all graphs. We denote by ω(G), α(G), β(G), and m(G) respectively the clique, in-105

dependence, biclique, and matching number of a graph G. The notation extends to106

graph classes by taking the supremum over their elements. Induced versions of those107

quantities are identified by the subscript ind (for instance, mind denotes the induced108

matching number). Gr denotes the r-subdivision of G, and F ×G denotes the tensor109

product of F and G. All of our lower bounds assume the Exponential Time Hypothe-110

sis (ETH) [38]; and most of them rule out algorithms running in time f(k) ·no(k/ log k)111

for any function f , and are therefore tight except possibly for a O(log k) factor in the112

exponent.2 All of our #W[1]-hardness results are actually #W[1]-completeness re-113

sults; this holds because #Sub(H → G), #IndSub(H → G), and #Hom(H → G) are114

always in #W[1] due to a characterisation of #W[1] via parameterised model-counting115

problems (see [29, Chapter 14]).116

1.1.1. Simpler Hardness Proofs for More Graph Families. Our first and117

most conceptual contribution is a novel approach to proving hardness of parameter-118

ized subgraph counting problems for somewhere-dense families of host graphs. This119

approach allows us to significantly generalize existing results while simultaneously120

yielding surprisingly simpler proofs.121

The starting point is the observation that proving intractability results for param-122

eterized counting problems is discouragingly difficult, as it often requires tedious and123

involved arguments. For instance, after Flum and Grohe conjectured that counting k-124

matchings is #W[1]-hard [28], the first proof required nine years and relied on sophis-125

ticated algebraic techniques [15]. This partially changed in 2017 when Curticapean,126

Dell and Marx [18] showed how to express a subgraph count #Sub(H → G) as linear127

combination of homomorphism counts
∑

F aF · #Hom(F → G). They showed that128

computing this linear combination has the same complexity as computing the hardest129

term #Hom(F → G) such that aF ̸= 0. A similar claim holds for induced subgraph130

2This O(log k) gap is not an artifact of our proofs, but a consequence of the well-known open
problem “Can you beat treewidth?” [43, 44].
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counts as well. Thanks to this technique one can prove intractability of several sub-131

graph counting problems, including for instance the problem of counting k-matchings.3132

These hardness results ultimately yielded complexity dichotomies for general subgraph133

counting problems, including notably #Sub(H → G) and #IndSub(H → G) when G134

is the class of all graphs.135

The technique of [18] does not work for proving hardness of #Sub(H → G) and136

#IndSub(H → G) when G ̸= U . Indeed, one caveat of that technique is that the137

family of host graphs G must satisfy certain conditions. One of those conditions is138

that G is closed under tensoring, i.e., that G × G′ ∈ G for all G ∈ G and all G′ ∈ U .139

The reason is that the interpolation relies on evaluating, say, Sub(H → G × Gi) for140

several carefully chosen graphs Gi, with the goal of constructing a certain invertible141

system of linear equations; for this to yield a reduction towards counting patterns142

in graphs from G, it is crucial that G × Gi ∈ G for all such Gi (Section 1.3 gives143

a concrete example using the problem of counting k-matchings). This is why the144

technique of [18] works smoothly for G = U ; closure under tensoring holds trivially in145

that case. But many other natural graph families G are not closed under tensoring,146

including somewhere dense ones (for instance, the family of d-degenerate graphs for147

any fixed integer d ≥ 2). Until now, this has been the main obstacle towards proving148

hardness of subgraph counting for arbitrary somewhere dense graph families. The149

central insight of our work is that this obstacle can be circumvented in a surprisingly150

simple way. Using well-established results from the theory of sparsity, we prove the151

following claim, which we explain in detail in Section 1.3:152

Every monotone and somewhere dense class of graphs is closed153

under vertex-colourful tensor products of subdivided graphs.154

Ignoring for a moment its technicalities, this result allows us to lift the interpola-155

tion technique via graph tensors to any monotone somewhere dense class of host156

graphs, including for instance the aforementioned class of d-degenerate graphs. In157

turn this yields complexity classifications for #Hom(H → G), #Sub(H → G), and158

#IndSub(H → G) that subsume and significantly strengthen almost all classifications159

known in the literature (see below). Moreover, our approach yields simple and almost160

self-contained proofs, helping understand the underlying causes of the hardness.161

1.1.2. The Complexity of #Sub(H → G). This section presents our results162

on the fixed-parameter tractability of #Sub(H → G). We start by presenting a163

minimal4 family H for which hardness holds: the family of all k-matchings (or 1-164

regular graphs). In this case we also denote #Sub(H → G) as #Match(G). In the165

foundational work by Flum and Grohe [28], #Match(U) was identified as a central166

problem because of the significance of its classical counterpart (counting the number167

of perfect matchings); a series of works then identified #Match(U) as the minimal168

intractable case [15, 20, 18]. In this work, we show that #Match(G) is the minimal169

hard case for every class G that is monotone and somewhere dense:170

Theorem 1.2. Let G be a monotone class of graphs5 and assume that ETH holds.171

Then #Match(G) is fixed-parameter tractable if and only if G is nowhere dense.172

3In the field of database theory a similar technique expressing answers to unions of conjunctive
queries as linear combinations of answers of conjunctive queries was independently discovered by
Chen and Mengel [11].

4Minimal means that, for every class H′, #Sub(H′ → G) is intractable if and only if the monotone
closure of H′ includes H. The same holds for #IndSub with “monotone” replaced by “hereditary”.

5We emphasize that we do not need our classes to be computable or recursively enumerable.
This is due to the assumed closure properties of the classes.
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More precisely, if G is nowhere dense then #Match(G) can be solved in time f(k) ·173

|V (G)|1+o(1) for some computable function f ; otherwise #Match(G) is #W[1]-hard174

and cannot be solved in time f(k) · |G|o(k/ log k) for any function f .175

Theorem 1.2 subsumes the existing intractability results for counting k-matchings176

in bipartite graphs [20], in F -colourable graphs [56], in bipartite graphs with one-177

sided degree bounds [19], and in degenerate graphs [9]. It also strengthens the latter178

result: while [9] establishes hardness of counting k-matchings in ℓ-degenerate graphs179

for k + ℓ as a parameter, Theorem 1.2 yields hardness for d-degenerate graphs for180

every fixed d ≥ 2.6 Additionally, we show that Theorem 1.2 cannot be strengthened to181

achieve polynomial-time tractability of #Match(G) for nowhere dense and monotone182

G, unless #P = P.183

As a consequence of Theorem 1.2 we obtain, for hereditary H, an exhaustive and184

detailed classification of the complexity of #Sub(H → G) as a function of invariants185

of G and H. .186

Theorem 1.3. Let H and G be graph classes such that H is hereditary and G is187

monotone. Then the complexity of #Sub(H → G) is exhaustively classified by Table 1.188

G n. dense
G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
β(G) = ∞

G s. dense
ω(G) < ∞
β(G) < ∞

m(H) < ∞ P P P P

mind(H) = ∞ FPT hard hard hard

mind(H) < ∞
βind(H) = ∞ P hard† hard† P

Otherwise P hard† P P

Table 1
The complexity of #Sub(H → G) for hereditary H and monotone G. Here “hard”

means #W[1]-hard and, unless ETH fails, without an algorithm running in time f(|H|) ·
|G|o(|V (H)|/ log |V (H)|); “hard†” means the same, but without an algorithm running in f(|H|) ·
|G|o(|V (H)|).

Note that the unique fixed-parameter tractability result in Table 1 is a “real” FPT189

case: we can show that, unless P = #P, it is in FPT but not in P. We point out190

that the contributions in this work are the hardness results in the third and fourth191

column, that is, for the cases in which G is somewhere dense, but not the class of all192

graphs. (For monotone G, ω(G) = ∞ implies that G is the class of all graphs.)193

From the classification of Theorem 1.3 one can derive interesting corollaries. For194

example, when H and G are monotone one has essentially the same classification of195

the case G = U : only the boundedness of the matching number of H (or equivalently,196

of its vertex-cover number) counts [20].197

Theorem 1.4. Let H and G be monotone classes of graphs and assume that ETH198

holds. Then #Sub(H → G) is fixed-parameter tractable if m(H) < ∞ or G is nowhere199

dense; otherwise #Sub(H → G) is #W[1]-complete and cannot be solved in time200

6The class of all d-degenerate graphs is somewhere dense for all d ≥ 2.
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f(|H|) · |G|o(|V (H)|/ log(|V (H)|)) for any function f .201

We conclude by remarking that Table 1 and the proofs of its bounds suggest the202

existence of three general algorithmic strategies for subgraph counting:203

1. If G is nowhere dense (first column of Table 1), then one can use the FPT204

algorithm of Theorem 1.1, based on Gaifman’s locality theorem for first-order205

formulas and the local sparsity of nowhere dense graphs (see [49]).206

2. If m(H) < ∞ (first row of Table 1), then one can use the polynomial-time207

algorithm of Curticapean and Marx [20], based on guessing the image of a208

maximum matching of H and counting its extensions via dynamic program-209

ming.210

3. All remaining entries marked as “P” are shown to be essentially trivial. Con-211

cretely, we will rely on Ramsey’s theorem to prove that minor modifications212

of the naive brute-force approach yield polynomial-time algorithms for those213

cases.214

1.1.3. The Complexity of #IndSub(H → G). In the previous section we215

proved that, when G is somewhere dense, k-matchings are the minimal hard family of216

patterns for #Sub(H → G). In this section we show that k-independent sets play a217

similar role for #IndSub(H → G). Let #IndSet(G) = #IndSub(I → G) where I is218

the set of all all independent sets (or 0-regular graphs). We prove:219

Theorem 1.5. Let G be a monotone class of graphs and assume that ETH holds.220

Then #IndSet(G) is fixed-parameter tractable if and only if G is nowhere dense.221

More precisely, if G is nowhere dense then #IndSet(G) can be solved in time f(k) ·222

|V (G)|1+o(1) for some computable function f ; otherwise #IndSet(G) cannot be solved223

in time f(k) · |G|o(k/ log k) for any function f .224

This result subsumes the intractability result for counting k-independent sets in bi-225

partite graphs of [17]. It also strengthens the result of [9], which shows #IndSet(G) is226

hard when parameterized by k+d where d is the degeneracy of G. More precisely, [9]227

does not imply that #IndSet(G) is hard when G is the class of d-degenerate graphs,228

for any d ≥ 2. In contrast to this, Theorem 1.5 proves such hardness for every d ≥ 2.229

Finally, we point out that the FPT case of Theorem 1.5 is not in P unless P = #P.230

As consequence of Theorem 1.5, when H is hereditary (and thus in particular231

monotone) we obtain:232

Theorem 1.6. Let H and G be classes of graphs such that H is hereditary and G233

is monotone. Then the complexity of #IndSub(H → G) is exhaustively classified by234

Table 2.235

1.1.4. The Complexity of #Hom(H → G). Finally, we study the parameter-236

ized complexity of #Hom(H → G). We denote by tw(H) the treewidth of a graph H.237

Informally, graphs of small treewidth admit a decomposition with small separators,238

which allows for efficient dynamic programming. In this work we use treewidth in a239

purely black-box fashion (e.g. via excluded-grid theorems); for its formal definition240

see [22, Chapter 7]. We prove:241
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G n. dense
G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
α(G) = ∞

|H| < ∞ P P P

α(H) = ∞ FPT hard† hard

Otherwise P hard† P

Table 2
The complexity of #IndSub(H → G) for hereditary H and monotone G. Here “hard”

means #W[1]-hard and, unless ETH fails, without an algorithm running in time f(|H|) ·
|G|o(|V (H)|/ log |V (H)|); “hard†” means the same, but without an algorithm running in f(|H|) ·
|G|o(|V (H)|).

Theorem 1.7. Let H and G be monotone classes of graphs.
1. If G is nowhere dense then #Hom(H → G) is fixed-parameter tractable and

can be solved in time f(|H|) · |V (G)|1+o(1) for some computable function f .
2. If tw(H) < ∞ then #Hom(H → G) is solvable in polynomial time, and if

a tree decomposition of H of width t is given, then it can be solved in time
|H|O(1) · |V (G)|t+1.

3. If G is somewhere dense and tw(H) = ∞ then #Hom(H → G) is #W[1]-
hard and, assuming ETH, cannot be solved in time f(|H|) · |G|o(tw(H)) for any
function f .

(The novel part is 3.; we included 1. and 2. to provide the complete picture.)

Unfortunately, in contrast to #Sub and #IndSub, we do not know how to extend242

Theorem 1.7 to hereditary H. We point out however that for hereditary H the finite-243

ness of tw(H) cannot be the correct criterion: if H is the set of all complete graphs244

and G is the set of all bipartite graphs, then H is hereditary and tw(H) = ∞, but245

#Hom(H → G) is easy since |V (H)| ≤ 2 or #Hom(H → G) = 0. More generally, the246

complexity of #Hom(H → G) appears to be far from completely understood for arbi-247

trary classesH. In fact, it has been recently posed as an open problem even for specific248

monotone and somewhere dense G such as the family of d-degenerate graphs [9, 4].249

There is some evidence that the finiteness of induced grid minors is the right criterion250

for tractability [9].251

In what follows we provide a detailed exposition of our proof techniques, starting252

with a brief summary of the state of the art.253

1.2. Related Work. The general idea of using interpolation as a reduction254

technique for counting problems dates back to the foundational work of Valiant [61].255

Roughly speaking, the key to interpolation is constructing a system of linear equations256

that is invertible and thus has a unique solution. For example, in the classic case of257

polynomial interpolation (where one has to infer the coefficients of a univariate poly-258

nomial given an oracle that evaluates it) the system corresponds to a Vandermonde259

matrix, which is nonsingular and thus invertible. In the case of linear combinations260

of homomorphism counts, an invertible system of linear equations can be construc-261

ted via graph tensoring arguments, as proven implicitly by works of Lovász (see e.g.262

[42, Chapters 5 and 6]). It was then discovered by Curticapean et al. in [18] that263

these interpolation arguments could be extended to subgraph and induced subgraph264
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counts, by showing that those counts may be expressed as linear combinations of ho-265

momorphism counts. Using this fact, they proved that interpolation through graph266

tensoring applies to a wide variety of parameterised subgraph counting problems.267

However, their technique fails when one restrict the class of host graphs G, see the268

discussion in Section 1.1.1; our work shows how to circumvent this obstacle.269

The idea of using graph subdivisions for proving hardness results appeared in270

the context of linear-time subgraph counting in degenerate graphs [5, 6, 4]. For271

example, [5] observed that counting triangles in general graphs, which is conjectured272

not to admit a linear time algorithm, reduces in linear time to counting 6-cycles in273

degenerate graphs by subdividing each edge once (which always yields a 2-degenerate274

graph). Our work makes heavy use of graph subdivisions as well, although in a more275

sophisticated fashion. This is not surprising since, for each d ≥ 2, the class of d-276

degenerate graphs constitutes an example of a monotone somewhere dense class of277

graphs.278

1.3. Overview of Our Techniques. The present section expands upon Sec-279

tion 1.1.1 and gives a detailed technical overview of our proofs of hardness for #Sub(H →280

G) and #IndSub(H → G) (Section 1.3.1) and for #Hom(H → G) (Section 1.3.2).281

The main contribution of our work is these hardness proofs. The upper bounds hold282

from (simple adaptations of) previous work.283

1.3.1. Classifying Subgraph and Induced Subgraph Counting. We start284

by analysing a simple case. Recall that a graph family G is somewhere dense if, for285

some r ∈ N0, for all k ∈ N there is a G ∈ G such that Kr
k is a subgraph of G. From286

this characterization it is immediate that, if G is somewhere dense and monotone,287

then it contains the r-subdivisions of every graph. In turn, this implies that detecting288

subdivisions of cliques in G is at least as hard as the parameterised clique problem [27].289

Since the parameterised clique problem is W[1]-hard, we deduce that #Sub(H → G)290

and #IndSub(H → G) are intractable when H = {Kr
k : k, r ∈ N} and G is monotone291

and somewhere dense. Unfortunately, it is unclear how to extend this approach to292

arbitrary H, since the elements of H are not necessarily r-subdivisions of graphs that293

are hard to count. To show how this obstacle can be overcome, we will focus on294

#Sub(H → G) when H is the class of k-matchings, M = {Mk : k ∈ N}; in other295

words, on the problem of counting k-matchings, #Sub(M → G). This problem will296

turn out to be the minimal hard case for #Sub(H → G), and its analysis will contain297

the key ingredients of our proof. The proof for #IndSub(H → G) will be similar.298

Let us start by outlining the hardness proof of #Sub(M → G) when G = U , by299

using the interpolation technique discussed in Section 1.2. From [18], we know that300

for every k ∈ N there is a function ak : U → Q with finite support such that, for every301

G ∈ U ,302

(1.1) #Sub(Mk → G) =
∑
H

ak(H) ·#Hom(H → G)303

where the sum is over all isomorphism classes of all graphs. By a classic result of304

Dalmau and Jonsson [23], computing #Hom(H → G) is not fixed-parameter tractable305

for H of unbounded treewidth, unless ETH fails. Hence, if we could use (1.1) to show306

that an FPT algorithm for computing #Sub(Mk → G) yields an FPT algorithm for307

computing #Hom(H → G) for some H whose treewidth grows with k, we would308

conclude that computing #Sub(Mk → G) is not fixed-parameter tractable unless309

ETH fails. This is what [18] indeed prove. The idea is to apply (1.1) not to G,310

but to a set of carefully chosen graphs Ĝ1, . . . , Ĝℓ such that the counts #Hom(Mk →311
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Ĝ1), . . . ,#Hom(Mk → Ĝℓ) can be used to solve a linear system and infer #Hom(H →312

G) for all H appearing on the right-hand side of (1.1).313

Let us explain this idea in more detail. Suppose we had an oracle for #Sub(M →314

U), so that we could quickly compute #Sub(Mk → G) for any desired G. Let ℓ be the315

size of the support of ak, which is finite and thus a function of k, and let {Gi}i=1,...,ℓ316

be a set of graphs such that each Gi has size bounded by a function of k. It is a317

well-known fact that, for all graphs H,G,G′,318

(1.2) #Hom(H → G×G′) = #Hom(H → G) ·#Hom(H → G′).319

By combining (1.1) and (1.2), for each i = 1, . . . , ℓ we obtain320

#Sub(Mk → G×Gi) =
∑
H

ak(H) ·#Hom(H → Gi) ·#Hom(H → G) =
∑
H

ak(H )̸=0

biH ·XH ,

(1.3)

321

322

where biH := #Hom(H → Gi) and XH := ak(H) · #Hom(H → G). Now, we can323

compute #Hom(H → Gi) in FPT time since |Gi| is bounded by a function of k,324

and we can compute #Sub(Mk → G × Gi) using the oracle. Therefore, in FPT325

time we can compute a system of ℓ linear equations with the XH as unknowns. By326

applying classical results due to Lovász (see e.g. [42, Chapter 5]), Curticapean et al.327

[18] showed that there always exists a choice of the Gi’s such that this system has a328

unique solution. Hence, using those Gi’s one can compute #Hom(H → G) in FPT329

time for all H with ak(H) ̸= 0. In particular, one can compute #Hom(Fk → G) where330

Fk is any k-edge graph of maximal treewidth, since [18] also showed that ak(H) ̸= 0331

for all H with |E(H)| ≤ k. This gives a parameterized reduction from #Hom(F → U)332

to #Sub(M → U), where F is the class of all maximal-treewidth graphs Fk. Since333

#Hom(F → U) is hard by [23], the reduction establishes hardness of #Sub(M → U)334

as desired.335

Our main question is whether this strategy can be extended from U to any mono-336

tone somewhere dense class G. This it not obvious, since the argument above relies337

on two crucial ingredients that may be lost when moving from U to G:338

(I.1) We need to find a family of graphs F̂ = {F̂k | k ∈ N} such that #Hom(F̂ → G)339

is hard and, for all k ∈ N, ak(F̂k) ̸= 0.340

(I.2) We need to find graphs Gi such that G × Gi ∈ G. This is necessary since341

the argument performs a reduction to the problem of counting #Sub(Mk →342

G×Gi), and is not straightforward since G×Gi may not be in G even when343

both G,Gi are.344

It turns out that both requirements can be satisfied in a systematic way. First, we345

study #Sub(H → G) in some carefully chosen vertex-coloured and edge-coloured346

version. It is well-known that the coloured version of the problem is equivalent in347

complexity (in the FPT sense) to the uncoloured version; so, to make progress, we348

may consider the coloured version. Next, coloured graphs come with a canonical349

coloured version of the tensor product which satisfies (1.2), so we can hope to apply350

interpolation via tensor products in the colorful setting, too. The introduction of351

colours in the analysis of parameterised problems is a common tool for streamlining352

reductions that are otherwise unnecessarily complicated (see e.g. [20, 51, 26, 30]). The353

technical details of the coloured version are not hard, but cumbersome to state; since354

here we do not need them, we defer them to Section 2. Let us now give a high-level355

explanation of how we achieve (I.1) and (I.2).356
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For (I.1), we let F̂ be the class of all r-subdivisions of a family E of regular ex-357

pander graphs. A simple construction then allows us to reduce #Hom(E → U), which358

is known to be hard, to #Hom(F̂ → Ur), where Ur is the set of all r-subdivisions of359

graphs. As noted above Ur ⊆ G, hence #Hom(F̂ → G) is hard. We will show in the360

coloured version that for each graph Fk ∈ F̂ with k edges, ak(Fk) ̸= 0 (see the proof361

of Lemma 4.6). Thus, (I.1) is satisfied.362

For (I.2) we construct, for each k, a finite sequence of coloured graphs G1, G2, . . .363

satisfying the following two conditions: the system of linear equations given by (the364

coloured version of) (1.3) has a unique solution, and the coloured tensor product365

between each Gi and any coloured graph in Ur is in G. Concretely, we choose as Gi366

the so-called fractured graphs of the r-subdivisions of the expanders in E . Fractured367

graphs are obtained by a splitting operation on a graph and come with a natural368

vertex colouring. They have been introduced in recent work on classifying subgraph369

counting problems [51] and we describe them in Section 2.1.370

Together, our resolutions of (I.1) and (I.2) yield a colourful version of the frame-371

work of [18] that applies to any monotone somewhere dense class of host graphs. As a372

consequence we obtain that #Hom(E → U), the problem of counting homomorphisms373

from expanders in E to arbitrary hosts graphs, reduces in FPT time to #Sub(M → G)374

whenever G is monotone and somewhere dense. Since #Hom(E → U) is intractable,375

this proves the hardness of #Sub(M → G) for all monotone and somewhere dense G,376

as stated in Theorem 1.2. From this result we will then be able to prove our general377

classification for #Sub(H → G) (Theorem 1.3) by combining existing results and378

Ramsey-type arguments on H and G.379

This concludes our overview for #Sub(H → G). The proofs for #IndSub(H →380

G) are similar, but instead of #Sub(M → G), they use as a minimal hard case381

#IndSet(G), the problem of counting k-independent sets in host graphs from G.382

1.3.2. Classifying Homomorphism Counting via Wall Minors. The proof383

of our dichotomy for #Hom(H → G) for monotone H and G (Theorem 1.7) requires384

us to establish hardness when G is somewhere dense and tw(H) = ∞. Recall that our385

solution of (I.1) relied on a reduction from (the coloured version of) #Hom(E → U)386

to (the coloured version of) #Hom(F̂ → Ur), where E is a family of regular expander387

graphs, F̂ is the class of all r-subdivisions of graphs in E , and Ur is the class of r-388

subdivisions of all graphs. Since for all monotone somewhere dense classes G there is389

an r such that Ur ⊆ G, we would be done if we could make sure that every monotone390

class of graphs of unbounded treewidth H contains F̂ as a subset. Unfortunately, this391

is not the case. As a trivial example, H could be the class of all graphs of degree at392

most 3 while E is a family of 4-regular expanders.393

To circumvent this problem, we use a result of Thomassen [58] to prove that, for394

every positive integer r, every monotone class of graphs H with unbounded treewidth,395

and every wall Wk,k, the class H contains a subdivision of Wk,k in which each edge is396

subdivided a positive multiple of r times. Now, the crucial property of the class of all397

walls W := {Wk,k | k ∈ N} is that #Hom(W → U) is intractable by the classification398

of Dalmau and Jonsson [23]. Refining our constructions based on subdivided graphs,399

we are then able to show that #Hom(W → U) reduces to #Hom(H → G) whenever400

H is monotone and of unbounded treewidth, and G is monotone and somewhere dense.401

Theorem 1.7 will then follow as a direct consequence.402

2. Preliminaries. We denote the set of non-negative integers by N0, and the403

set of positive integers by N. Graphs in this work are undirected and without self-404

loops unless stated otherwise. A subdivision of a graph G is obtained by subdividing405
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v
vB1 vB2

Fig. 1. A fractured graph Q♯σ from [51]. Left: a vertex v ∈ V (Q) with incident edges
EQ(v) = { , , , , , }. Right: the splitting of v in Q♯σ for a fracture σ where the partition σv of
EQ(v) consists of the two blocks B1 = { , , }, and B2 = { , , }.

each edge of G arbitrarily often. Given a graph G and r ∈ N0, we write Gr for the406

r-subdivision of G, i.e., the graph obtained from G by subdividing each edge r times407

(so that it becomes a path of r + 1 edges). Note that G0 = G. (The graph Gr−1408

is also called the “r-stretch of G” in the literature). Given a graph G and a vertex409

v ∈ V (G), we write EG(v) := {e ∈ E(G) | v ∈ e} for the set of edges incident to410

v. Furthermore, given A ⊆ E(G), we write G[A] for the graph (V (G), A). Given a411

subset of vertices S ⊆ V (G), we write G[S] for the subgraph of G induced by the412

vertices in S, that is, G[S] := (S, {e ∈ E(G) | e ⊆ S}). An “induced subgraph” of G413

is a subgraph induced by some S ⊆ V (G).414

A homomorphism from a graph H to a graph G is a mapping φ : V (H) → V (G)415

which is edge-preserving, that is, {u, v} ∈ E(H) implies {φ(u), φ(v)} ∈ E(G). We416

write:417

• Hom(H → G) for the set of all homomorphisms from H to G,418

• SurHom(H → G) for the set of all surjective homomorphisms from H to G,419

• Sub(H → G) for the set of all subgraphs of G isomorphic to H, and420

• IndSub(H → G) for the set of all induced subgraphs of G isomorphic to H.421

2.1. Coloured Graphs and Fractures. Let H be a graph. Following standard422

terminology, we refer to an element of Hom(G → H) as anH-colouring of the graph G.423

An H-coloured graph is a pair (G, c) where G is a graph and c an H-colouring of G.424

We say that (G, c) is a surjectively H-coloured graph if c ∈ SurHom(G → H).425

Given two H-coloured graphs (F, cF ) and (G, cG), a homomorphism from (F, cF )426

to (G, cG) is a mapping φ ∈ Hom(F → G) such that cG(φ(v)) = cF (v) for each427

v ∈ V (F ).7 We write Hom((F, cF ) → (G, cG)) for the set of all homomorphisms from428

(F, cF ) to (G, cG).429

Following the terminology of [51], we define a fracture of a graph H as a |V (H)|-430

tuple ρ = (ρv)v∈V (H) where ρv is a partition of the set EH(v) of edges of H incident431

to v. Now, given a fracture ρ of H, we obtain the fractured graph H♯ ρ from H432

by splitting each vertex v according to the partition ρv. Formally, the graph H♯ ρ433

contains a vertex vB for each vertex v ∈ V (H) and block B ∈ ρv, and we make vB434

and uB′
adjacent if and only if {v, u} ∈ E(H) and {u, v} ∈ B ∩B′. An illustration is435

provided in Figure 1.436

The following H-colouring of a fractured graph is used implicitly in [51].437

Definition 2.1. Let H be a graph and ρ a fracture of H. We denote by cρ :438

V (H♯ ρ) → V (H) the function that maps vB to v for each v ∈ V (H) and B ∈ ρv.439

7We remark that in previous work [51], homomorphisms between H-coloured graphs are called
“colour-preserving” or, if F = H, “colour-prescribed”. Since we will work almost exclusively in
the coloured setting in this work, we will just speak of homomorphisms and always provide the
H-colourings explicitly in our notation.
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Observation 2.2. For each H and ρ, cρ is an H-colouring of H♯ ρ.440

2.2. Graph Classes, Invariants and Minors. We use symbols F ,G,H to441

denote classes of graphs, and we denote by U be the class of all graphs. A graph442

invariant is a function g : U → N0 such that g(G) = g(H) whenever G and H are443

isomorphic. An invariant g is bounded on a graph family H if there exists B ∈ N0444

such that g(H) ≤ B for all H ∈ H, in which case we write g(H) < ∞; otherwise we445

say g is unbounded on H and write g(H) = ∞. Our statements involve the following446

invariants.447

Definition 2.3 (Graph Invariants). For any graph G define:448

• the independence number α(G), i.e., the size of the largest independent set of449

G450

• the clique number ω(G), i.e., the size of the largest complete subgraph of G451

• the biclique number β(G), i.e., the largest k such that G contains a k-by-k452

biclique as a subgraph, and its induced version, the induced biclique number453

βind(G)454

• the matching number m(G), i.e., the size of a maximum matching of G, and455

its induced version, the induced matching number mind(G)456

We denote by tw(G) the treewidth of a graph G. We omit the definition of treewidth457

as we rely on it in a black-box manner; the interested reader can see e.g. Chapter 7458

of [22]. For any k ∈ N the k-by-k grid graph ⊞k, depicted in Figure 2, is defined by459

V (⊞k) = [k]2 and E(⊞k) = {{(i, j), (i′, j′)} : i, j, i′, j′ ∈ [k], |i− i′|+ |j − j′| = 1}. It460

is well known that tw(⊞k) = k, see [22, Chapter 7.7.1].461

We make use of the following two consequences of Ramsey’s Theorem for an462

arbitrary class of graphs H. The first one is immediate, and the second one was463

established by Curticapean and Marx in [20].464

Theorem 2.4. If |H| = ∞ then max(α(H), ω(H)) = ∞.465

Theorem 2.5. If m(H) = ∞ then max(ω(H), βind(H),mind(H)) = ∞.466

A class of graphs is hereditary if it is closed under vertex deletion, and ismonotone467

if it is hereditary and closed under edge deletion. In other words, hereditary classes468

are closed under taking induced subgraphs, and monotone classes are closed under469

taking subgraphs.470

To present the different notions of graph minors used in this paper in a unified471

way, we start by introducing contraction models.472

Definition 2.6 (Contraction model). A contraction model of a graph H in a473

graph G is a partition {V1, . . . , Vk} of V (G) such that G[Vi] is connected for each474

i ∈ [k] and that H is isomorphic to the graph obtained from G by contracting each475

G[Vi] into a single vertex (and deleting multiple edges and self-loops).476

Recall that a graph F is a minor of a graph G if F can be obtained from G by477

deletion of edges and vertices, and by contraction of edges; equivalently, F is a minor478

of G if F is a subgraph of a graph that has a contraction model in G. In this work,479

we will also require the subsequent stricter notion of minors.480

Definition 2.7 (Shallow minor [48]). A graph F is a shallow minor at depth d481

of a graph G if F is a subgraph of graph H that has a contraction model {V1, . . . , Vk}482

in G satisfying the following additional constraint: for each i ∈ [k] there is a vertex483

xi ∈ Vi such that each vertex in Vi has distance at most d from xi. Given a class of484

graphs G, we write G▽d for the set of all shallow minors at depth d of graphs in G.485
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Observe that the shallow minors at depth 0 of G are exactly the subgraphs of G,486

and the shallow minor of depth |V (G)| are exactly the minors of G. For this reason,487

the notion of a shallow minor can be considered an interpolation between subgraphs488

and minors. Furthermore, having introduced this notion, we are now able to define489

somewhere dense and nowhere dense graph classes.490

Definition 2.8 (Somewhere dense graph classes [48]). A class of graphs G is491

somewhere dense if ω(G▽d) = ∞ for some d ∈ N0, and is nowhere dense if instead492

ω(G▽d) < ∞ for all d ∈ N0.493

We use the following characterisation of monotone somewhere dense graph classes.8494

Lemma 2.9 (Remark 2 in [1]). Let G be a monotone class of graphs. Then G is495

somewhere dense if and only if there exists r ∈ N0 such that Gr ∈ G for all G ∈ U .496

2.3. Parameterised and Fine-Grained Complexity. A parameterized count-497

ing problem is a pair (P, κ) where P : {0, 1}∗ → N and κ : {0, 1}∗ → N is comput-498

able. For an instance x of P we call κ(x) the parameter of x. An algorithm A is499

fixed-parameter tractable (FPT) w.r.t. a parameterization κ if there is a computable500

function f such that A runs in time f(κ(x)) · |x|O(1) on every input x. A parame-501

terized counting problem (P, κ) is fixed-parameter tractable (FPT) if there is an FPT502

algorithm (w.r.t. κ) that computes P .503

A parameterized Turing reduction from (P, κ) to (P ′, κ′) is an algorithm A equipped504

with oracle access to P ′ satisfying the following constraints:505

(A1) A computes P506

(A2) A is FPT w.r.t. κ507

(A3) there is a computable function g such that, on input x, each oracle query x′508

satisfies that κ′(x′) ≤ g(κ(x)).509

We write (P, κ) ≤FPT (P ′, κ′) if a parameterized Turing reduction from (P, κ) to510

(P ′, κ′) exists.511

The parameterized counting problem #Clique asks, on input a graph G and512

k ∈ N, to compute the number of k-cliques inG; the parameter is k. As shown by Flum513

and Grohe [28], #Clique is the canonical complete problem for the parameterized514

complexity class #W[1]. In particular, a parameterized counting problem (P, κ) is515

called #W[1]-hard if #Clique ≤FPT (P, κ). We omit the technical definition of516

#W[1] via weft-1 circuits (see Chapter 14 of [29]), but we recall that #W[1]-hard517

problems are not FPT unless standard hardness assumptions fail (see below). We518

define the problems studied in this work. As usual H and G denote classes of graphs.519

Definition 2.10. #Hom(H→G),#Sub(H → G),#IndSub(H → G) ask, given520

H ∈ H and G ∈ G, to compute respectively #Hom(H → G), #Sub(H → G), and521

#IndSub(H → G). The parameter is |H|.522

For example, #Sub(H → G) = #Clique when H is the class of all complete graphs523

and G the class of all graphs. The following result follows immediately from an524

algorithm for counting answers to Boolean queries in nowhere dense graphs due to525

Nešetřil and Ossona de Mendez [49].526

Theorem 2.11 (Theorem 18.9 in [49]). If G is nowhere dense then #Hom(H →527

G), #Sub(H → G), and #IndSub(H → G) are fixed-parameter tractable and can be528

solved in time f(|H|) · |V (G)|1+o(1) for some computable function f .529

8It is non-trivial to pinpoint the first statement of Lemma 2.9 in the literature: Dvorák et al.
[27] attribute it to Nešetřil and de Mendez [48], who provide an implicit proof. The first explicit
statement is, to the best of our knowledge, due to Adler and Adler [1].
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In an intermediate step towards our classifications, we will rely on a coloured530

version of homomorphism counting.531

Definition 2.12. #cp-Hom(H → G) asks, given H ∈ H and a surjectively9 H-532

coloured graph (G, c) with G ∈ G, to compute #Hom((H, idH) → (G, c)), where idH533

denotes the identity on V (H). The parameter is |H|.534

It is well known that #cp-Hom(H → U) reduces to the uncoloured version via535

inclusion-exclusion. The same holds for #cp-Hom(H → G), too, if G is monotone.536

Formally:537

Lemma 2.13 (see e.g. Lemma 2.49 in [53]). If G is monotone then #cp-Hom(H →538

G) ≤FPT #Hom(H → G). Moreover, on input H ∈ H and (G, c) with G ∈ G, every539

oracle query (H ′, G′) in the reduction satisfies H ′ = H and G′ ⊆ G.540

An implicit consequence of the parameterized complexity classification for counting541

homomorphisms due to Dalmau and Jonsson [23] establishes the following hardness542

result for #cp-Hom; an explicit argument can be found e.g. in Chapter 2 in [53].543

Theorem 2.14 ([23]). If H is recursively enumerable and tw(H) = ∞ then544

#cp-Hom(H → U) is #W[1]-hard.545

Finally, all running-time lower bounds in this paper are conditional on ETH:546

Definition 2.15 ([38]). The Exponential Time Hypothesis (ETH) asserts that547

3-SAT cannot be solved in time exp(o(n)) where n is the number of variables of the548

input formula.549

Chen et al. [12, 13] showed that there is no function f such that #Clique can be550

solved in time f(k) · |G|o(k) unless ETH fails. This in particular implies that #W[1]-551

hard problems are not FPT unless ETH fails. Marx [43] strengthened Theorem 2.14552

into:10553

Theorem 2.16 ([43]). If H is recursively enumerable and tw(H) = ∞ then554

#cp-Hom(H → U) cannot be solved in time f(|H|) · |G|o(
tw(H)

log tw(H) ) for any function f ,555

unless ETH fails.556

The question of whether the (log tw(H))−1 factor in the above lower bound can be557

omitted can be considered the counting version of the open problem “Can you beat558

treewidth?” [43, 44].559

3. Counting Homomorphisms. This section is devoted to the proof of our di-560

chotomy theorem for #Hom(H → G), Theorem 1.7. We start by showing a reduction561

from #cp-Hom(H → U) to counting colour-prescribed homomorphisms between sub-562

divided graphs. While the proof is straightforward, the reduction will turn out useful563

for the more involved cases of #Sub(H → G) and #IndSub(H → G). Theorem 1.7564

will be an immediate consequence of Theorem 2.11 and Theorem 3.6 below.565

To begin with, let c ∈ SurHom(G → H) and let r ∈ N0. Define the following566

canonical homomorphism cr from Gr to Hr. For each u ∈ V (G), set cr(u) := c(u).567

For any edge e = {u1, u2} ∈ E(G), let u1, w1, . . . , wr, u2 be the corresponding path in568

Gr. Let e′ = {v1, v2} = {c(u1), c(u2)} — note that e′ ∈ E(H) as c ∈ Hom(G → H)569

9In previous works (e.g. in [51]), the definition of #cp-Hom(H → G) did not require the H-
colouring to be surjective. However, one can always assume surjectivity, since #Hom((H, idH) →
(G, c)) = 0 if c is not surjective. We decided to make the surjectivity condition explicit in this work.

10More precisely, Marx established the bound for the so-called partitioned subgraph problem.
However, as shown in [55], the lower bound immediately translates to #cp-Hom(H → U).
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— and let v1, x1, . . . , xr, v2 be the corresponding path in Hr. Then, set cr(wi) := xi570

for each i ∈ {1, . . . , r}. It is easy to see that cr is a surjective Hr-colouring of Gr.571

Furthermore:572

Lemma 3.1. For every surjectively H-coloured graph (G, c) and every r ∈ N0,573

#Hom((H, idH) → (G, c)) = #Hom((Hr, idHr ) → (Gr, cr))(3.1)574575

where idH and idHr are the identities on respectively V (H) and V (Hr).576

Proof. We define a bijection b : Hom((H, idH) → (G, c)) → Hom((Hr, idHr ) →577

(Gr, cr)). Let φ ∈ Hom((H, idH) → (G, c)). For every v ∈ V (H) let b(φ)(v) = φ(v).578

For every {v1, v2} ∈ E(H) and every i ∈ [r], if u1 = φ(v1) and u2 = φ(v2), and579

if xi and wi are the i-th vertices on the paths respectively between v1 and v2 in580

Hr and between u1 and u2 in Gr, then let b(φ)(xi) = wi. It is easy to see that581

b(φ) ∈ Hom((Hr, idHr ) → (Gr, cr)) and that b is injective. To see that b is surjective582

as well, note that for every φr ∈ Hom((Hr, idHr ) → (Gr, cr)) its restriction φr|V (H)583

to V (H) satisfies φr|V (H) ∈ Hom((H, idH) → (G, c)) and b(φr|V (H)) = φr.584

3.1. Warm-up: Minor-closed Pattern Classes. Using the characterisation585

of somewhere dense graph classes in Lemma 2.9, and known lower bounds for counting586

homomorphisms from grid graphs, we obtain as an easy consequence the following587

complexity dichotomy:588

Theorem 3.2. Let H be a minor-closed class of graphs and let G be a monotone589

and somewhere dense class of graphs.590

1. If tw(H) < ∞ then #Hom(H → G) ∈ P. Moreover, if a tree decomposition591

of H of width t is given, then #Hom(H → G) can be solved in time |H|O(1) ·592

|V (G)|t+1.593

2. If tw(H) = ∞, then #Hom(H → G) is #W[1]-hard and, assuming ETH,594

cannot be solved in time f(|H|) · |G|o(tw(H)) for any function f .595

Proof. The tractability result is well known [24, 23], so we only need to prove the596

hardness part. Recall that ⊞k denotes the k-by-k grid; see Figure 2 for a depiction of597

⊞4. Let ⊞ := {⊞k | k ∈ N}. It is known that #cp-Hom(⊞ → U) is #W[1]-hard and,598

unless ETH fails, cannot be solved in time f(k) · |G|o(k) for any function f (see [16,599

Lemma 1.13 and 5.7] or [53, Lemma 2.45]). As tw(⊞k) = k, the lower bound above600

can be written as f(k) · |G|o(tw(⊞k)).601

Let (⊞k, (G, c)) be the input to #cp-Hom(⊞ → U). Since G is somewhere dense602

and monotone, by Lemma 2.9 there is r ∈ N0 such that G contains the r-subdivision603

of every graph and thus, in particular, Gr. Moreover, since tw(H) = ∞ and H is604

minor-closed, by the Excluded-Grid Theorem [52] H contains every planar graph and605

thus in particular ⊞r
k. Clearly, ⊞r

k, G
r and cr can be computed in polynomial time.606

Moreover, by Lemma 3.1,607

#Hom((⊞k, id⊞k
) → (G, c)) = #Hom((⊞r

k, id⊞r
k
) → (Gr, cr)) .608

Hence #cp-Hom(⊞ → U) ≤FPT #cp-Hom(H → G). Since #cp-Hom(H → G) ≤FPT609

#Hom(H → G) by Lemma 2.13, we conclude that #Hom(H → G) is #W[1]-hard.610

For the conditional lower bound, observe that both reductions used above preserve611

the treewidth of the pattern (the first because treewidth is invariant under edge sub-612

division,11 the second by Lemma 2.13).613

11For example, this invariance is in Exercises 7.7 and 7.13 in [22].
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Fig. 2. The wall W4,5 ( left) and the grid ⊞4 ( right).

3.2. Monotone Pattern Classes. The strengthening of Theorem 3.2 to mono-614

tone pattern classes can be done by reduction from counting homomorphisms from a615

class of well-known graphs called walls.616

Definition 3.3 (Walls). Let k, ℓ ∈ N. The wall of height k and length ℓ, denoted617

by Wk,ℓ, is the graph whose vertex set is {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} and whose edge618

set contains:619

• {vi,j , vi,j+1} for all 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ− 1,620

• {vi,1, vi+1,1} and {vi,ℓ, vi+1,ℓ} for all 1 ≤ i ≤ k − 1621

• {vi,j , vi+1,j} for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ℓ such that i+ j is even.622

Figure 2 depicts W4,5 as an example. We let W := {Wk,k | k ∈ N} be the class of all623

walls.624

The following structural property of large walls is due to Thomassen.12625

Lemma 3.4 (Proposition 3.2 in [58]). For every k, r ∈ N, there exists h(k, r) ∈ N626

such that every subdivision of Wh(k,r),h(k,r) contains as a subgraph a subdivision of627

Wk,k in which each edge is subdivided a (positive) multiple of r times.628

The final ingredient of our proof for the classification of monotone pattern classes629

is given by Lemma 3.5, which is an immediate consequence of Lemma 2.9.630

Lemma 3.5. Let G be a monotone and somewhere dense class of graphs. There631

exists r ∈ N0 such that the following holds. Let G be any graph and let G′ be any632

graph obtained from G by subdividing each edge a (positive) multiple of r times. Then633

G′ is contained in G.634

Proof. We show that the claim holds for the r ∈ N0 given by Lemma 2.9. For this635

r, Lemma 2.9 guarantees that for every graph H, Hr ∈ G. Now let G be any graph636

and label its edges e1, . . . , em. Let G′ be any graph obtained from G by subdividing637

each edge a (positive) multiple of r times. Then there exist d1, . . . , dm ∈ N such that,638

for each i ∈ [m], the edge ei is subdivided dir times. Now let Ĝ be the graph obtained639

from G by subdividing, for each i ∈ [m], the edge ei just di times. It is immediate640

that G′ = Ĝr. Thus, by Lemma 2.9 and our choice of r, we have that G′ ∈ G.641

We are now ready to establish the main result of this section.642

Theorem 3.6. Let H be a monotone class of graphs and let G be a monotone and643

somewhere dense class of graphs.644

1. If tw(H) < ∞ then #Hom(H → G) ∈ P. Moreover, if a tree decomposition645

of H of width t is given, then #Hom(H → G) can be solved in time |H|O(1) ·646

|V (G)|t+1.647

12Note that walls are called grids in [58].

16

This manuscript is for review purposes only.



2. If tw(H) = ∞, then #Hom(H → G) is #W[1]-hard and, assuming ETH,648

cannot be solved in time f(|H|) · |G|o(tw(H)) for any function f .649

Proof. The tractability result is well known [24, 23], so we only need to prove650

point 2. To this end, we will reduce from #cp-Hom(W → U). Walls clearly have651

grid minors of linear size, that is, there is a function h ∈ Θ(k) such that Wk,k con-652

tains ⊞h(k) as a minor. Furthermore, it is well-known that #cp-Hom is minor-653

monotone (see e.g. [16, Lemma 5.8] or [53, Lemma 2.47]), hence #cp-Hom(⊞ →654

U) ≤FPT #cp-Hom(W → U). Moreover the reduction is tight, in the sense that the655

lower bound for #cp-Hom(⊞ → U) shown in the proof of Theorem 3.2 transfers to656

#cp-Hom(W → U); hence #cp-Hom(W → U) is #W[1]-hard and, assuming ETH,657

it cannot be solved in time f(k) · |G|o(tw(Wk,k)) for any function f .658

Let us now construct the reduction #cp-Hom(W → U) ≤FPT #cp-Hom(H → G).659

Let r ∈ N0 as given by Lemma 3.5. We use the fact that tw(H) = ∞ implies that660

H contains as minors all planar graphs; that is, for every planar graph F there is a661

graph H ∈ H such that F is a minor of H [52]. In particular, H contains all walls662

Wk,k as minors. A graph J is said to be a “topological minor” of a graph H if there663

is a subdivision of J that is isomorphic to a subgraph of H. Since walls have degree664

at most 3, the fact that H contains all walls as minors implies that it also contains665

all walls as topological minors (see e.g. [25, Proposition 1.7.3]).666

Now let Wk,k and (G, c) be an input instance of #cp-Hom(W → U). Let667

e1, . . . , eℓ be the edges of Wk,k in arbitrary order. By Lemma 3.4, every subdivi-668

sion of Wh(k,r),h(k,r) contains as a subgraph a subdivision of Wk,k in which each edge669

is subdivided a (positive) multiple of r times. Since H contains Wk,k as a topological670

minor, there is a subdivision of Wk,k that is isomorphic to a subgraph W ′ of a graph671

in H. Since H is monotone, there are W ′ ∈ H and d1, . . . , dℓ ∈ N0 such that W ′ is672

obtained from Wk,k by subdividing ei precisely dir times for each i ∈ [ℓ].673

We will now construct from (G, c) a graph G′ and a surjective homomorphism c′674

from G′ to W ′. For each edge e = {u, v} of G we proceed as follows. Since c ∈675

Hom(G → Wk,k), then {c(u), c(v)} = ei for some i ∈ [ℓ]. By the definition of W ′, ei676

was replaced by a path c(u), x1, . . . , xdir, c(v). Hence, we replace the edge e in G by677

a path u,w1, w2, . . . , wdir, v, where the wj are fresh vertices. Furthermore, we extend678

the colouring c to the colouring c′ by setting c′(wj) := xj for each j ∈ [dir]. Since c679

is surjective, so is c′. Also,680

#Hom((Wk,k, idWk,k
) → G, c) = #Hom((W ′, idW ′) → (G′, c′)) .681

By querying the oracle for #cp-Hom(H → G) on the instance ((W ′, idW ′), (G′, c′))682

we can thus conclude our reduction. This immediately implies #W[1]-hardness of683

#cp-Hom(H → G). For the conditional lower bound, we observe that W ′ has the684

same treewidth as Wk,k since it is a subdivision of Wk,k, and that the size of (G′, c′) is685

clearly bounded by f(k) · |G|O(1) — note that the f depends on H which is, however,686

fixed. A reduction to the uncoloured version via Lemma 2.13 completes the proof.687

Theorem 1.7 follows immediately from Theorem 2.11 and Theorem 3.6. We conclude688

with a remark.689

Remark 3.7. A strengthening of Theorem 3.6 to hereditary pattern classes H is690

not possible. Suppose for instance that H contains all complete graphs and G is the691

class of all bipartite graphs. Although H is hereditary and of unbounded treewidth, and692

G is monotone and somewhere dense, it is easy to see that #Hom(H → G) is trivial,693

since we can always output zero if H ∈ H has at least 3 vertices. When it comes694
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to a sufficient and necessary condition for tractability in case of hereditary classes695

of patterns, we conjecture that induced grid minor size might be the right candidate.696

However, even for very special cases, such as classes of degenerate host graphs (which697

are somewhere dense and monotone), it is still open whether induced grid minor size698

is the correct answer [9]. Thus, we leave the classification for hereditary classes of699

patterns as an open problem for further research.700

4. Counting Subgraphs. This section is devoted to the proofs of Theorem 1.2,701

Theorem 1.4, and Theorem 1.3. We begin in Section 4.1 by analysing the problem of702

counting k-matchings in somewhere dense host graphs, and proving Theorem 1.2; this703

is the most technical part. We then move on to prove Theorem 1.4 and Theorem 1.3704

in Section 4.2.705

4.1. Counting Matchings: Proof of Theorem 1.2. A k-matching in a graph706

G is a set M ⊆ E(G) with |M | = k and e1 ∩ e2 = ∅ for all e1 ̸= e2 in M . In other707

words, a k-matching in G is a set of k pairwise non-incident edges of G. Given a708

class of graphs G, the problem #Match(G) asks, on input k ∈ N and a graph G ∈ G,709

to compute the number of k-matchings in G; the parameter is k. We remark that710

#Match(G) = #Sub(M → G) where M is the set of all 1-regular graphs. The711

goal of this section is to prove that #Match(G) is hard whenever G is monotone and712

somewhere dense, i.e., the hardness part of Theorem 1.2.713

Before moving on, let us pin down some definitions and basic facts. Our analysis714

relies on the following “coloured” version of the graph tensor product, as in [51]:715

Definition 4.1. Let H be a graph, and let (G1, c1) and (G2, c2) be H-coloured716

graphs. The tensor product (G1, c1)× (G2, c2) is the H-coloured graph (Ĝ, ĉ) defined717

by:718

(T1) V (Ĝ) = {(v1, v2) ∈ V (G1)× V (G2) | c1(v1) = c2(v2)}.719

(T2) {(u1, u2), (v1, v2)} ∈ E(Ĝ) if and only if {u1, v1} ∈ E(G1) and {u2, v2} ∈720

E(G2).721

(T3) ĉ(v1, v2) = c1(v1) (equivalently by (T1), ĉ(v1, v2) = c2(v2)) for all (v1, v2) ∈722

V (Ĝ).723

The crucial property of the tensor product is given by:13724

Lemma 4.2 ([51]). If H is a graph and (F, cF ), (G1, c1), (G2, c2) are H-coloured725

graphs, then726

#Hom((F, cF ) → (G1, c1)×(G2, c2)) = #Hom((F, cF ) → (G1, c1))·#Hom((F, cF ) → (G2, c2)) .727

The final ingredient we need is the non-singularity of a certain matrix whose728

entries count homomorphisms between fractured graphs. Formally, let H be a graph.729

The square matrix MH has its rows and columns indexed by the fractures of H, and730

its entries satisfy:731

(4.1) MH [ρ, σ] := #Hom((H♯ ρ, cρ) → (H♯ σ, cσ)) ,732

where cρ and cσ are the canonical H-colourings of the fractured graphs H♯ ρ and H♯ σ733

(see Definition 2.1 and Observation 2.2). By ordering the columns and rows of MH734

along a certain lattice, the following property was established in previous work.14735

13Proofs of Lemma 4.2 and Lemma 4.3 can also be found in Section 3.1 in an earlier version [54]
of [51].

14See Footnote 13.
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G H

G1 H1 H1♯ ρ

(G1, c1)× (H1♯ ρ, cρ)

Fig. 3. the tensor product of the H1-coloured graphs (G1, c1) and (H1♯ ρ, cρ).

Lemma 4.3 ([51]). For each graph H, the matrix MH is nonsingular.736

If G is closed under uncoloured tensor products15, then the hardness result can737

be achieved by applying the reduction of [18] verbatim. However, that reduction fails738

if G is not closed under uncoloured tensor products, and this closure property is very739

restrictive. Consider for example the class G of square-free graphs, i.e., graphs that740

do not contain the 4-cycle C4 as a subgraph. Then G is clearly monotone and, since it741

contains the 3-subdivision of every graph, it is also somewhere dense by Lemma 2.9.742

However, G is not closed under (uncoloured) tensor products: the path on 2 edges P2743

is in G, but P2 × P2 /∈ G since it contains a C4.744

The main insight of this section is a weakened closure property for monotone and745

somewhere dense graph classes, established in the lemma below. Combined with the746

characterisation of somewhere dense graph classes via r-subdivisions (Lemma 2.9),747

this property implies that any monotone and somewhere dense class is closed under748

tensor products of subdivisions of coloured graphs.749

Lemma 4.4. Let r ∈ N0, let H be a graph without isolated vertices, and let (G, c)750

be an H-coloured graph on n vertices, and let ρ be a fracture of Hr. Then (Gr, cr)×751

(Hr ♯ ρ, cρ) is a subgraph of the r-subdivision of a complete graph of order O(kn),752

where k = |E(H)| and the constants in the O() notation depend only on r.753

Proof. Let T = (Gr, cr) × (Hr ♯ ρ, cρ); see Figure 3 for an example. The claim754

follows from Claims 1, 2, and 3 below, with Claim 3 applied to F = T .755

Claim 1. |V (T )| = O(kn). Straightforward since Gr is a subgraph of Kr
n.756

Claim 2: if x and y are distinct vertices of T of degree at least 3, then the length of757

any simple path from x to y is a multiple of r + 1.758

To prove this, recall that T is Hr-coloured by ĉ from Definition 4.1, and that759

V (Hr) can be partitioned into V (H) and a set S of kr fresh subdivision vertices. Let760

(u, v) be a vertex of T such that ĉ(u, v) = s /∈ V (H), that is, (u, v) is coloured with a761

subdivision vertex s. We show that (u, v) has degree at most 2 in T . Let s1 and s2762

be the two neighbours of s in Hr. By the construction of (Gr, cr), u has exactly two763

neighbours in Gr, say u1 and u2. Furthermore, cr(u1) = s1 and cr(u2) = s2. Since s764

has degree 2 in Hr, there are only two cases for ρs.765

15The adjacency matrix of the tensor product of two uncoloured graphs G and F is the Kronecker
product of the adjacency matrices of G and F .
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• Case 1: ρs = {B} where B = {{s, s1}, {s, s2}}. In this case sB is the only ver-766

tex of H♯ ρ that is coloured by cρ with s. Since ĉ(u, v) = s implies cρ(v) = s,767

we conclude that v = sB . Hence (u, v) has exactly two neighbours in T ,768

(u1, s
B1
1 ) and (u2, s

B2
2 ), where B1 and B2 are the blocks of ρs1 and ρs2 con-769

taining respectively {s, s1} and {s, s2}.770

• Case 2: ρs = {B,B′} where B = {{s, s1}} and B′ = {{s, s2}}. In this case771

sB and sB
′
are the only two vertices of H♯ ρ that are coloured by cρ with s.772

Since ĉ(u, v) = s implies cρ(v) = s, we conclude that v ∈ {sB , sB′}. Assume773

that v = SB ; the other case is symmetric. Then the only neighbour of (u, v)774

in T is (u1, s
B1
1 ), where B1 is the block of ρs1 that contains the edge {s, s1}.775

We conclude that the only vertices (u, v) of degree at least 3 in T satisfy ĉ(u, v) ∈776

V (H), implying that cr(u) ∈ V (H) and thus, by the definition of cr, that u ∈ V (G),777

hence u is not a subdivision vertex. The claim follows since the length of every simple778

path between two non-subdivision vertices u1 and u2 in Gr is a multiple of (r + 1),779

and since T can be obtained from (Gr, cr) by splitting vertices.780

Claim 3: if F is a graph where the length of any simple path between two vertices781

of degree at least 3 is a multiple of (r+ 1), then F is a subgraph of the r-subdivision782

of a complete graph of order O(|V (F )|).783

Note first that we can deal with each connected component of F separately.784

Furthermore, the claim is clearly true if F is just a path (of any length). For what785

follows we can hence assume that F is connected and not isomorphic to a path. We786

say that a path P in F is extendable if its internal vertices have degree 2, one endpoint787

sP (the “startpoint”) has degree 1, and the other endpoint has degree at least 3. If P788

has length ℓP , then its extension length is the smallest ℓ′P ∈ N0 such that ℓP + ℓ′P is a789

multiple of r+1. Let F ′ be the graph formed from F by considering every extendable790

path P and adding a new length-ℓ′P path from sP (adding ℓ′P fresh vertices to make791

up this path). Observe that, for every pair of non-isolated vertices u′ and v′ of F ′,792

if both u′ and v′ have degree not equal to 2, then the length of every simple path793

from u′ to v′ in F ′ is a multiple of (r + 1). Therefore F ′ is a subgraph of the r-794

subdivision of a complete graph of order at most O(|V (F ′)|) = O(|V (F )|), where the795

constants depend only on r. Moreover F is by construction a subgraph of F ′, which796

this concludes the proof of the claim.797

To establish the hardness of #Match(G), we first consider an edge-coloured ver-798

sion. Let G be a graph and k ∈ N. A k-coloring of E(G) is a map c : E(G) →799

{1, . . . , k}. A matching M ⊆ E(G) is edge-colorful under if for every colour in800

{1, . . . , k} there is precisely one element of M with that colour.801

Definition 4.5 (#ColMatch(G)). Let G be a class of graphs. The problem802

#ColMatch(G) asks, on input k ∈ N, a graph G ∈ G, and a k-coloring c of E(G), to803

compute the number of edge-colorful k-matchings in G. The problem is parameterised804

by k.805

Lemma 4.6. Let G be a monotone somewhere dense class of graphs. Then the806

problem #ColMatch(G) is #W[1]-hard and, assuming ETH, cannot be solved in807

time f(k) · |G|o(k/ log k) for any function f .808

Proof. Let H be a class of 3-regular expander graphs. Both the treewidth and809

the number of edges of the elements of H grow linearly in the number of vertices; that810

is, |E(H)| ∈ Θ(|V (H)|) and tw(H) ∈ Θ(|V (H)|) for all H ∈ H (see, e.g., [37]). Hence811

theorems 2.14 and 2.16 imply that #cp-Hom(H → U) is #W[1]-hard and, assuming812

ETH, cannot be solved in time f(|H|) · |G|o(|H|/ log |H|) for any function f . We will813
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now show that #cp-Hom(H → U) ≤FPT #ColMatch(G).814

Let H ∈ H and (G, c) be the input of #cp-Hom(H → U). By Lemma 2.9, there is815

r ∈ N0 such that Gr ∈ G for all G ∈ U . Construct then Hr and (Gr, cr), which clearly816

takes polynomial time. Let k = |E(Hr)|; clearly k ∈ O(|H|) where the constants817

depend only on r. Now, by Lemma 3.1,818

#Hom((H, idH) → (G, c)) = #Hom((Hr, idHr ) → (Gr, cr)) .819

Next, we view surjectively Hr-coloured graphs (G̃, c̃) also as edge-coloured graphs820

where every edge e = {u, v} is mapped to the colour {c̃(u), c̃(v)}. This allows us to821

invoke the results of [51] and deduce what follows.16822

First, there is a unique function a from fractures of Hr to rationals such that, for823

every surjectively Hr-coloured graph (G̃, c̃), the number of edge-colourful k-matchings824

of (G̃, c̃) is:825

(4.2)
∑
ρ

a(ρ) ·#Hom((Hr ♯ ρ, cρ) → (G̃, c̃)) ,826

where the sum is over all fractures of Hr. Additionally, a satisfies:827

(4.3) a(⊤) =
∏

v∈V (Hr)

(−1)deg(v)−1 · (deg(v)− 1)! ,828

where ⊤ is the coarsest fracture, that is, for each v ∈ V (Hr) the partition ⊤v only829

contains a singleton block (and therefore Hr ♯⊤ = Hr). In particular, it is easy to see830

that831

a(⊤) = ±2|V (H)| ̸= 0 .832

Now let σ be a fracture of Hr. Considering (4.2) with (G̃, c̃) = (Gr, cr) ×833

(Hr ♯ σ, cσ) and applying Lemma 4.2, the number of colorful k-matchings in (Gr, cr)×834

(Hr ♯ σ, cσ) equals:835 ∑
ρ

a(ρ) ·#Hom((Hr ♯ ρ, cρ) → (Gr, cr)) ·#Hom((Hr ♯ ρ, cρ) → (Hr ♯ σ, cσ))(4.4)836

837

By Lemma 4.4, (Gr, cr)× (Hr ♯ σ, cσ) is a subgraph of the r-subdivision of a complete838

graph, which is in G by our choice of r. Since G is monotone this implies (Gr, cr) ×839

(Hr ♯ σ, cσ) ∈ G, too. Hence, if we have an oracle for #ColMatch(G), then we can840

compute the value of (4.4), while #Hom((Hr ♯ ρ, cρ) → (Hr ♯ σ, cσ)) can obviously be841

computed in a time that is a function of |H| and r. Thus, by letting coeff(ρ) := a(ρ) ·842

#Hom((Hr ♯ ρ, cρ) → (Gr, cr)), in FPT time we obtain a system of linear equations843

with unknowns coeff(ρ) and whose matrix is MHr , see (4.1). By Lemma 4.3 MHr is844

nonsingular, hence by solving the system we can retrieve:845

coeff(⊤) = a(⊤)·#Hom((Hr ♯⊤, c⊤) → (Gr, cr)) = a(⊤)·#Hom((Hr, idHr ) → (Gr, cr)) .846

Since a(⊤) ̸= 0, we can divide by a(⊤) and recover #Hom((Hr, idHr ) → (Gr, cr)) as847

desired. This concludes the parameterized reduction to #ColMatch(G) and proves848

the thesis.849

16In [51], the number of edge-colourful k-matchings of G is denoted by #ColEdgeSub(Φ, k → G),
where Φ is the graph property of being a matching. The identities (4.2) and (4.3) are immediate
consequences of Lemma 4.1 and Corollary 4.3 in [51] (see also Lemma 3.1 and Corollary 3.3 in an
earlier version [54] of [51]).
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With the hardness results for #ColMatch(G) above, we can finally obtain our850

complexity dichotomy for #Match(G). First, we prove:851

Theorem 4.7. Let G be a monotone somewhere dense class of graphs. Then852

#Match(G) is #W[1]-hard and, assuming ETH, cannot be solved in time f(k) ·853

|G|o(k/ log k) for any function f .854

Proof. A well-known application of inclusion-exclusion (see, e.g., [16, Lemma 1.34])855

yields a parameterized reduction from #ColMatch(G) to #Match(G′) that pre-856

serves the parameter, where G′ is the class of all subgraphs of G. By monotonicity857

G′ = G, so the claim of Lemma 4.6 holds for #Match(G), too.858

Finally, we obtain:859

Corollary 4.8 (Theorem 1.2, restated). Let G be a monotone class of graphs860

and assume that ETH holds. Then #Match(G) is fixed-parameter tractable if and861

only if G is nowhere dense. In particular, if G is nowhere dense then #Match(G)862

can be solved in time f(k) · |V (G)|1+o(1) for some computable function f ; otherwise863

#Match(G) cannot be solved in time f(k) · |G|o(k/ log k) for any function f .864

Proof. Immediate from Theorem 2.11 and Theorem 4.7.865

Remark 4.9. Unless #P = P, Corollary 4.8 / Theorem 1.2 cannot be strength-866

ened to achieve polynomial time tractability of #Match(G) for nowhere dense and867

monotone G. Let indeed G be the class of all K8-minor-free graphs. Then G is clearly868

monotone, and since it does not contain the subdivisions of cliques larger than 7, it is869

also nowhere dense by Lemma 2.9. However, as shown recently by Curticapean and870

Xia [21], counting perfect matchings (i.e., k-matchings with k = n/2) in K8-minor-871

free graphs is #P-hard.872

4.2. Counting Subgraphs: Proofs of Theorems 1.3 and 1.4. Equipped873

with our hardness results for counting k-matchings, we move towards proving hardness874

for counting subgraphs.875

Theorem 4.10 (Theorem 1.3, restated). Let H and G be graph classes such that876

H is hereditary and G is monotone. Then Table 3 exhaustively classifies the complexity877

of #Sub(H → G).878

Proof. Let us first show that the cases for H and G in Table 3 are exhaustive and879

mutually exclusive. For G this is straightforward. For H, the first row and the rest880

are mutually exclusive and exhaustive, since rows 2, 3 and 4 all imply m(H) = ∞. To881

see that rows 2, 3, and 4 are mutually exclusive and exhaustive for m(H) = ∞, note882

that in that case Theorem 2.5 implies that at least one of mind(H), βind(H) and ω(H)883

is unbounded.884

Let us now prove the entries of Table 3. The first row is due to Curticapean and885

Marx [20], and the FPT result in the first column follows from Theorem 2.11. The886

intractability results in the second row follow from Theorem 4.7 and the fact that887

mind(H) = ∞ implies that H contains all matchings (since H is hereditary). For the888

second column, note that ω(G) = ∞ and G being monotone implies that G = U ; the889

dichotomy of Curticapean and Marx [20] then applies again.17 Next, we prove the890

17The tight conditional lower bounds in the second column follow from the fact that the respective
entries subsume counting k-cliques in arbitrary graphs, and counting k-by-k bicliques in bipartite
graphs. The tight bound of the former was shown in [12, 13], and the tight bound of the latter
was implicitly shown in [20], and explicitly in [26]; while [26] studies induced subgraphs in bipartite
graphs, we note that all bicliques in a bipartite graph must be induced.
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G n. dense
G s. dense
ω(G) = ∞

G s. dense
ω(G) < ∞
β(G) = ∞

G s. dense
ω(G) < ∞
β(G) < ∞

m(H) < ∞ P P P P

mind(H) = ∞ FPT hard hard hard

mind(H) < ∞
βind(H) = ∞ P hard† hard† P

mind(H) < ∞
βind(H) < ∞
ω(H) = ∞

P hard† P P

Table 3
The complexity of #Sub(H → G) for hereditary H and monotone G (Theo-

rem 1.3). P and FPT stand respectively for polynomial-time tractability and fixed-parameter
tractability, hard means #W[1]-hard and without an algorithm running in time f(|H|) ·
|G|o(|V (H|)/ log |V (H)|) for any function f unless ETH fails, and hard† means the same but

with a lower bound of f(|H|) · |G|o(|V (H)|). The FPT entry cannot be strengthened to P
unless P = #P, see Remark 4.12.

remaining entries.891

• Row 3, Column 3: if β(G) = βind(H) = ∞ then #Sub(H → G) is hard. Since H892

is hereditary, it contains all bicliques. Since G is monotone, it contains all bipartite893

graphs. Hence #Sub(H → G) is at least as hard as counting k-by-k bicliques in894

bipartite graphs, which is known to be hard [20].18895

• Row 3, Column 4: if mind(H), ω(G), β(G) < ∞ then #Sub(H → G) is in polynomial896

time. Let (H,G) be the input of #Sub(H → G). If ω(H) > ω(G) or βind(H) >897

β(G), then we can output 0. We can thus restrict the problem to those H such that898

ω(H) ≤ ω(G) and βind(H) ≤ β(G). Recall that mind(H) ≤ mind(H) < ∞. By the899

contrapositive of Theorem 2.5, there is a monotonically increasing function R such900

that:901

m(H) ≤ R(mind(H), ω(H), βind(H)) ≤ R(mind(H), ω(G), β(G)) < ∞,902

where the second inequality holds by monotonicity of R and the third one by the903

boundedness of all three arguments. We therefore obtain polynomial time as in the904

first row.905

• Row 4, Columns 3 and 4: if mind(H), βind(H), ω(G) < ∞, then #Sub(H → G) is in906

polynomial time. Let (H,G) be the input of #Sub(H → G). If ω(H) > ω(G) then907

we output 0, hence we can assume that ω(H) ≤ ω(G). Similarly to the previous case,908

we then obtain polynomial time since909

m(H) ≤ R(mind(H), ω(H), βind(H)) ≤ R(mind(H), ω(G), βind(H)) < ∞.910

• Rows 3 and 4, Column 1: #Sub(H → G) is in polynomial time. We show that911

ω(G), β(G) < ∞; then the same arguments used for Rows 3 and 4 of Column 4912

18See Footnote 17 for the tight conditional lower bound.
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apply. Suppose by contradiction that max(ω(G), β(G)) = ∞. Since G is monotone, if913

ω(G) = ∞ then G contains (the 0-subdivision of) every clique, and if β(G) = ∞ then914

G contains all bipartite graphs and thus the 1-subdivision of every clique. In any case915

Lemma 2.9 implies that G is somewhere dense, contradicting the assumptions.916

Theorem 1.4 follows immediately.917

Corollary 4.11 (Theorem 1.4, restated). Let H and G be monotone graph918

classes and assume that ETH holds. Then #Sub(H → G) is fixed-parameter tractable919

if m(H) < ∞ or G is nowhere dense; otherwise #Sub(H → G) is #W[1]-complete920

and cannot be solved in time f(|H|) · |G|o(|V (H)|/ log(|V (H)|)) for any function f .921

Proof. If H is monotone then H is hereditary and Theorem 1.3 applies. The union922

of the first row and the first column of Table 3 yield the tractable case; the union of923

the remaining entries yield the intractable case and the lower bounds.924

We conclude this section with a remark.925

Remark 4.12. Let H and G be the classes of graphs of degrees bounded by 2 and926

3, respectively. Then #Sub(H → G) subsumes the #P-hard problem of counting927

Hamiltonian cycles in 3-regular graphs. Since both classes are monotone (and thus928

also hereditary), since mind(H) = ∞, and since classes of bounded degree graphs are929

nowhere dense (see e.g. [36]), this shows that the FPT entry in Table 3 cannot be930

strengthened to P unless #P = P.931

5. Counting Induced Subgraphs. This section is devoted to the proofs of932

Theorem 1.5 and Theorem 1.6. We begin in Section 5.1 by analysing the problem of933

counting independent sets and proving Theorem 1.5; this is the most technical part.934

We then prove Theorem 1.6 in Section 5.2.935

5.1. Counting Independent Sets: Proof of Theorem 1.5. Given a class936

of graphs G, the problem #IndSet(G) asks, on input k ∈ N and a graph G ∈ G, to937

compute the number of independent sets of size k (also called k-independent sets) in938

G. In this section we prove hardness results for #IndSet(G) and leverage them to939

#IndSub(H → G). To this end we will rely on subgraphs induced by sets of edges;940

they play a role similar to that of fractured graphs in Section 4. Given a graph F941

and a set A ⊆ E(F ), we denote the subgraph (V (F ), A) by F [A]. For what follows942

observe that, for any A ⊆ E(F ), the identity function on V (F ), which we denote943

by idF , is a surjective F -colouring of F [A]. Now recall Definition 4.1. We start with944

the following simple variation of Lemma 4.4.945

Lemma 5.1. Let r ∈ N0, let H be a graph without isolated vertices, let G be an946

H-coloured graph, and let A ⊆ E(Hr). Then (Gr, cr)× (Hr[A], idHr ) is a subgraph of947

Kr
|V (G)|.948

Proof. Let n = |V (G)|. First, note that (Gr, cr) × (Hr, idHr ) = (Gr, cr), and by949

construction (Gr, cr) is a subgraph of Kr
n. Next, for every A ⊆ E(Hr) the graph950

(Gr, cr)× (Hr[A], idHr ) is obtained from (Gr, cr) by deleting edges — specifically, for951

every e = {u, v} ∈ E(Hr)\A, delete from Gr all edges between vertices coloured with952

u and vertices coloured with v. Thus (Gr, cr) × (Hr[A], idHr ) is a subgraph of Kr
n953

too.954

Recall that #ColMatch(G), the problem of counting edge-colourful k-matchings,955

was the key subproblem in the hardness proofs for #Sub(H → G) — see Section 4.1.956

In the case of #IndSub(H → G), the key subproblem turns out to be that of counting957

vertex-colourful independent sets. Let G be a graph and let c : V (G) → {1, . . . , k} be958
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a coloring of V (G). A set U ⊆ V (G) is vertex-colorful if for every colour in {1, . . . , k}959

there is precisely one element of U with that colour.960

Definition 5.2 (#ColIndSet(G)). Let G be a class of graphs. The problem961

#ColIndSet(G) asks, on input k ∈ N, a graph G ∈ G, and a k-coloring c of V (G),962

to compute the number of vertex-colorful k-independent sets in G. The problem is963

parameterised by k.964

Our goal is to show that #ColIndSet(G) is intractable whenever G is monotone965

and somewhere dense. As for #ColMatch(G) in Section 4.1, the reduction relies on966

solving a system of linear equations. Let H be a graph. The square matrix NH has967

its rows and columns indexed by the subsets of E[H], and its entries satisfy968

(5.1) NH [A,B] = #Hom((H[A], idH) → (H[B], idH)) .969

Similarly to the matrix MH in Section 4.1, the following was established in prior work:970

Lemma 5.3 ([26]). For each graph H, the matrix NH is nonsingular.971

We are now able to establish intractability of #ColIndSet(G).972

Lemma 5.4. Let G be a monotone somewhere dense class of graphs. Then the973

problem #ColIndSet(G) is #W[1]-complete and, assuming ETH, cannot be solved974

in time f(k) · |G|o(k/ log k) for any function f .975

Proof. The proof is similar to that of Lemma 4.6. First, since G is monotone976

and somewhere dense, by Lemma 2.9 there exists r ∈ N0 such that Gr ∈ G for every977

G ∈ U . Second, let H be a class of 3-regular expander graphs. By theorems 2.14978

and 2.16, #cp-Hom(H → U) is #W[1]-hard and assuming ETH cannot be solved in979

time f(|H|) · |G|o(|H|/ log |H|) for any function f . We show a parameterized reduction980

from #cp-Hom(H → U) to #ColIndSet(G).981

Let (H, (G, c)) be the input to #cp-Hom(H → U). Our reduction starts by982

constructing Hr and (Gr, cr), which by Lemma 3.1 satisfy983

#Hom((H, idH) → (G, c)) = #Hom((Hr, idHr ) → (Gr, cr)) .984

Let k = |V (Hr)|; clearly k ∈ O(|H|) since r is a constant independent of H. Our goal985

is to use the oracle for #ColIndSet(G) to compute #Hom((Hr, idHr ) → (Gr, cr)).986

From now on we view surjectively Hr-coloured graphs (G̃, c̃) also as vertex-coloured987

graphs with colouring c̃. This allows us to invoke [26, Lemma 8] and obtain what988

follows.19989

First, there is a unique function â from subsets of E[Hr] to rationals such that,990

for every surjectively Hr-coloured graph (G̃, c̃), the number of vertex-colourful k-991

independent sets in (G̃, c̃) equals992

(5.2)
∑
A

â(A) ·#Hom((Hr[A], idHr ) → (G̃, c̃)) ,993

where the sum is over all subsets of E[Hr]. Additionally,994

(5.3) â(E(Hr)) = ±χ̂ ̸= 0 ,995

19In [26] the number of colourful k-independent sets in a surjectively Hr-coloured graph Ĝ is

denoted by #cp-IndSub(Φ →Hr Ĝ), where Φ is the graph property of being an independent set.
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where χ̂ is the so-called alternating enumerator for the graph property of being an996

independent set — we omit the definition since the only property needed for χ̂ is it997

being easily computable and non-zero (see [26]).998

Now consider (5.2) with (G̃, c̃) = (Gr, cr)× (Hr[B], idHr ) and apply Lemma 4.2.999

We deduce that the number of vertex-colourful k-independent sets in (G̃, c̃) is1000 ∑
A

â(A) ·#Hom((Hr[A], idHr ) → (Gr, cr)) ·#Hom((Hr[A], idHr ) → (Hr[B], idHr )).1001

1002

By Lemma 5.1, for every B ⊆ E(Hr) of Hr the graph (Gr, cr) × (Hr[B], idHr ) is a1003

subgraph of the r-subdivision of a complete graph; by the monotonicity of G and by1004

the choice of r this implies (Gr, cr)×(Hr[B], idHr ) ∈ G, see Lemma 2.9. Thus, as in the1005

proof of Lemma 4.6, by using an oracle for #ColIndSet(G) we can construct in FPT1006

time a system of linear equations whose matrix NHr is nonsingular by Lemma 5.3.1007

Since â(E(Hr)) ̸= 0 by (5.3), solving this system enables us to compute1008

#Hom((Hr[E(Hr)], idHr ) → (Gr, cr)) = #Hom((Hr, idHr ) → (Gr, cr)) ,1009

concluding the proof.1010

With the above hardness results for #ColIndSet(G), we can finally prove complex-1011

ity dichotomies for its non-coloured counterpart #IndSet(G). We start by porting1012

Lemma 5.4 from #ColIndSet(G) to #IndSet(G).1013

Theorem 5.5. Let G be a monotone somewhere dense class of graphs. Then1014

#IndSet(G) is #W[1]-hard and, assuming ETH, cannot be solved in time f(k) ·1015

|G|o(k/ log k) for any function f .1016

Proof. Almost identical to the proof of Theorem 4.7: when G is monotone,1017

#ColIndSet(G) can be reduced in FPT time to #IndSet(G) via inclusion-exclusion1018

while preserving the parameter (see, for instance, [16, Lemma 1.34]), and the claim1019

then follows by Lemma 5.4.1020

We can finally prove Theorem 1.5 as a simple corollary.1021

Corollary 5.6 (Theorem 1.5, restated). Let G be a monotone class of graphs1022

and assume that ETH holds. Then #IndSet(G) is fixed-parameter tractable if and1023

only if G is nowhere dense. In particular, if G is nowhere dense then #IndSet(G)1024

can be solved in time f(k) · |V (G)|1+o(1) for some computable function f ; otherwise1025

#IndSet(G) cannot be solved in time f(k) · |G|o(k/ log k) for any function f .1026

Proof. Immediate by Theorem 2.11 and Theorem 5.5.1027

We conclude with a remark.1028

Remark 5.7. Corollary 5.6 cannot be strengthened to polynomial-time tractability1029

of #IndSet(G) when G is nowhere dense and monotone, unless #P = P: graphs of1030

degree at most 3 form such a class, yet counting independent sets in them is #P-1031

hard [35].1032

5.2. Counting Induced Subgraphs: Proof of Theorem 1.6. Equipped with1033

our complexity dichotomy for #IndSet(G), we can now prove our complexity di-1034

chotomies for #IndSub(H → G). First, we consider the case that H is monotone.1035

Corollary 5.8. Let H and G be monotone graph classes and assume that ETH1036

holds. Then #IndSub(H → G) is fixed-parameter tractable if H is finite or G is1037

nowhere dense; otherwise #IndSub(H → G) is #W[1]-complete and cannot be solved1038

in time f(|H|) · |G|o(|V (H)|/ log(|V (H)|)) for any function f .1039
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G nowhere dense G somewhere dense
ω(G) = ∞

G somewhere dense
ω(G) < ∞
α(G) = ∞

H finite P P P

α(H) = ∞ FPT
#W[1]-hard

not in f(k) · no(k)

#W[1]-hard
not in f(k) · no(k/ log k)

α(H) < ∞
ω(H) = ∞ P

#W[1]-hard
not in f(k) · no(k) P

Table 4
The complexity of #IndSub(H → G) for hereditary H and monotone G. P and FPT

stand respectively for polynomial-time tractability and fixed-parameter tractability, and hard
means #W[1]-hard and without an algorithm running in time f(k) · no(k/ log(k)) for any
function f unless ETH fails, where k = |V (H)| and n = |V (G)|. The FPT entry cannot be
strengthened to P unless P = #P, see Remark 5.7.

Proof. If H is finite then #IndSub(H → G) is clearly in polynomial time (and1040

thus fixed-parameter tractable) since the brute-force algorithm runs in time O(|G||H|).1041

If G is nowhere dense then the fixed-parameter tractability follows by Theorem 2.11.1042

Finally, if H is monotone and infinite then it contains all independent sets, and thus1043

#IndSub(H → G) subsumes #IndSet(G); in which case Theorem 5.5 yields the1044

lower bound for somewhere dense G.1045

Next, we consider the case that H is hereditary. We obtain a refined complexity1046

classification that subsumes the one of Corollary 5.8 and yields Theorem 1.6.1047

Theorem 5.9 (Theorem 1.6, restated). Let H and G be graph classes such that H1048

is hereditary and G is monotone. Then Table 4 exhaustively classifies the complexity1049

of #IndSub(H → G).1050

Proof. The cases for G and H in Table 4 are mutually exclusive and exhaustive1051

by Ramsey’s Theorem (Theorem 2.4). Let us then prove the entries of Table 4.1052

The first row holds since for finite H the brute-force algorithm runs in polynomial1053

time, and the FPT result follows from Theorem 2.11. For the intractability results in1054

the second column, note that since G is monotone and infinite then G = U , and sinceH1055

is hereditary, the cases α(H) = ∞ and ω(H) = ∞ subsume respectively #IndSet(U)1056

and #Clique(U). Both are canonical #W[1]-hard problems and cannot be solved in1057

time f(k) · no(k) unless ETH fails [12, 13].20 The intractability results in the third1058

column follows from Theorem 5.5 since H being hereditary and α(H) = ∞ imply that1059

#IndSub(H → G) subsumes #IndSet(G).1060

It remains to prove the first and the third entry of the third row. Note that both1061

entries assume ω(G) < ∞ and α(H) < ∞. Let then (H,G) be the input. If ω(H) >1062

ω(G) then we can immediately return 0. Otherwise |V (H)| ≤ R(ω(G), α(H)) < ∞,1063

where R is Ramsey’s function (see Theorem 2.4), and the brute-force algorithm runs1064

in polynomial time.1065

20The lower bound in [12, 13] applies to counting k-cliques, and we note that counting k-cliques
and counting k-independent sets are interreducible by taking the complement of the host.
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6. Outlook. Due to the absence of a general dichotomy [56], the following two1066

directions are evident candidates for future analysis.1067

Hereditary Host Graphs.. Is there a way to refine our classifications to hereditary1068

G? While such results would naturally be much stronger, we point out that a classi-1069

fication of general first-order (FO) model-checking and model-counting in hereditary1070

graphs is wide open. Concretely, even if H = U , it currently seems elusive to ob-1071

tain criteria for hereditary G which, if satisfied, yield fixed-parameter tractability of1072

#Sub(H → G), #IndSub(H → G), and #Hom(H → G) and which, if not satisfied,1073

yield #W[1]-hardness of those problems. In a nutshell, the problem is that there are1074

arbitrarily dense hereditary classes of host graphs for which those problems, and even1075

the much more general FO-model counting problem, become tractable; a trivial ex-1076

ample is given by G being the class of all complete graphs. See [31, 33, 34] for recent1077

work on specific hereditary hosts and [32, 7] for general approaches to understand FO1078

model checking on dense graphs.1079

Arbitrary Pattern Graphs.. Can we refine our classifications to arbitrary classes of1080

patternsH, given that we stay in the realm of monotone classes of hosts G? We believe1081

this question is the most promising direction for future research. While a sufficient1082

and necessary criterion for the fixed-parameter tractability of, say #Sub(H → G),1083

must depend on the set of forbidden subgraphs of G, we conjecture that the structure1084

of monotone somewhere dense graph classes is rich enough to allow for an explicit1085

combinatorial description of such a criterion. In fact, such criteria have already been1086

established for some specific classes of host graphs, e.g. bipartite graphs [20] and1087

degenerate graphs [9].1088
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[32] Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ramanujan. A1186
new perspective on FO model checking of dense graph classes. ACM Trans. Comput. Log.,1187
21(4):28:1–28:23, 2020. doi:10.1145/3383206.1188
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