8,911 research outputs found

    Optimizing Photonic Nanostructures via Multi-fidelity Gaussian Processes

    Get PDF
    We apply numerical methods in combination with finite-difference-time-domain (FDTD) simulations to optimize transmission properties of plasmonic mirror color filters using a multi-objective figure of merit over a five-dimensional parameter space by utilizing novel multi-fidelity Gaussian processes approach. We compare these results with conventional derivative-free global search algorithms, such as (single-fidelity) Gaussian Processes optimization scheme, and Particle Swarm Optimization---a commonly used method in nanophotonics community, which is implemented in Lumerical commercial photonics software. We demonstrate the performance of various numerical optimization approaches on several pre-collected real-world datasets and show that by properly trading off expensive information sources with cheap simulations, one can more effectively optimize the transmission properties with a fixed budget.Comment: NIPS 2018 Workshop on Machine Learning for Molecules and Materials. arXiv admin note: substantial text overlap with arXiv:1811.0075

    Numerical computation of rare events via large deviation theory

    Get PDF
    An overview of rare events algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute the large deviation minimizer in various setups, and discusses best practices, common pitfalls, and implementation trade-offs. Generalizations, extensions, and improvements of the minimum action methods are proposed. These algorithms are tested on example problems which illustrate several common difficulties which arise e.g. when the forcing is degenerate or multiplicative, or the systems are infinite-dimensional. Generalizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection between the LDT-based approach reviewed here and other methods, such as stochastic field theory and optimal control. Finally, the integration of this approach in importance sampling methods using e.g. genealogical algorithms is explored

    The instanton method and its numerical implementation in fluid mechanics

    Full text link
    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional fluid dynamical problems. We illustrate these ideas using the two-dimensional Burgers equation and the three-dimensional Navier-Stokes equations

    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles

    Get PDF
    We present a canonical way to turn any smooth parametric family of probability distributions on an arbitrary search space XX into a continuous-time black-box optimization method on XX, the \emph{information-geometric optimization} (IGO) method. Invariance as a design principle minimizes the number of arbitrary choices. The resulting \emph{IGO flow} conducts the natural gradient ascent of an adaptive, time-dependent, quantile-based transformation of the objective function. It makes no assumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization. It naturally recovers versions of known algorithms and offers a systematic way to derive new ones. The cross-entropy method is recovered in a particular case, and can be extended into a smoothed, parametrization-independent maximum likelihood update (IGO-ML). For Gaussian distributions on Rd\mathbb{R}^d, IGO is related to natural evolution strategies (NES) and recovers a version of the CMA-ES algorithm. For Bernoulli distributions on {0,1}d\{0,1\}^d, we recover the PBIL algorithm. From restricted Boltzmann machines, we obtain a novel algorithm for optimization on {0,1}d\{0,1\}^d. All these algorithms are unified under a single information-geometric optimization framework. Thanks to its intrinsic formulation, the IGO method achieves invariance under reparametrization of the search space XX, under a change of parameters of the probability distributions, and under increasing transformations of the objective function. Theory strongly suggests that IGO algorithms have minimal loss in diversity during optimization, provided the initial diversity is high. First experiments using restricted Boltzmann machines confirm this insight. Thus IGO seems to provide, from information theory, an elegant way to spontaneously explore several valleys of a fitness landscape in a single run.Comment: Final published versio
    • …
    corecore