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Abstract

We present an empirical study of a range of evolutionary algorithms applied to vari-
ous noisy combinatorial optimisation problems. There are three sets of experiments.
The first looks at several toy problems, such as ONEMAX and other linear problems.
We find that UMDA and the Paired-Crossover Evolutionary Algorithm (PCEA) are
the only ones able to cope robustly with noise, within a reasonable fixed time budget.
In the second stage, UMDA and PCEA are then tested on more complex noisy prob-
lems: SUBSETSUM, KNAPSACK and SETCOVER. Both perform well under increasing
levels of noise, with UMDA being the better of the two. In the third stage, we con-
sider two noisy multi-objective problems (COUNTINGONESCOUNTINGZEROS and a
multi-objective formulation of SETCOVER). We compare several adaptations of UMDA
for multi-objective problems with the Simple Evolutionary Multi-objective Optimiser
(SEMO) and NSGA-II. We conclude that UMDA, and its variants, can be highly ef-
fective on a variety of noisy combinatorial optimisation, outperforming many other
evolutionary algorithms.

Keywords

Noisy Combinatorial Optimisation, Noisy Multi-objective Optimisation, Expected
Runtime, Crossover, Estimation of Distribution Algorithms, NSGA-II.

1 Introduction

Realistic optimisation problems are often affected with noisy fitness measurements.
The recent theoretical analyses of evolutionary algorithms (EAs) on noisy problems de-
fined in discrete spaces are mostly focused on simple and classical benchmark prob-
lems, such as ONEMAX. Harder and more realistic combinatorial problems such
as KNAPSACK or SETCOVER in presence of noisy fitness evaluations are not easily
amenable to theoretical analysis. This paper discusses a thorough empirical analysis
of an array of EAs on several simple and harder noisy combinatorial problems. This
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study attempts to identify which EAs to choose when solving realistic noisy combina-
torial problems.

Noise may affect fitness evaluation in a number of ways. It may be considered as
prior, in which the search point is randomly tampered with, and fitness evaluation is
performed on the noisy search point. Alternatively, posterior noise (which will be the
focus of our study) is where a random value gets added to the fitness of a search point
during the optimisation process. The same search string would have a different fitness
value, each time it is being evaluated. With more complex combinatorial problems
(e.g. ones with constraints) the noise may enter in different ways (for example, in the
evaluation of those constraints).

An early theoretical result by Droste (2004) examined the performance of the hill-
climber (1 + 1)-EA on ONEMAX with prior noise. This was generalised to the (µ+ λ)-
EA by Gießen and Kötzing (2016), showing that populations can help in both prior and
posterior noise. They show the (1 + 1)-EA, however, can only tolerate posterior Gaus-
sian noise when the variance is very small (less than 1/(4 log n)). It has been recog-
nised for a long time that the population size can affect the ability of an EA to handle
noise (Goldberg et al. (1991); Rattray and Shapiro (1997)). A more recent theoretical
study by Dang and Lehre (2015) shows that a low mutation rate enables a particular
mutation-population algorithm to handle arbitrary posterior noise for the ONEMAX
problem in polynomial time, although the bounds given are large. Similarly, the com-
pact genetic algorithm (cGA) is shown to handle noise with (large) polynomial runtime
(Friedrich et al. (2015)). A better asymptotic runtime for ONEMAX with posterior Gaus-
sian noise is proved for the Paired Crossover Evolutionary Algorithm (PCEA) which
just uses crossover, and no mutation (Prügel-Bennett et al. (2015)).

Of course, it is possible to handle noise simply by re-sampling the fitness of a po-
tential solution many times, and taking the average as an estimate of the true fitness.
Suppose the noisy problem is defined by taking a deterministic fitness function and
adding Gaussian noise with mean 0 and variance σ2. There is a general result Aki-
moto et al. (2015) that states if the runtime of a black box algorithm on a problem with
no noise is T , then σ2 log T samples are required at each step leading to a runtime of
σ2T log T . In the case of ONEMAX, the most efficient algorithm Anil and Wiegand
(2009) has a runtime of Θ(n/ log n). Using this algorithm with resampling, gives a run-
time for noisy ONEMAX of Θ(σ2n). By contrast, the PCEA algorithm Prügel-Bennett
et al. (2015), when σ2 = n, has a runtime of O(n(log n)2) which is already faster than
the resampling algorithm. It has been suggested by Doerr and Sutton (2019) that using
the median rather than mean provides a better estimate when resampling, but this is
only significant when the variance is small (less than a constant).

A recent study by Rowe and Aishwaryaprajna (2019) of a new Voting algorithm
on ONEMAX shows a runtime of O(n log n), when the variance of the noise distribution
is σ2 = O(n) and in O(σ2 log n) when the noise variance is greater than this. This
upper bound is the best proven runtime that we are aware of to date. Some empirical
results show that the use of voting in population based algorithms (UMDA, PCEA and
cGA) are effective for large population sizes. The voting algorithm is shown to solve
the JUMP function, which has a fitness gap next to the global optimum, in O(n log n)
fitness evaluations with high probability any gap size m < (1−α)n where, the constant
α ∈ [ 12 , 1]. The performance of voting algorithm and the cGA are also analysed for other
variants of the JUMP function in the recent paper by Witt (2021). However, in our work,

2



problems with fitness gaps have not been considered.

In this paper, we are interested in whether any of the algorithms with polynomial
theoretical runtimes for noisy ONEMAX would be capable of solving combinatorial
problems with added noise in practice, when given a reasonable but fixed time bud-
get1. We proceed in three stages. First we will experimentally compare a collection
of algorithms on noisy ONEMAX and noisy LINEAR problems, to see which can find
solutions within a reasonable amount of time (to be defined below), bearing in mind
that the asymptotic bounds for some of these algorithms, while polynomial, are actu-
ally very large. Second, we will take those algorithms which pass this first test, and see
how well they handle noise in three combinatorial problems: SUBSETSUM, KNAPSACK
and SETCOVER. We choose these, as they have a ‘packing’ structure which might make
them amenable to algorithms which can solve noisy ONEMAX efficiently. We gener-
ate random problem instances within the ‘easy’ regime (so that the algorithms can be
expected to solve them when there is no noise) and then empirically study how they
degrade with added Gaussian noise.

There has been considerable research in the last decades, on stochastic combina-
torial optimisation problems, like the stochastic knapsack problem (refer to Steinberg
and Parks (1979), Sniedovich (1980), Ross and Tsang (1989), Henig (1990), Carraway
et al. (1993) and Fortz et al. (2013), and Bianchi et al. (2009) for a survey). In stochastic
knapsack formulations, in some instances the profits are considered as random vari-
ables (Steinberg and Parks (1979), Sniedovich (1980), Carraway et al. (1993) and Henig
(1990)), as well as, the distribution of weights are known in some formulations (Fortz
et al. (2013)). This means, that the approaches in handling stochastic problems involve
having access to more details of the problem, for example, the distribution of the deci-
sion variables is known. However, in this paper, we assume that the noise contribution
to the fitness value is part of the black-box, and so we do not have access to details such
as the noise distribution, or the exact distribution of the decision variables.

In the last stage of our analysis, we look at noisy multi-objective problems. Ini-
tially, we analyse the performance of a collection of multi-objective algorithms on a
toy multi-objective problem COCZ without and with high levels of noise and we at-
tempted to identify which algorithms perform better. We study the simple hill-climber
algorithm SEMO, the popular NSGA-II and some other algorithms designed on the ba-
sis of our previous experimental results. We compare our algorithms on the basis of the
performance indicator, hypervolume, which provides an analysis of the spread of the
non-dominated solutions found, in a reasonable time budget. We then formulate the
noisy constrained SETCOVER problem as a multi-objective problem and we empirically
analyse the performance of the better algorithms on this.

It should be noted that in our empirical results, while error bars are not always
shown, the Mann-Whitney test was used on all relevant comparisons, and results are
significant at the 95% level unless explicitly indicated.

Notation: We use the convention that [expr] equals 1 if expr is true, and 0 other-
wise.

1This paper is an extended version of Aishwaryaprajna and Rowe (2019).
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2 Problem Definitions — Noisy Single Objective Problems

The problems studied in this paper are defined on a Boolean search space of bit strings
of length n. Let N(0, σ) denote a random number drawn from a normal distribution
with mean zero, and standard deviation σ, which will be freshly generated at each
fitness function evaluation.

2.1 Unconstrained Single-objective Noisy Problems

The first problem is ONEMAX, whose fitness function is defined as,

ONEMAX(x) =

n∑
i=1

xi

The fitness function is to be maximised, so the optimum would be the all-ones string,
1n.

When the fitness evaluation is tampered with random noise, the fitness function
becomes as follows,

NOISYONEMAX(x) =

n∑
i=1

xi +N(0, σ)

The WEIGHTEDLINEAR problem is defined with reference to n positive weights
w1, . . . , wn as follows, where the fitness is to maximised,

WEIGHTEDLINEAR(x) =

n∑
i=1

xiwi

with corresponding noisy variant,

NOISYWEIGHTEDLINEAR(x) =

n∑
i=1

xiwi +N(0, σ)

In generating random problem instances, we draw the weights uniformly at ran-
dom from the range 1, . . . , 100. Thus we avoid more extreme instances such as BINVAL
(in which wi = 2i−1 for each i = 1, . . . , n). The reason for this is that when the dis-
tribution of weights is highly skewed, the addition of noise is irrelevant for those bits
with very high weights, yet completely overwhelms bits with weights lower than the
typical noise level. Thus most algorithms will find the more significant bits, and fail on
the remainder.

With reference to n positive weights w1, . . . , wn and a target θ, the SUBSETSUM
problem is defined as,

SUBSETSUM(x) = |θ −
n∑

i=1

xiwi|

In presence of noisy fitness evaluations, the fitness function can be written as follows,

NOISYSUBSETSUM(x) = |θ −
n∑

i=1

xiwi|+N(0, σ)
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SUBSETSUM can be seen as a generalisation of the WEIGHTEDLINEAR problem (in
which the target is θ = 0). In our experiments, we generate instances by choosing
weights uniformly at random from 1, . . . , 100. We take the target to be two-thirds of
the sum of the weights (we have run experiments for other choices of θ and found that
they do not significantly affect the empirical observations).

2.2 Constrained single-objective noisy problems

The KNAPSACK problem is defined with respect to a set of positive weights w1, . . . , wn,
a capacity C and positive profits p1, . . . , pn as follows,

KNAPSACK(x) =

{ ∑n
i=1 xipi if

∑n
i=1 xiwi ≤ C

C −
∑n

i=1 xiwi otherwise

Random instances choose weights and profits uniformly from 1, . . . , 100, and the ca-
pacity is two-thirds of the sum of the weights. We consider two noisy variants of the
Knapsack problem. The first version simply considers posterior additive noise as be-
fore:

NOISYKNAPSACKV1(x) = KNAPSACK(x) +N(0, σ)

In the second version, the presence of noise in the judgement with respect to the
weights is considered,

Wσ(x) =

n∑
i=1

xiwi +N(0, σ)

If this (noisy) weight does not exceed the capacity, we then evaluate (noisily), the profit.
Otherwise we return the excess weight:

NOISYKNAPSACKV2(x) ={ ∑n
i=1 xipi +N(0, σ) if Wσ(x) ≤ C

C −Wσ(x) otherwise
Note that noise is added to the weight just once, when the constraint is checked, and
the same value used to report the fitness value, in the case the constraint is violated.

The SETCOVER problem finds a minimal covering of m elements with a collection
of sets from n pre-defined subsets. A Boolean matrix aij with n-rows and m-columns
is used to define the n subsets c1, . . . , cn:

ai,j = [i ∈ cj ]

The optimal collection of the sets would have the least number of the sets needed to
cover all the m elements. The SETCOVER problem has several real-world applications
such as the airline crew scheduling problem.

The problem can be defined as a constrained single-objective one, as well as, a
single-objective problem with a penalty term. The problem can also be defined as a
multi-objective problem (discussed later).

The CONSTRAINEDSETCOVER problem has a constraint that checks if the solution
covers each of the m elements. The optimal solution would have the least number of
sets needed to cover all the m elements. It is defined as follows,

CONSTRAINEDSETCOVER(x) =

n∑
j=1

xj
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subject to
n∑

j=1

xjaij ≥ 1, i ∈ 1, . . . ,m

For comparison-based algorithms, we always prefer feasible solutions instead
of infeasible solutions. Two feasible solutions are compared by their fitness values,
whereas two infeasible solutions by their constraint violations. The noisy version of
the problem arises if the judgements regarding the number of elements uncovered and
the number of the subsets required is noisy.

NOISYCONSTRAINEDSETCOVER(x) =

n∑
j=1

xj +N(0, σ)

subject to
n∑

j=1

xjaij +N(0, σ) ≥ 1, i ∈ 1, . . . ,m

The fitness function of SETCOVER problem can also be defined by including a penalty
term such that, if elements are under-covered by the considered collection of sets, a
huge penalty µ is incurred.

PENALTYSETCOVER(x) =

n∑
j=1

xj + µ
∑
i

max

{
0,

(
1−

n∑
j=1

aijxj

)}
This gives rise to a corresponding noisy variant:

NOISYPENALTYSETCOVER(x) =

n∑
j=1

xj + µ
∑
i

max

{
0,

(
1−

n∑
j=1

aijxj

)}
+N(0, σ)

3 Algorithms Chosen For Noisy Single-objective optimisation

3.1 The (1+1)-EA

The (1+1)-EA uses a bitwise mutation operator that produces an offspring by flipping
each bit of the parent string independently with probability 1/n. This can be considered
as a randomised or stochastic hill-climber which considers only one point in the search
space at a time and proceeds by trying to find a point which has a superior function
value. In each iteration, only one function evaluation takes place. The expected runtime
of the (1 + 1)-EA solving the non-noisy ONEMAX is O(n log n). The runtime remains
polynomial in the posterior Gaussian noise case for σ2 < 1/(4 log n), so we do not
expect this algorithm to cope with anything but the smallest noise levels (Gießen and
Kötzing (2016)).

3.2 Mutation-Population Algorithm

It has long been recognised that populations can help an EA handle noise. The paper
by Goldberg et al. (1991) developed a population sizing equation and instigated the
adoption of variance-based population sizing. Rattray and Shapiro (1997) showed that
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in weak selection limit, effects of Gaussian noise could be overcome by an appropri-
ate increase of the population size. More recently, a population-based, non-elitist EA
was analysed by Dang & Lehre to study how it optimises the noisy ONEMAX problem
with uniform, Gaussian and exponential posterior noise distributions ( Dang and Lehre
(2015, 2016)). They considered a recently developed fitness-level theorem for non-elitist
populations to estimate the expected running time for the said problems in noisy envi-
ronment. In case of additive Gaussian noise N(0, σ2) with mutation rate χ

n = a
3σn and

population size λ = bσ2 lnn (where a and b are constants), the considered algorithm op-
timizes the ONEMAX problem in expected time O(σ7n ln(n) ln(ln (n))). Similar results
were shown for uniform and exponential noise distributions. Note that this is poten-
tially very large, when the noise is large — in excess of n4.5 when σ =

√
n, although of

course this is an upper bound, and we do not know the constants.

3.3 Compact Genetic Algorithm (cGA)

The compact GA (cGA) is an EDA, introduced by Harik et al. (1999). cGA is able to
average out the noise and optimize the noisy ONEMAX problem in expected polyno-
mial time, when the noise variance σ2 is bounded by some polynomial in n, as sug-
gested in Friedrich et al. (2015). The paper introduced the concept of graceful scaling
in which the runtime of an algorithm scales polynomially with noise intensity, and
suggested that cGA is capable of achieving this. It is also suggested that there is no
threshold point in noise intensity at which the cGA algorithm begins to perform poorly
(by which they mean having super-polynomial runtime). They proved that cGA is able
to find the optimum of the noisy ONEMAX problem with Gaussian noise of variance
σ2 after O(Kσ2

√
n logKn) steps when K = ω(σ2

√
n log n), with probability 1 − o(1).

Note that this upper bound is in excess of n3 when σ =
√
n.

3.4 Population Based Incremental Learning (PBIL)

The algorithm PBIL, proposed by Baluja (1994) in 1994, combines genetic algorithms
and competitive learning for optimising a function. We have included this algorithm as
it is in some ways similar to the cGA, so we might expect it to have similar performance.
We are not aware of any theoretical analysis of this algorithm on noisy problems. The
runtime of PBIL on ONEMAX is known to be O(n3/2 log n), for suitable choice of λ (Wu
et al. (2017)).

3.5 Univariate Marginal Distribution Algorithm (UMDA)

The Univariate Marginal Distribution Algorithm (UMDA) proposed by Mühlenbein
(1997) belongs to the EDA schema. In some ways, it is therefore similar to cGA and
PBIL. However, it can also be viewed as generalising the genepool crossover scheme,
in which bits are shuffled across the whole population (within their respective string
positions). We have included UMDA then, to see if its behaviour is more like cGA and
PBIL on the one hand (which emphasise an evolving distribution over bit values), or
like PCEA on the other (which emphasises crossover). The UMDA algorithm initialises
a population of λ solutions, and sorts the population according to the fitness evalua-
tion of each candidate solution. The best µ members of the population are selected to
calculate the sample distribution of bit values in each position. The next population
is generated from this distribution. There are two variants of UMDA, depending on
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σ 1 2 3 4 5
budget 38392 41066 44477 50728 56851

σ 6 7 8 9 10
budget 64079 70736 79034 86078 93638

Table 1: Function evaluation budgets allowed for noisy ONEMAX experiments with
different noise levels.

whether the probabilities are constrained to stay away from the extreme values of 0 and
1, or not. It is known that if the population size is large enough (that is, Ω(

√
n log n))

then this handling of probabilities at the margins is not required (Witt (2017)). Since
we will work with a large population (to match the PCEA algorithm described below),
we will not employ margin handling, unless otherwise stated. In our experiments we
will take µ = λ/2. We are not aware of any theoretical results concerning UMDA on
problems with posterior noise, but the runtime on ONEMAX is known to be O(n log n)
for µ = Θ(

√
n log n) — see Witt (2017).

3.6 Paired-Crossover EA (PCEA)

Recently, the recombination operator has been suggested to be considerably benefi-
cial in noisy evolutionary search. Prügel-Bennett et al. (2015) considered the prob-
lem of solving ONEMAX with noise of order σ =

√
n and analysed the runtime of an

evolutionary algorithm consisting only of selection and uniform crossover, the Paired-
Crossover EA (PCEA). They show that if the population size is c

√
n log n then the re-

quired number of generations is O (
√
n log n), giving a runtime of O(cn (log n)

2
), with

the probability of failure is O(1/nc). The proof in that paper can be generalised to the
case of σ ≥

√
n, to give a runtime of O(σ2 log n). It is not known what happens for

lower levels of noise, though it is shown that in the absence of noise, PCEA solves
ONEMAX in O(n(log n)2).

4 Experiments — Simple Noisy Problems

4.1 Noisy ONEMAX

We investigate the performance of the algorithms described above, in solving the noisy
ONEMAX problem. In the literature, some theoretical proofs exist for the expected
runtime of specific algorithms on solving the noisy ONEMAX problem with additive
posterior Gaussian noise (Prügel-Bennett et al. (2015); Dang and Lehre (2015); Akimoto
et al. (2015); Friedrich et al. (2017); Lucas et al. (2017); Qian et al. (2018); Dang-Nhu
et al. (2018); Doerr and Sutton (2019); Doerr (2020)). We are interested in the algorithms’
performances given a reasonable but fixed runtime budget across a wide range of noise
levels, from σ = 0 up to σ =

√
n.

To address the question of what constitutes a reasonable budget, we compared the
known theoretical results of our algorithms on noisy ONEMAX. PCEA has the lowest
proven upper bound on its runtime, compared to the other algorithms for which results
exist. We therefore allowed each algorithm to have twice the number of fitness evalu-
ations that PCEA requires (on average) to find the optimum, as a reasonable budget.
The function evaluation budgets calculated in this way are given in Table 4.1.
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Figure 1: Comparison of the algorithms while solving the noisy ONEMAX for different
noise levels
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The population size for the PCEA is taken to be 10
√
n log n according to the theoret-

ical proofs and empirical study by Prügel-Bennett et al. (2015). According to the proofs
by Dang and Lehre (2015), the population size λ = σ2 log n is chosen for the Mutation-
Population algorithm. According to the paper by Friedrich et al. (2015), the parameter
K = 7σ2

√
n log n is considered for cGA. In presence of additive posterir noise, PBIL

and UMDA have not yet been studied much. For PBIL, the population size is taken
as λ = 10n (following the theoretical requirement of Wu et al. (2017)). From these, we
select the best µ = λ/2 individuals. In case of UMDA, the total number of generated
candidates in a particular generation is chosen as 20

√
n log n, so that the effective pop-

ulation size is the same as for PCEA. All these parameter settings are retained for all of
our experiments in simple and constrained noisy combinatorial optimisation problems.

Figure 1 illustrates a comparison of all of the considered algorithms while solving
the noisy ONEMAX problem for problem size n = 100. Different levels of Gaussian
additive noise with mean 0 and standard deviation σ = 1 to 10 are considered in this
experiment. It can be seen that PCEA and UMDA are resistant to these noise levels
as they are capable of finding the global optimum within the given budget. The run-
times for these two algorithms are shown in Figure 2. However, (1 + 1)-EA, Mutation-
Population algorithm, PBIL and cGA are not able to cope with even these small levels
of noise within the given fixed budget of function evaluations. For these experiments,
we run the algorithms until the population converges (which they will, since we do not
handle probability margins). The Mann-Whitney U-test is performed on the samples of
best results achieved and the runtimes of the algorithms, with the null hypothesis that
they are from distributions with equal medians. For each data point, the null hypothe-
sis is rejected at 5% significance level.

4.2 Noisy WEIGHTEDLINEAR problem

Maximising the WEIGHTEDLINEAR problem as defined above in Section 2 has only one
global optimum, the sum of all the weights. The ONEMAX problem is a special case of
the WEIGHTEDLINEAR problem when all the weights are units. However, optimising
the WEIGHTEDLINEAR problem is difficult as the bits with heavier weights get opti-
mised with a higher preference than the bits with lower weights.

The plot in Figure 3 illustrates the performance comparison of all of the considered
algorithms while solving the noisy WEIGHTEDLINEAR problem for the problem size
n = 100. Random problem instances were studied with 100 randomly chosen weights
between 1 and 100. The results for a typical problem is shown in Figure 3 with averages
over 100 runs. The standard deviation of the Gaussian noise is shown as multiples of
the square root of the sum of the weights. The function evaluation budget allowed to
each of the algorithms are fixed at twice the average runtime of PCEA at each noise
level (see Table 2).

As evident from Figure 3, the curves of PCEA and UMDA are coincident, showing
that they can cope with the noise well and are resistant up to these levels of noise. The
runtime of UMDA and PCEA are plotted in Figure 4. However, the performance of
the (1+1)-EA and Mutation-Population algorithm worsen with increasing noise. Even
with relatively small noise levels, the cGA and PBIL are not able to solve the problem
within twice the runtime of PCEA.

It is evident from the empirical results of these simple noisy problems that uni-
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Figure 3: Comparison of algorithms while solving noisy WEIGHTEDLINEAR

Table 2: Function evaluation budgets allowed for noisy WEIGHTEDLINEAR experi-
ments

σ 1 2 3 4 5
budget 47096 46801 47704 48350 48682

σ 6 7 8 9 10
budget 49954 50876 51429 52794 53310

form crossover-based PCEA and UMDA can cope with noise significantly better than
the other algorithms. At this point, it is interesting to note that, UMDA employs a
mechanism similar to genepool crossover, where at each bit position, the offspring bit is
obtained by recombination of that bit across the whole parent population. It is hypoth-
esised that these two algorithms are therefore highly similar in operation.

5 Experiments — Noisy Combinatorial Problems

5.1 Noisy SUBSETSUM

Given the success of UMDA and PCEA on the noisy toy problems, and the failure of
the others to cope with even modest levels of noise, we now move to the second stage
of the study considering only UMDA and PCEA.

For the noisy SUBSETSUM problem, a range of problem sizes is considered with 50,
100, 150 and 200 weights, each lying between 1 and 100, and chosen uniformly at ran-
dom. Corresponding to each problem size, 10 different problems are considered. The
target θ is considered to be two-third of the sum of all the weights in the set. The ad-
ditive Gaussian noise considered in the SUBSETSUM problem is centered at zero and is
considered to have standard deviation of integral multiples of the mean of the weights,
viz., 5×mean(W ), 10×mean(W ), 15×mean(W ) and 20×mean(W ).
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Figure 5: Runtime comparison of UMDA (circles) and PCEA (triangles) while solving
instances of the noisy SUBSETSUM problem.
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Figure 6: Solution quality of UMDA (circles) and PCEA (triangles) while solving in-
stances of NOISYKNAPSACKV1

The NOISYSUBSETSUM problem being a minimisation problem, if we obtain the
(non-noisy) fitness value of zero, we obtain the global optimum. Both the algorithms
are able to find the global optimum for these problems and their corresponding noise
levels. We therefore plot the runtime (averaged over 100 runs) to find the optimum
against the standard deviation of the noise — see Figure 5. Using the Mann-Whitney
U-test it is observed that UMDA has the better runtime.

5.2 Noisy KNAPSACK (Version 1)

For the first version of the noisy KNAPSACK problem, uncorrelated (Figures 6 and 7)
and strongly correlated (Figures 10 and 11) problem instances have been studied. For
the uncorrelated instances, 50, 100, 150 and 200 weights (randomly chosen between 1
and 100) with associated profits (in the same range) are considered. For each problem
size, 10 different problems are considered. The maximum capacity of the knapsack
is taken to be two-thirds of the sum of all the weights considered. For the strongly
correlated instances, 10 problems each of sizes 50 and 100, described in Pisinger (2005)
are considered.

When noise is added, neither algorithm finds the optimal solution, so we record
the best solution found (as assessed by non-noisy fitness function). For each problem
instance, we plot (in Figures 6 and 10) the best solution found (averaged over 100 runs)
as a fraction of the best solution ever encountered for that problem instance. This en-
ables us to make meaningful comparisons between problem instances. The best known
solution for each problem instance has a scaled fitness value of 1. Figures 7 and 11
show the time taken (on average) to locate the best found solution in each case. We can
observe in Figures 6 and 7, that both the algorithms can find good, though not optimal
solutions, for NOISYKNAPSACKV1 with significant levels of noise.
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Figure 7: Comparison of runtime of UMDA (circles) and PCEA (triangles) while solving
the NOISYKNAPSACKV1

Observations from Mann-Whitney U-test show that UMDA is slightly better than
PCEA with these parameter settings for larger noise levels.

5.3 Noisy KNAPSACK (Version 2)

When the measurements of the weights is uncertain, as well as the profits, this creates
a more complex noise model for the KNAPSACK problem. In the first stage, the total
weight of the proposed solution is compared against the capacity, and this is done with
added noise. Hence it may be thought that the proposed solution is feasible when in
fact it is not. If it is considered feasible, then the benefit (total profit) is calculated, again
with added noise.The same problem instances are considered as in the previous version
of the KNAPSACK problem.

Figures 8 and Figures 10 depict how the best (non-noisy) solution varies for dif-
ferent problem sizes. This value is scaled with respect to the best value found when
there is no noise. The Mann-Whitney U-test shows that the best solution achieved and
corresponding runtime of UMDA is better than PCEA in these particular parameter
settings. The runtime required to find these values are shown in Figures 9 11, and we
see that UMDA finds its best solution considerably faster than PCEA.

5.4 Noisy CONSTRAINEDSETCOVER and PENALTYSETCOVER

The CONSTRAINEDSETCOVER problem is solved by initially finding the feasible solu-
tions and then minimising the number of the selected sets. This lexicographic ordering
is achieved in the selection mechanism of the considered algorithms.

In PCEA, the child with least uncovered elements is selected. When both of the
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Figure 8: Solution quality of UMDA (circles) and PCEA (triangles) while solving the
NOISYKNAPSACKV2

Figure 9: Comparison of runtime of UMDA (circles) and PCEA (triangles) while solving
the NOISYKNAPSACKV2
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Figure 10: Solution quality of UMDA (circles) and PCEA (triangles) while solving the
NOISYKNAPSACK for strongly correlated problem instances

Figure 11: Comparison of runtime of UMDA (circles) and PCEA (triangles) while solv-
ing the NOISYKNAPSACK for strongly correlated problem instances
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Figure 12: Solution quality of UMDA (circles) and PCEA (triangles) while solving the
CONSTRAINEDSETCOVER

children have the same number of uncovered elements, the child with the minimum
number of sets goes to the next population. In UMDA, the sorting of the population is
based on the above mentioned lexicographic ordering. We consider margin handling
in UMDA for all the following experiments in single objective-optimisation.

The alternative PENALTYSETCOVER problem handles the constraint within the
penalty function, hence creating a single objective. For both versions of the noisy SET-
COVER problem, a range of 40 problem instances (10 for each problem size) are run with
100 elements and 50, 100, 150 and 200 subsets are available to cover those elements. The
problems are created by randomly generating subsets, where the probability of includ-
ing any element in any subset is p. This is set so that the probability of there being cover
is large:

(1− (1− p)n)m = 1− δ

Therefore, we take:
p = 1− (1− (1− δ)1/m)1/n

We have chosen δ = 0.001. All the algorithms are run until 50,000 function evaluations
are reached. An average of 30 runs are reported. Figure 12 reports the best feasible
solution found in the fixed budget of function evaluations. As evident from the figure,
neither of the algorithms can handle noise well. The noisy feasibility check significantly
worsens the optimum found even for small standard deviations of noise.

The parameters considered for solving the PENALTYSETCOVER are chosen same
as the CONSTRAINEDSETCOVER. For each problem, we plot the best feasible solution
found so far in the given function evaluation budget and the runtime in Figures 13 and
14. It is interesting that both the algorithms can solve the noisy instances in a scalable
manner, with UMDA typically producing better quality solutions.
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Figure 13: Best solution found in stipulated budget of function evaluations by UMDA
(circles) and PCEA (triangles) for NOISYPENALTYSETCOVER

Figure 14: Runtime of UMDA (circles) and PCEA (triangles) for best solution found
while solving NOISYPENALTYSETCOVER
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6 Noisy Combinatorial Multi-Objective Problems

In this section, we empirically examine the performances of several evolutionary algo-
rithms on noisy combinatorial multi-objective problems. Much of the previous work
on multi-objective optimisation (especially in the context of noise) has concerned con-
tinuous problems (Goh et al. (2010); Shim et al. (2013); Fieldsend and Everson (2015);
Falcón-Cardona and Coello (2020)). In this paper, we focus on discrete problems, but
with additive (posterior) Gaussian noise.

A noisy multi-objective combinatorial problem in the search space of binary strings
may be defined as follows,

f(x) = (f1(x) +N(0, σ), f2(x) +N(0, σ), . . . , fk(x) +N(0, σ))

where, x ∈ {0, 1}n is a candidate solution. The objectives f1(x), f2(x), . . . , fk(x) are
conflicting in nature, so there does not necessarily exist an optimal solution that will
minimise all the objectives simultaneously. Instead, there exists a set of non-dominating
solutions known as the Pareto optimal solution set where none of the objectives may be
improved without worsening at least one of the other objectives. In the context of noisy
multi-objective optimisation, the goal is to find the set of Pareto optimal solutions, as
defined in the absence of noise — however, the challenge is that each time a comparison
is made, noise is applied. This is particularly problematic for algorithms that make use
of an archive of non-dominated solutions, as it is easy for a solution to be incorrectly
placed in the archive due to the noise.

In order to assess how successfully we have approximated the true Pareto optimal
set, we measure the spread of a set of non-dominated solutions on the basis of the fre-
quently used hypervolume performance indicator (Zitzler and Thiele (1998)). Where we
seek to minimise each objective, this is a measure of the area (or volume) of the region
bounded below by a set of candidate solutions simultaneously and bounded above by
a reference point r in the objective space. The reference point r is chosen to be the
maximum value each objective function can attain in each corresponding dimension of
the objective space, i.e., r = (max f1,max f2, . . . ,max fk). Conversely, for maximisation
problems, we take the volume between the candidate set and a lower bounding refer-
ence point (in the case of non-negative objectives, it is common to take the origin as the
reference point). We use hypervolume of the population as an indicator of the spread
of the non-dominated solutions in each generation of the considered algorithms.

In this paper, we have studied two noisy multi-objective problems. The first is
based on the toy benchmark problem Counting Ones Counting Zeroes (COCZ), in which
the first objective function counts the number of ones in a string, and the second objec-
tive function counts the number of ones in the first m bits and the number of zeroes in
the remainder. We seek to maximise both objectives.

NOISYCOCZ(x) =(
n∑

i=1

xi +N(0, σ),

m∑
i=1

xi +

n∑
i=m+1

(1− xi) +N(0, σ)

)
The Pareto optimal front consists of strings of the form 1m∗(n−m).

The second problem is a multi-objective version of SETCOVER problem, with the
objective function and the constraint as defined in CONSTRAINEDSETCOVER as the two
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objective functions. These objectives are conflicting in nature. The first objective mini-
mizes the number of sets required to cover all the m elements of the target set, and the
second objective minimizes the number of uncovered elements. The noisy version of
the multi-objective SETCOVER problem is defined as follows,

NOISYMULTI-OBJECTIVESETCOVER(x) =(
n∑

j=1

xj +N(0, σ),
∑
i

 n∑
j=1

aijxj = 0

+N(0, σ)

)

Recall that [expr] equals 1 when expr is true and 0 otherwise.

7 Algorithms Chosen for Noisy Multi-Objective Combinatorial Problems

7.1 Simple Evolutionary Multi-objective Optimiser (SEMO)

SEMO (Laumanns et al. (2004)) is one of the simplest evolutionary algorithms designed
for multi-objective optimisation in discrete search space. To the best of our knowledge,
it has not previously been used to solve noisy problems. SEMO is a simple population-
based algorithm using one-bit mutation, and a variable population size (representing
the current non-dominated solutions found). The algorithm starts with adding an ini-
tial solution x ∈ {0, 1}n chosen uniformly at random to the population P . Then a
solution y is chosen randomly from P and mutated with a one-bit flip to obtain y’. If
y’ is dominated by anything in P it is discarded. Otherwise it is added to P and all
the solutions that y’ dominates in P are discarded. Then a new y is chosen from P
and the process is repeated. One of the great challenges SEMO will face due to noisy
dominance relations is that, often good solutions will be discarded and bad solutions
will be retained in P .

Algorithm 1: SEMO
Initialise solution x and add to population P .
repeat

Choose y from P and mutate a random bit to get y’.
If y’ is not dominated by any solution in P and y’ ̸∈ P , add y’ to P and

discard all solutions in P that y’ dominates.

7.2 Non-dominated Sorting Genetic Algorithm - II (NSGA-II)

NSGA-II by Deb et al. (2002) sorts the population into non-dominated fronts in each
generation. Based on non-dominated sorting and using a crowding heuristic to break
ties, the best half of individuals become the parent population of the next generation. In
case of noisy function evaluations, non-dominated sorting will be affected and worse
solutions will appear in better non-dominated fronts. We use the same algorithm struc-
ture as defined in Deb et al. (2002) except considering noisy function evaluations dur-
ing the selection process.
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7.3 Variants of Multi-objective Univariate Marginal Distribution Algorithm
(moUMDA)

From our experiments in noisy single-objective combinatorial problems, UMDA and
PCEA show significantly better performance in handling noise compared to the
other algorithms we tried, with UMDA generally producing better quality solutions.
From these results, we hypothesise that a multi-objective version of UMDA (denoted
moUMDA) may be able to handle large levels of noise in noisy combinatorial multi-
objective problems if proper diversification mechanisms are employed. In order to
investigate this, we have considered several versions of moUMDA in our analysis with
different diversification techniques.

Pelikan et al. (2005) introduced a version of UMDA to address multi-objective
problems which used non-dominated sorting in the selection mechanism. They also
experimented with clustering methods, to help the algorithm generate solutions across
the Pareto front. We have followed this idea, and studied several versions of UMDA
adapted for multi-objective problems. Where non-dominated sorting and crowding
are used for selection, these are implemented identically to NSGA-II. We also consider
making use of an archive, and in using hypervolume as a criterion in selection:

moUMDA without duplicates
Uses non-dominated sorting (with crowding to break ties) for selection. Maintains
diversity by disallowing duplicates when generating the population. See Algo-
rithm 2.

moUMDA with clustering
Uses non-dominated sorting (with crowding to break ties) for selection. Clusters
the selected population members (using either K-means or Hierarchical Agglom-
eration), and produces a frequency vector for each cluster. Generates next popu-
lation from these, in proportion to the number of items within each cluster. See
Algorithm 3.

moUMDA with Pareto archive
Maintains an archive of non-dominated solutions and uses this to generate the fre-
quency vector for the next population. Uses non-dominated sorting (with crowd-
ing to break ties) for selection, and updates the archive with the selected items. See
Algorithm 4.

moUMDA with hypervolume comparison operator
Uses binary tournament selection, comparing solutions initially by Pareto domi-
nance. If neither dominates the other, then select the one with the better hypervol-
ume indicator value. See Algorithm 5.

8 Experiments — Noisy Multi-objective Problems

Following the same strategy as for single objective problems, we initially, we choose a
wide range of evolutionary multi-objective algorithms to compare their performances
on a toy problem: noisy COUNTINGONESCOUNTINGZEROES (COCZ). The algorithms
considered for solving COCZ consists of SEMO, NSGA-II and several versions of multi-
objective UMDA (moUMDA) as described above. Depending on their performances
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Algorithm 2: moUMDA without duplicates
Initialise frequency vector p = (0.5, . . . , 0.5)

repeat
Generate population of size λ from p, disallowing duplicates.
Use non-dominated sorting and crowding to select the best µ individuals.
Update frequency vector p based on selected individuals.

Algorithm 3: moUMDA with clustering
Set k = ⌊√µ⌋ as the number of clusters.
Initialise frequency vectors pi = (0.5, . . . , 0.5) for each i = 1 . . . k.
Set qi = µ/k for each i = 1 . . . k.
repeat

Generate population of size 2qi from pi, for each i = 1 . . . k.
Use non-dominated sorting and crowding to select the best µ individuals

from all the populations.
Cluster the selected individuals into k clusters.
Let qi be the number of individuals in cluster i, for each i = 1 . . . k. Update

frequency vectors pi based on selected individuals in each cluster.

Algorithm 4: moUMDA with Pareto archive
Initialise frequency vector p = (0.5, . . . , 0.5)

Initialise empty archive P
repeat

Generate population of size λ from p.
Use non-dominated sorting and crowding to select the best µ individuals.
Add these to archive P and remove any dominated solutions.
Update frequency vector p based on archive P .

Algorithm 5: moUMDA with hypervolume comparison
Initialise frequency vector p = (0.5, . . . , 0.5)
repeat

Create empty population P
repeat µ times

Generate two strings, x and y from p
Add string with best hypervolume to P

Update frequency vector p based on population P .
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Figure 15: Comparison of the hypervolume of population while solving the noisy
COCZ with n = 30,m = 15

on this problem, we selected a smaller set of the better performing algorithms for the
multi-objective noisy SETCOVER problem.

Some recent studies claim that multi-objective evolutionary approaches are useful
in solving single objective optimisation problems (Segura et al. (2016)). For example,
the multi-objective version of SETCOVER could enable us to find good solutions to the
original single-objective version (by looking at solutions generated which do not violate
the constraints). Here, we consider whether this approach is also helpful in the context
of noise.

8.1 Noisy COUNTINGONESCOUNTINGZEROES (COCZ)

In this subsection, we solve a toy multi-objective problem, the noisy COCZ with n =
30,m = 15 and with additive Gaussian noise centered at zero and having standard
deviations σ = 0, 1, 3, 5, 7, 9, 11, 13 and 15. We set the parameter µ = λ/2, where λ =
20
√
n log n for all the versions of moUMDA. For NSGAII, the parent population size

is set as 10
√
n log n. All the algorithms are run for 50,000 function evaluations and the

mean of 30 runs are reported. The best hypervolume of the population found so far in
the fixed budget of function evaluations are reported in Figure 15. The Pareto optimal
front would contain 215 elements and the best possible hypervolume is 780. We have
used the dimension-sweep algorithm and the source code by Fonseca et al. (2006) for
hypervolume calculation in the experiments.

The results shown in Figure 15 show that SEMO is the worst performing algo-
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Figure 16: Best hypervolume of population obtained for MULTI-OBJECTIVESETCOVER

rithm, even when there is no noise, and the performance degrades slightly as noise is
increased. The Pareto Archive algorithm (PAmoUMDA) is the next worst. Although
it does no degrade too much with added noise, it is still clearly worse than the other
algorithms.

The remaining algorithms have rather similar performance, but we can still dis-
tinguish different behaviours by looking at the zoomed in section of the plot in Figure
15. The version of moUMDA that uses the hypervolume comparison operator (moUM-
DAHCO) performs very well when there is little or no noise. However, its performance
degrades considerably as the level of noise increases. The same is true for NSGAII.
When the noise reaches a standard deviation of σ = 15, these two algorithms are the
worst of the remaining ones.

The plain moUMDA and the version forbidding duplicates in the population both
have the curious property that their performance improves with the presence of low
levels of noise, and then degrade at higher levels of noise. We speculate that low
levels of noise allow for much more diversity in the populations. At high levels of
noise (σ = 15) they are the best performing algorithms, along with the two versions of
moUMDA that use clustering (moUMDA-Kmeans and moUMDA-HAC). moUMDA
with no duplicates is marginally the best overall at this level of noise.

8.2 Noisy multi-objective SETCOVER

In this section, we compare the performance of three of our multi-objective algorithms,
viz., NSGA-II, moUMDA with no duplicates allowed and moUMDA employing K-
means clustering, on the noisy multi-objective SETCOVER problem. We have chosen
these algorithms based on their behaviours on the COCZ. These were amongst the best
algorithms we tried on that problem. There being little to distinguish the two different
clustering methods, we have chosen to test just one of these (K-means clustering). We
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Figure 17: Best feasible solution found while solving the noisy MULTI-OBJECTIVE SET-
COVER

have selected the “no duplicates” version of moUMDA, as this gave a small advantage
over the plain moUMDA. And we have kept NSGAII as this is a standard algorithm
for any multi-objective problem.

All the algorithms are run for 50,000 function evaluations. The best hypervolume
of the population obtained in the fixed function evaluation budget for each of 30 runs
is shown in Figure 16. We observe that the clustering algorithm, moUMDA-Kmeans,
handles high levels of noise significantly better than other algorithms. It is evident
that, the performance of NSGA-II becomes worse as the standard deviation of noise
increases and the problem size increases and indeed is the worst of the three algorithms
on this problem.

We also consider the multi-objective formulation of noisy SETCOVER as a means to
solving the standard single objective problem. To this end, we consider the quality of
the best feasible solutions found by each algorithm, averaged over the 30 runs. The re-
sults are plotted in Figure 17. Again, the two versions of moUMDA perform better than
NSGAII. A comparison with Figure 13 shows that this approach can indeed produce
better quality results than the single objective formulation.

9 Conclusion

We have empirically studied a range of evolutionary algorithms on a set of noisy prob-
lems. The (1 + 1)-EA, as expected, fails to cope with any degree of posterior noise.
Interestingly, some algorithms (the mutation-population algorithm and cGA), where
there is a theoretical polynomial runtime for noisy ONEMAX, fail to be useful in prac-
tice compared to some other algorithms. PBIL performs somewhat similar to cGA.
The Paired Crossover Evolutionary algorithm handles noise well on both the simple
test problems, and on the noisy combinatorial problems we have tried. Interestingly,
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UMDA also handles these cases well, with even a slightly better performance than
PCEA. This may be due to the fact that UMDA has a strong selection method (trunca-
tion selection) than PCEA (which uses a tournament on pairs of offspring). Of course,
parameter values on each could be tweaked to produce slightly different results – our
key finding is that these are the only algorithms we have tried that seem remotely prac-
tical for such problems. It seems likely that UMDA’s performance is more due to its
relationship with crossover algorithms (such as the genepool crossover), rather than
considered as an EDA (such as PBIL).

We are not aware of any previously published results on noisy combinatorial
multi-objective problems. We carefully selected a set of multi-objective algorithms
on the basis of the performance on noisy COCZ and tested them on the noisy multi-
objective SETCOVER. We observe that multi-objective UMDA with a simple diversity
mechanism that allows no duplicate solutions in the population is effective at solving
the noisy SETCOVER problem in both constrained and multi-objective forms. UMDA
can also benefit from using a clustering approach when dealing with noisy multi-
objective problems.
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