60,670 research outputs found

    Belief Evolution Network-based Probability Transformation and Fusion

    Full text link
    Smets proposes the Pignistic Probability Transformation (PPT) as the decision layer in the Transferable Belief Model (TBM), which argues when there is no more information, we have to make a decision using a Probability Mass Function (PMF). In this paper, the Belief Evolution Network (BEN) and the full causality function are proposed by introducing causality in Hierarchical Hypothesis Space (HHS). Based on BEN, we interpret the PPT from an information fusion view and propose a new Probability Transformation (PT) method called Full Causality Probability Transformation (FCPT), which has better performance under Bi-Criteria evaluation. Besides, we heuristically propose a new probability fusion method based on FCPT. Compared with Dempster Rule of Combination (DRC), the proposed method has more reasonable result when fusing same evidence

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Generalized Evidence Theory

    Full text link
    Conflict management is still an open issue in the application of Dempster Shafer evidence theory. A lot of works have been presented to address this issue. In this paper, a new theory, called as generalized evidence theory (GET), is proposed. Compared with existing methods, GET assumes that the general situation is in open world due to the uncertainty and incomplete knowledge. The conflicting evidence is handled under the framework of GET. It is shown that the new theory can explain and deal with the conflicting evidence in a more reasonable way.Comment: 39 pages, 5 figure

    A Distance-Based Decision in the Credal Level

    Get PDF
    Belief function theory provides a flexible way to combine information provided by different sources. This combination is usually followed by a decision making which can be handled by a range of decision rules. Some rules help to choose the most likely hypothesis. Others allow that a decision is made on a set of hypotheses. In [6], we proposed a decision rule based on a distance measure. First, in this paper, we aim to demonstrate that our proposed decision rule is a particular case of the rule proposed in [4]. Second, we give experiments showing that our rule is able to decide on a set of hypotheses. Some experiments are handled on a set of mass functions generated randomly, others on real databases

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector
    • …
    corecore