29,520 research outputs found

    CoAKTinG: Collaborative Advanced Knowledge Technologies in the Grid

    Get PDF
    Grid infrastructures coupled with semantic web linkage and reasoning open up intriguing new possibilities for scientific collaboration. In this short paper, we outline the research agenda and collaboration technologies under development within the CoAKTinG project: Collaborative Advanced Knowledge Technologies in the Grid. CoAKTinG will provide tools to assist scientific collaboration by integrating intelligent meeting spaces, ontologically annotated media streams from online meetings, decision rationale and group memory capture, meeting facilitation, issue handling, planning and coordination support, constraint satisfaction, and instant messaging/presence. Their integration is illustrated through an extended use scenario

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    The integration of grid and peer-to-peer to support scientific collaboration

    Get PDF
    There have been a number of e-Science projects which address the issues of collaboration within and between scientific communities. Most effort to date focussed on the building of the Grid infrastructure to enable the sharing of huge volume of computational and data resources. The ‘portal’ approach has been used by some to bring the power of grid computing to the desk top of individual researchers. However, collaborative activities within a scientific community are not only confined to the sharing of data or computational intensive resources. There are other forms of sharing which can be better supported by other forms of architecture. In order to provide a more holistic support to a scientific community, this paper proposes a hybrid architecture, which integrates Grid and peer-to-peer technologies using Service Oriented Architecture. This platform will then be used for a semantic architecture which captures characteristics of the data, functional and process requirements for a range of collaborative activities. A combustion chemistry research community is being used as a case study

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    A Semantic Web Based Approach to Knowledge Management for Grid Applications

    Get PDF
    Knowledge has become increasingly important to support intelligent process automation and collaborative problem solving in large-scale science over the Internet. This paper addresses distributed knowledge management, its approach and methodology, in the context of grid application. We start by analyzing the nature of grid computing and its requirements for knowledge support; then, we discuss knowledge characteristics and the challenges for knowledge management on the grid. A semantic Web-based approach is proposed to tackle the six challenges of the knowledge lifecycle - namely, those of acquiring, modeling, retrieving, reusing, publishing, and maintaining knowledge. To facilitate the application of the approach, a systematic methodology is conceived and designed to provide a general implementation guideline. We use a real-world Grid application, the GEODISE project, as a case study in which the core semantic Web technologies such as ontologies, semantic enrichment, and semantic reasoning are used for knowledge engineering and management. The case study has been fully implemented and deployed through which the evaluation and validation for the approach and methodology have been performe

    Version Control in Online Software Repositories

    No full text
    Software version control repositories provide a uniform and stable interface to manage documents and their version histories. Unfortunately, Open Source systems, for example, CVS, Subversion, and GNU Arch are not well suited to highly collaborative environments and fail to track semantic changes in repositories. We introduce document provenance as our Description Logic framework to track the semantic changes in software repositories and draw interesting results about their historic behaviour using a rule-based inference engine. To support the use of this framework, we have developed our own online collaborative tool, leveraging the fluency of the modern WikiWikiWeb

    SIMDAT

    No full text

    Version Control in Online Software Repositories

    No full text
    Software version control repositories provide a uniform and stable interface to manage documents and their version histories. Unfortunately, Open Source systems, for example, CVS, Subversion, and GNU Arch are not well suited to highly collaborative environments and fail to track semantic changes in repositories. We introduce document provenance as our Description Logic framework to track the semantic changes in software repositories and draw interesting results about their historic behaviour using a rule-based inference engine. To support the use of this framework, we have developed our own online collaborative tool, leveraging the fluency of the modern WikiWikiWeb

    Supporting collaboration within the eScience community

    Get PDF
    Collaboration is a core activity at the heart of large-scale co- operative scientific experimentation. In order to support the emergence of Grid-based scientific collaboration, new models of e-Science working methods are needed. Scientific collaboration involves production and manipulation of various artefacts. Based on work done in the software engineering field, this paper proposes models and tools which will support the representation and production of such artefacts. It is necessary to provide facilities to classify, organise, acquire, process, share, and reuse artefacts generated during collaborative working. The concept of a "design space" will be used to organise scientific design and the composition of experiments, and methods such as self-organising maps will be used to support the reuse of existing artefacts. It is proposed that this work can be carried out and evaluated in the UK e-Science community, using an "industry as laboratory" approach to the research, building on the knowledge, expertise, and experience of those directly involved in e-Science
    corecore