84 research outputs found

    Certified Impossibility Results for Byzantine-Tolerant Mobile Robots

    Get PDF
    We propose a framework to build formal developments for robot networks using the COQ proof assistant, to state and to prove formally various properties. We focus in this paper on impossibility proofs, as it is natural to take advantage of the COQ higher order calculus to reason about algorithms as abstract objects. We present in particular formal proofs of two impossibility results forconvergence of oblivious mobile robots if respectively more than one half and more than one third of the robots exhibit Byzantine failures, starting from the original theorems by Bouzid et al.. Thanks to our formalization, the corresponding COQ developments are quite compact. To our knowledge, these are the first certified (in the sense of formally proved) impossibility results for robot networks

    A coinductive approach to verified exact real number computation

    Get PDF
    We present an approach to verified programs for exact real number computation that is based on inductive and coinductive definitions and program extraction from proofs. We informally discuss the theoretical background of this method and give examples of extracted programs implementing the translation between the representation by fast converging rational Cauchy sequences and the signed binary digit representations of real numbers

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Formalizing alternating-time temporal logic in the coq proof assistant

    Get PDF
    This work presents a complete formalization of Alternating-time Temporal Logic (ATL) and its semantic model, Concurrent Game Structures (CGS), in the Calculus of (Co)Inductive Constructions, using the logical framework Coq. Unlike standard ATL semantics, temporal operators are formalized in terms of inductive and coinductive types, employing a fixpoint characterization of these operators. The formalization is used to model a concurrent system with an unbounded number of players and states, and to verify some properties expressed as ATL formulas. Unlike automatic techniques, our formal model has no restrictions in the size of the CGS, and arbitrary state predicates can be used as atomic propositions of ATL. Keywords: Reactive Systems and Open Systems, Alternating-time Temporal Logic, Concurrent Game Structures, Calculus of (Co)Inductive Constructions, Coq Proof Assistant

    A Verified Achitecture for Trustworthy Remote Attestation

    Get PDF
    Remote attestation is a process where one digital system gathers and provides evidence of its state and identity to an external system. For this process to be successful, the external system must find the evidence convincingly trustworthy within that context. Remote attestation is difficult to make trustworthy due to the external system’s limited access to the attestation target. In contrast to local attestation, the appraising system is unable to directly observe and oversee the attestation target. In this work, we present a system architecture design and prototype implementation that we claim enables trustworthy remote attestation. Furthermore, we formally model the system within a temporal logic embedded in the Coq theorem prover and present key theorems that strengthen this trust argument

    Sound approximate and asymptotic probabilistic bisimulations for PCTL

    Get PDF
    We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and parametric with respect to an approximation error δ\delta, and to the depth nn of the observation along traces. Essentially, our soundness theorem establishes that, when a state qq satisfies a given formula up-to error δ\delta and steps nn, and qq is bisimilar to q′q' up-to error δ′\delta' and enough steps, we prove that q′q' also satisfies the formula up-to a suitable error δ"\delta" and steps nn. The new error δ"\delta" is computed from δ\delta, δ′\delta' and the formula, and only depends linearly on nn. We provide a detailed overview of our soundness proof. We extend our bisimilarity notion to families of states, thus obtaining an asymptotic equivalence on such families. We then consider an asymptotic satisfaction relation for PCTL formulae, and prove that asymptotically equivalent families of states asymptotically satisfy the same formulae

    Integrating verification, testing, and learning for cryptographic protocols

    Get PDF
    International audienceThe verification of cryptographic protocol specifications is an active research topic and has received much attention from the formal verification community. By contrast, the black-box testing of actual implementations of protocols, which is, arguably, as important as verification for ensuring the correct functioning of protocols in the “real†world, is little studied. We propose an approach for checking secrecy and authenticity properties not only on protocol specifications, but also on black-box implementations. The approach is compositional and integrates ideas from verification, testing, and learning. It is illustrated on the Basic Access Control protocol implemented in biometric passports

    Certified Impossibility Results for Byzantine-Tolerant Mobile Robots

    Get PDF
    We propose a framework to build formal developments for robot networks using the COQ proof assistant, to state and to prove formally various properties. We focus in this paper on impossibility proofs, as it is natural to take advantage of the COQ higher order calculus to reason about algorithms as abstract objects. We present in particular formal proofs of two impossibility results forconvergence of oblivious mobile robots if respectively more than one half and more than one third of the robots exhibit Byzantine failures, starting from the original theorems by Bouzid et al.. Thanks to our formalization, the corresponding COQ developments are quite compact. To our knowledge, these are the first certified (in the sense of formally proved) impossibility results for robot networks
    • …
    corecore