14 research outputs found

    First order sensitivity analysis of symplectic eigenvalues

    Full text link
    For every 2n×2n2n \times 2n positive definite matrix AA there are nn positive numbers d1(A)dn(A)d_1(A) \leq \ldots \leq d_n(A) associated with AA called the symplectic eigenvalues of A.A. It is known that dmd_m are continuous functions of AA but are not differentiable in general. In this paper, we show that the directional derivative of dmd_m exists and derive its expression. We also discuss various subdifferential properties of dmd_m such as Clarke and Michel-Penot subdifferentials.Comment: 24 page

    Spectrally Constrained Optimization

    Full text link
    We investigate how to solve smooth matrix optimization problems with general linear inequality constraints on the eigenvalues of a symmetric matrix. We present solution methods to obtain exact global minima for linear objective functions, i.e., F(X)=C,XF(X) = \langle C, X \rangle, and perform exact projections onto the eigenvalue constraint set. Two first-order algorithms are developed to obtain first-order stationary points for general non-convex objective functions. Both methods are proven to converge sublinearly when the constraint set is convex. Numerical experiments demonstrate the applicability of both the model and the methods.Comment: 32 pages, 2 figures, 2 table

    Subdiferencijal svojstvene vrijednosti simetrične matrice

    Get PDF
    U ovom radu proširen je pojam diferencijabilnosti lokalno Lipschitzovih funkcija sa Rn\mathbb{R}^{n} u R\mathbb{R}. Prvo promatramo derivaciju u smjeru poznatu iz klasične analize i navodimo neka njena svojstva, kao što su na primjer, ograničenost, Lipschitzovost i sublinearnost. Nakon toga definiramo subdiferencijal konveksne funkcije u točki xRnx \in \mathbb{R}^n. Taj skup je neprazan, konveksan i kompaktan, a u slučaju da funkcija nije konveksna, može biti i prazan. U nastavku promatramo općenite lokalno Lipschitzove, ne nužno konveksne funkcije i definiramo generaliziranu Clarkeovu derivaciju u smjeru i Clarkeov subdiferencijal. Navodimo neka njihova svojstva i uspoređujemo s običnom derivacijom u smjeru. Kao i u klasičnoj analizi za diferencijabilne funkcije, i za generaliziranu derivaciju u smjeru postoje pravila računanja za linearnu kombinaciju, produkt, kvocijent i kompoziciju. No, u općenitom slučaju vrijedi samo inkluzija medu pripadnim subdiferencijalima. Zatim navodimo teorem o subdiferencijalu max funkcije i generalizirani teorem srednje vrijednosti. Koristeći rezultate iz prethodnih poglavlja, računamo subdiferencijal i derivaciju najveće svojstvene vrijednosti realne simetrične matrice. Zatim uvodimo Michel-Penotovu derivaciju u smjeru i pripadni Michel-Penotov subdiferencijal i pomoću nekoliko rezultata dolazimo do zaključka da se Clarkeov i Michel-Penotov subdiferencijal podudaraju za funkciju m-te najveće svojstvene vrijednosti realne simetrične matrice.In this master thesis we study the extended notion of diferentiability of real locally Lipschitz functions defined on space Rn\mathbb{R}^{n}. In the first part we study the well known directional derivative of convex functions and its properties, some of which are, for instance, boundness, locally Lipschitz continuity and sublinearity. After that, the subdifferential of convex function in xRnx \in \mathbb{R}^n is defined, and we show that it is a nonempty, convex and compact set, which can be empty if the function f is not convex. Next, we study the Clarke’s directional derivative and Clarke’s subdifferential. We list some of their properties and compare them to the usual directional derivative. Similarly to classical analysis, there are calculus rules in nonsmooth analysis for Clarke’s subdifferentials, such as for linear combination of functions, product, quotient and chain rule, but in the case of Clarke subdifferential, only one inclusion can be showed. We also generalize some important results, such as mean value theorem and max-function theorem. In the last section we calculate the subdifferential and directional derivative of the largest eigenvalue of the real symmetric matrix with the help of the results from the previous chapters. Another generalized derivative is defined, called the Michel-Penot’s directional derivative. After defining the Michel-Penot’s subdifferential we show that Clarke’s and Michel-Penot’s subdifferentials coincide for mth largest eigenvalue of a real symmetric matrix

    Robust network formation with biological applications

    Full text link
    We provide new results on the structure of optimal transportation networks obtained as minimizers of an energy cost functional consisting of a kinetic (pumping) and material (metabolic) cost terms, constrained by a local mass conservation law. In particular, we prove that every tree (i.e., graph without loops) represents a local minimizer of the energy with concave metabolic cost. For the linear metabolic cost, we prove that the set of minimizers contains a loop-free structure. Moreover, we enrich the energy functional such that it accounts also for robustness of the network, measured in terms of the Fiedler number of the graph with edge weights given by their conductivities. We examine fundamental properties of the modified functional, in particular, its convexity and differentiability. We provide analytical insights into the new model by considering two simple examples. Subsequently, we employ the projected subgradient method to find global minimizers of the modified functional numerically. We then present two numerical examples, illustrating how the optimal graph's structure and energy expenditure depend on the required robustness of the network.Comment: 26 pages, 7 figures, 1 tabl

    Subdiferencijal svojstvene vrijednosti simetrične matrice

    Get PDF
    U ovom radu proširen je pojam diferencijabilnosti lokalno Lipschitzovih funkcija sa Rn\mathbb{R}^{n} u R\mathbb{R}. Prvo promatramo derivaciju u smjeru poznatu iz klasične analize i navodimo neka njena svojstva, kao što su na primjer, ograničenost, Lipschitzovost i sublinearnost. Nakon toga definiramo subdiferencijal konveksne funkcije u točki xRnx \in \mathbb{R}^n. Taj skup je neprazan, konveksan i kompaktan, a u slučaju da funkcija nije konveksna, može biti i prazan. U nastavku promatramo općenite lokalno Lipschitzove, ne nužno konveksne funkcije i definiramo generaliziranu Clarkeovu derivaciju u smjeru i Clarkeov subdiferencijal. Navodimo neka njihova svojstva i uspoređujemo s običnom derivacijom u smjeru. Kao i u klasičnoj analizi za diferencijabilne funkcije, i za generaliziranu derivaciju u smjeru postoje pravila računanja za linearnu kombinaciju, produkt, kvocijent i kompoziciju. No, u općenitom slučaju vrijedi samo inkluzija medu pripadnim subdiferencijalima. Zatim navodimo teorem o subdiferencijalu max funkcije i generalizirani teorem srednje vrijednosti. Koristeći rezultate iz prethodnih poglavlja, računamo subdiferencijal i derivaciju najveće svojstvene vrijednosti realne simetrične matrice. Zatim uvodimo Michel-Penotovu derivaciju u smjeru i pripadni Michel-Penotov subdiferencijal i pomoću nekoliko rezultata dolazimo do zaključka da se Clarkeov i Michel-Penotov subdiferencijal podudaraju za funkciju m-te najveće svojstvene vrijednosti realne simetrične matrice.In this master thesis we study the extended notion of diferentiability of real locally Lipschitz functions defined on space Rn\mathbb{R}^{n}. In the first part we study the well known directional derivative of convex functions and its properties, some of which are, for instance, boundness, locally Lipschitz continuity and sublinearity. After that, the subdifferential of convex function in xRnx \in \mathbb{R}^n is defined, and we show that it is a nonempty, convex and compact set, which can be empty if the function f is not convex. Next, we study the Clarke’s directional derivative and Clarke’s subdifferential. We list some of their properties and compare them to the usual directional derivative. Similarly to classical analysis, there are calculus rules in nonsmooth analysis for Clarke’s subdifferentials, such as for linear combination of functions, product, quotient and chain rule, but in the case of Clarke subdifferential, only one inclusion can be showed. We also generalize some important results, such as mean value theorem and max-function theorem. In the last section we calculate the subdifferential and directional derivative of the largest eigenvalue of the real symmetric matrix with the help of the results from the previous chapters. Another generalized derivative is defined, called the Michel-Penot’s directional derivative. After defining the Michel-Penot’s subdifferential we show that Clarke’s and Michel-Penot’s subdifferentials coincide for mth largest eigenvalue of a real symmetric matrix

    Subdiferencijal svojstvene vrijednosti simetrične matrice

    Get PDF
    U ovom radu proširen je pojam diferencijabilnosti lokalno Lipschitzovih funkcija sa Rn\mathbb{R}^{n} u R\mathbb{R}. Prvo promatramo derivaciju u smjeru poznatu iz klasične analize i navodimo neka njena svojstva, kao što su na primjer, ograničenost, Lipschitzovost i sublinearnost. Nakon toga definiramo subdiferencijal konveksne funkcije u točki xRnx \in \mathbb{R}^n. Taj skup je neprazan, konveksan i kompaktan, a u slučaju da funkcija nije konveksna, može biti i prazan. U nastavku promatramo općenite lokalno Lipschitzove, ne nužno konveksne funkcije i definiramo generaliziranu Clarkeovu derivaciju u smjeru i Clarkeov subdiferencijal. Navodimo neka njihova svojstva i uspoređujemo s običnom derivacijom u smjeru. Kao i u klasičnoj analizi za diferencijabilne funkcije, i za generaliziranu derivaciju u smjeru postoje pravila računanja za linearnu kombinaciju, produkt, kvocijent i kompoziciju. No, u općenitom slučaju vrijedi samo inkluzija medu pripadnim subdiferencijalima. Zatim navodimo teorem o subdiferencijalu max funkcije i generalizirani teorem srednje vrijednosti. Koristeći rezultate iz prethodnih poglavlja, računamo subdiferencijal i derivaciju najveće svojstvene vrijednosti realne simetrične matrice. Zatim uvodimo Michel-Penotovu derivaciju u smjeru i pripadni Michel-Penotov subdiferencijal i pomoću nekoliko rezultata dolazimo do zaključka da se Clarkeov i Michel-Penotov subdiferencijal podudaraju za funkciju m-te najveće svojstvene vrijednosti realne simetrične matrice.In this master thesis we study the extended notion of diferentiability of real locally Lipschitz functions defined on space Rn\mathbb{R}^{n}. In the first part we study the well known directional derivative of convex functions and its properties, some of which are, for instance, boundness, locally Lipschitz continuity and sublinearity. After that, the subdifferential of convex function in xRnx \in \mathbb{R}^n is defined, and we show that it is a nonempty, convex and compact set, which can be empty if the function f is not convex. Next, we study the Clarke’s directional derivative and Clarke’s subdifferential. We list some of their properties and compare them to the usual directional derivative. Similarly to classical analysis, there are calculus rules in nonsmooth analysis for Clarke’s subdifferentials, such as for linear combination of functions, product, quotient and chain rule, but in the case of Clarke subdifferential, only one inclusion can be showed. We also generalize some important results, such as mean value theorem and max-function theorem. In the last section we calculate the subdifferential and directional derivative of the largest eigenvalue of the real symmetric matrix with the help of the results from the previous chapters. Another generalized derivative is defined, called the Michel-Penot’s directional derivative. After defining the Michel-Penot’s subdifferential we show that Clarke’s and Michel-Penot’s subdifferentials coincide for mth largest eigenvalue of a real symmetric matrix

    Morse inequalities for ordered eigenvalues of generic families of self-adjoint matrices

    Full text link
    In many applied problems one seeks to identify and count the critical points of a particular eigenvalue of a smooth parametric family of self-adjoint matrices, with the parameter space often being known and simple, such as a torus. Among particular settings where such a question arises are the Floquet--Bloch decomposition of periodic Schroedinger operators, topology of potential energy surfaces in quantum chemistry, spectral optimization problems such as minimal spectral partitions of manifolds, as well as nodal statistics of graph eigenfunctions. In contrast to the classical Morse theory dealing with smooth functions, the eigenvalues of families of self-adjoint matrices are not smooth at the points corresponding to repeated eigenvalues (called, depending on the application and on the dimension of the parameter space, the diabolical/Dirac/Weyl points or the conical intersections). This work develops a procedure for associating a Morse polynomial to a point of eigenvalue multiplicity; it utilizes the assumptions of smoothness and self-adjointness of the family to provide concrete answers. In particular, we define the notions of non-degenerate topologically critical point and generalized Morse family, establish that generalized Morse families are generic in an appropriate sense, establish a differential first-order conditions for criticality, as well as compute the local contribution of a topologically critical point to the Morse polynomial. Remarkably, the non-smooth contribution to the Morse polynomial turns out to be universal: it depends only on the size of the eigenvalue multiplicity and the relative position of the eigenvalue of interest and not on the particulars of the operator family; it is expressed in terms of the homologies of Grassmannians.Comment: 38 page
    corecore