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Abstract

In this thesis, we study geometric numerical integration for the optimisation of various classes
of functionals. Numerical integration and the study of systems of differential equations have
received increased attention within the optimisation community in the last decade, as a
means for devising new optimisation schemes as well as to improve our understanding of the
dynamics of existing schemes. Discrete gradient methods from geometric numerical integra-
tion preserve structures of first-order gradient systems, including the dissipative structure
of schemes such as gradient flows, and thus yield iterative methods that are unconditionally
dissipative, i.e. decrease the objective function value for all time steps.

We look at discrete gradient methods for optimisation in several settings. First, we
provide a comprehensive study of discrete gradient methods for optimisation of continu-
ously differentiable functions. In particular, we prove properties such as well-posedness of
the discrete gradient update equation, convergence rates, convergence of the iterates, and
propose methods for solving the discrete gradient update equation with superior stability
and convergence rates. Furthermore, we present results from numerical experiments which
support the theory.

Second, motivated by the existence of derivative-free discrete gradients, and seeking to
solve nonsmooth optimisation problems and more generally black-box problems, including
for parameter optimisation problems, we propose methods based on the Itoh–Abe discrete
gradient method for solving nonconvex, nonsmooth optimisation problems with derivative-
free methods. In this setting, we prove well-posedness of the method, and convergence
guarantees within the nonsmooth, nonconvex Clarke subdifferential framework for locally
Lipschitz continuous functions. The analysis is shown to hold in various settings, namely
in the unconstrained and constrained setting, including epi-Lipschitzian constraints, and for
stochastic and deterministic optimisation methods.

Building on the work of derivative-free discrete gradient methods and the concept of
structure preservation in geometric numerical integration, we consider discrete gradient
methods applied to other differential systems with dissipative structures. In particular, we
study the inverse scale space flow, linked to the well-known Bregman methods, which are
central to variational optimisation problems and regularisation methods for inverse problems.
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In this setting, we propose and implement derivative-free schemes that exploit structures
such as sparsity to achieve superior convergence rates in numerical experiments, and prove
convergence guarantees for these methods in the nonsmooth, nonconvex setting. Furthermore,
these schemes can be seen as generalisations of the Gauss-Seidel method and successive-
over-relaxation.

Finally, we return to parameter optimisation problems, namely nonsmooth bilevel optimi-
sation problems, and propose a framework to employ first-order methods for these problems,
when the underlying variational optimisation problem admits a nonsmooth structure in the
partial smoothness framework. In this setting, we prove piecewise differentiability of the
parameter-dependent solution mapping, and study algorithmic differentiation approaches to
evaluating the derivatives. Furthermore, we prove that the algorithmic derivatives converge to
the implicit derivatives. Thus we demonstrate that, although some parameter tuning problems
must inevitably be treated as black-box optimisation problems, for a large number of varia-
tional problems one can exploit the structure of nonsmoothness to perform gradient-based
bilevel optimisation.
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Chapter 1

Introduction

In this thesis, we consider methods for solving various classes of optimisation problems, by
combining tools from geometric numerical integration and nonsmooth optimality analysis.
In this opening chapter, we provide the context and rationale for the research, and outline the
contributions.

At the core of mathematical optimisation is the problem

min
x∈X

F(x), i.e. find x that minimises F : X → R. (1.1)

This objective is notably simple. However, solving (1.1) can be arbitrarily difficult depending
on the properties of the objective function F , and whether or not such a problem is solvable
will have implications for the feasibility of various scientific applications. Because of this,
optimisation theory is a broad and dynamic field whose developments both influence and are
influenced by advances in science and engineering.

In contemporary optimisation problems, one often encounters challenges such as high
dimensionality of X , nonsmoothness of F , and nonlinearities in X and the gradient ∇F . In
part, this is due to the rise of big data and machine learning, as well as sophisticated sparsity
and regularisation models in signal processing which invoke nonsmooth functions to promote
efficient signal representations. This has lead to a surge of interest in first-order optimisation
methods, which scale better than higher-order methods with respect to the dimension of X ,
and which combine naturally with nonsmooth optimisation via proximal methods. While this
has led to rapid developments of mathematical optimisation theory in recent decades, there is
as much as ever a demand for the development of algorithmic frameworks in optimisation
for handling complex, nonlinear dynamics in an efficient manner.

As is often the case in mathematics, a promising source of ideas and developments in
optimisation is to start with perspectives and techniques from other areas of mathematics.
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One such area which has played an integral role to optimisation in recent years is numerical
integration. This is the study of numerical methods for solving systems of differential
equations. The subfield geometric numerical integration is the systematic study of geometric
structures of differential systems and structure-preserving numerical methods. A recurring
theme of this thesis is how techniques from geometric numerical integration can be used to
solve a wide range of optimisation problems, through the preservation of energy dissipation.

For the remainder of this chapter, we will provide brief introductions to first-order
optimisation methods, variational optimisation problems from signal processing which
motivate our research, and numerical integration applied to optimisation methods, and finally
give an outline and summarise the contributions of this thesis in Sections 1.2 & 1.3

1.1 An overview of optimisation and numerical integration

1.1.1 First-order optimisation methods

The two most important building blocks to first-order optimisation methods are explicit and
implicit gradient descent. For a differentiable function F : Rn→ R, starting point x0 ∈ Rn,
and strictly positive time steps (τk)k∈N, (explicit) gradient descent is given by

xk+1 = xk− τk∇F(xk), (1.2)

while implicit gradient descent is given by

xk+1 = xk− τk∇F(xk+1). (1.3)

As the names suggest, the former update is explicit, while the latter is implicit, i.e. one must
solve (1.3) with respect to xk+1. Note that this is equivalent to

0 = ∇

(
F(xk+1)+

1
2τk
∥xk− xk+1∥2

)
.

It follows that if y 7→ F(y)+∥y− xk∥2/(2τk) is convex, then xk+1 solves (1.3) if and only if
it solves

xk+1 = argmin
y∈Rn

F(y)+
1

2τk
∥y− xk∥2. (1.4)

This mapping is called the proximal mapping of F at xk. Observe that this latter formulation
gives us a notion of implicit gradient descent updates for nondifferentiable functions, provided
the minimisation problem in (1.4) is computationally tractable. Of course, by itself this
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observation is not helpful, as solving (1.4) will in general be of similar difficulty as solving
the problem (1.1), which in the end is what we are interested in. However, the formulation
(1.4) is crucial for several reasons, some of which we will discuss now, and some which will
be touched upon at different stages of the thesis.

We first emphasise that for nonsmooth variational optimisation problems, one is often
able to split the objective function F : Rn→ R into different terms, each of which is either
continuously differentiable or admits computationally tractable updates for (1.4). From
hereon, we refer to functions in the latter category as simple. A well-known example of a
simple function is the ℓ1-norm ∥x∥1 := ∑

n
i=1 |xi|, for which the update (1.4) corresponds to

the soft shrinkage operator

S(xk,τk) := sgn(xk)max{|xk|− τk,0}, (1.5)

where sgn is the sign operator,

sgn(x) :=


1, if x > 0,

0, if x = 0,

−1, if x < 0,

and sgn, max and their products are evaluated elementwise. Another example is that of
indicator functions of convex, nonempty, closed sets C ⊂ Rn,

δC(x) :=

0, if x ∈C,

+∞, otherwise,
(1.6)

for which (1.4) corresponds to the projection mapping

PC(xk) := argmin
y∈C

1
2
∥y− xk∥2.

Second, as can be inferred directly from the equation, the update (1.4) is unconditionally
dissipative with respect to the time step τk in the sense that F(xk+1)≤ F(xk) for any τk > 0.
This is in contrast to explicit gradient descent, in which the time step must be restricted
according to the first-order regularity of F in order to ensure energy decrease.

We return to proximal mappings in Section 2.4. For further details on proximal mappings,
we refer to a survey by Combettes & Pesquet [55] and a monograph by Parikh & Boyd [172].
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We point out that implicit gradient descent is also known as the proximal point algorithm
[101, 189].

To further emphasise that the proximal mapping (1.4) exists within a powerful framework
for nonsmooth optimisation, we conclude this section by pointing out that there are various
first-order splitting algorithms available for solving nonsmooth variational problems, based
on combinations of implicit and explicit gradient descent steps.

These include forward-backward (FB) type methods when F is the sum of a smooth
function and a simple function [14, 57, 173, 85], and the Douglas–Rachford method [75, 79,
138] and the related alternating direction method of multipliers (ADMM) when F consists
of two simple functions [27, 93]. Finally, primal-dual hybrid gradient (PDHG) methods
[50, 226] are used for optimisation problems involving terms that are neither smooth nor
simple but can be transformed into so-called saddle-point problems, and for which each term
is either smooth or simple (see Section 2.4).

We return to PDHG and FB methods in Chapter 7 and Chapter 8, when we consider them
for solving the lower-level problem of a bilevel optimisation problem (to be defined in the
following section).

For a general treatment of convex analysis and monotone operator theory, see [12].

1.1.2 Variational optimisation problems

In what follows, we summarise common variational optimisation problems encountered in
signal and image processing, and more generally inverse problems.

An inverse problem seeks to recover a signal x ∈ Rn from data f δ ∈ Rl , via a forward
model G : Rn→ Rl , i.e. such that x solves

f δ = G(x)+δ , (1.7)

where δ represents noise in the data f δ .
Before we introduce variational regularisation models for solving inverse problems, we

motivate their necessity with the concept of ill-posedness. An inverse problem is said to be
well-posed if it admits a unique solution x∗ ∈ Rn such that G(x∗) = f δ , and which is stable
with respect to perturbations in the data f δ . Due to the presence of noise in the data, as well
as other uncertainties, such as errors in the forward model G, a direct inversion of G might
lead to an inaccurate reconstruction. Furthermore, G is often ill-conditioned, meaning that
even small amounts of noise in the data can lead to significant artefacts in the reconstruction.
For these reasons, many inverse problems are ill-posed.
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When an inverse problem is ill-posed, one needs to formulate a reconstruction model
that finds a good signal match for the data, i.e. x such that G(x) is close to f δ , while
simultaneously ensuring that the reconstruction adequately accounts for the uncertainty and
instability in the inverse problem.

One popular approach is to use variational regularisation models, wherein one solves the
variational optimisation problem

argmin
x∈Rn

F(G(x), f δ )+R(x,ϑ). (1.8)

Here F : Rl×Rl is a data fidelity term which measures the discrepancy between G(x) and f δ ,
one example being F(x,y) = ∥x− y∥2/2, and R(·,ϑ) a regularisation term, which promotes
known information about the true signal, such as smooth regions and sharp edges of images,
or signal sparsity in some coordinate frame.

We mention some regularisers R(·,ϑ) commonly used in image and signal processing.
The aforementioned ℓ1-norm weighted by ϑ ∈ R≥0, i.e. ϑ∥ · ∥1 for ϑ ≥ 0, is a popular

choice for promoting sparsity. We elaborate on this in the next subsection.
The total variation (TV) seminorm [48] in Rn is defined as

TVϑ (x) := ϑ∥∇x∥1,2, ϑ ≥ 0. (1.9)

Here ∇ ∈ R2n,n denotes the discretised spatial gradient for vectors in Rn, as defined in [47],
and ∥ · ∥1,2 is the group Lasso norm, which for z ∈ Rn,m is defined as ∥z∥1,2 := ∑

n
i=1 ∥zi∥,

where zi denotes the ith row vector of z. This is the discretised version of total variation. We
introduce its original, continuous formulation in Section 4.5.2. This regulariser is popular in
image processing for its ability to preserve edges while penalising noise [196].

In spite of the prevalence of the TV regulariser, one of its drawbacks is that it promotes
piecewise constant features, which can lead to so-called staircasing effects when the input
image has linear features. To remove noise while promoting linear and higher-order features
in images, Bredies et al. proposed the total generalised variation (TGV) seminorm [29]. In
the discretised setting, this is given by

TGVϑ1,ϑ2(x) := min
v∈R2n,n

ϑ1∥∇x∥1,2 +ϑ2∥Ev∥1,2, ϑ1 ≥ 0,ϑ2 ≥ 0, (1.10)

where E is the symmetrised gradient [29]. Similarly as for TV , the continuous formulation is
given in Section 4.5.2.

We emphasise that regularisers are often parametrised, and the reconstruction of (1.8)
therefore depends on the parameter choice ϑ . A common practical and theoretical challenge
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in solving inverse problems is to tune these parameters appropriately. This leads to the class
of bilevel problems which we will discuss later in this chapter, and which is a recurring topic
in this thesis.

For a review of regularisation methods for inverse problems, see [18, 83].

Nonsmoothness in variational problems

A central topic in this thesis is nonsmoothness in optimisation problems. As can be observed
in the previous subsection, nonsmoothness is also a common feature for variational regulari-
sation models—e.g. the three aforementioned regularisers are nonsmooth. In what follows,
we will further motivate why nonsmoothness plays an important role in signal processing,
and why frameworks and methods that account for nonsmoothness in optimisation problems
are worth pursuing.

We take the example of signal sparsity and compressed sensing [73]. Since the seminal
works of Daubechies, Meyer, et al. on wavelets and compressibility [6, 64, 150, 151],
it is well-known that real-world signals such as audio recordings and images are highly
compressible in certain bases and dictionaries. Compressibility in this context means that in
some basis, such as the wavelet basis, the signal y ∈ Rm can to a high level of accuracy be
represented by a small number of bases vectors s relative to its ambient dimensionality m,
i.e. s≪ m. Given a signal y ∈ Rm and a dictionary matrix W ∈ Rm,n which can be seen as
a transformation from the sparsity basis to the basis of y, it is therefore of interest to find a
sparse vector x ∈ Rn such that Wx≈ y. A reasonable variational approach to this is to solve

1
2
∥Wx− y∥2 +ϑ∥x∥0,

where ∥x∥0 = |supp(x)| is the number of nonzero elements in x, and supp(x) := {i : xi ̸= 0}.
However, as ∥·∥0 is nonconvex and discontinuous, this problem is computationally intractable
[41]. Alternatively, one could solve the optimisation problem

1
2
∥Wx− y∥2 +ϑ∥x∥1.

In addition to being convex and continuous, recall that ∥ · ∥1 is simple, so this problem is
amenable to proximal splitting methods.

Compressibility of signals has proven to be a powerful idea, with several applications. In
compressed sensing [41, 73], one exploits the inherent redundancy of information in signals
to allow for subsampling of f δ , i.e. only observe a subset of the elements of f δ , while still
guaranteeing exact recovery of the ground truth signal x. Furthermore, Candès et al. show
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that these recovery guarantees hold if one replaces ∥ ·∥0 with the convex relaxation ∥ ·∥1 like
we did above [41, Theorem 1.3]. This has implications e.g. for magnetic resonance imaging
(MRI), as it allows for a significant reduction in scanning time [143].

Another example where data compressibility has played a crucial role is in the domains of
big data, where the mere scale of the data collected renders compression a practical necessity.
This includes astronomy [117, 174, 217] and genomics [140].

These examples illustrate that nonsmooth functions play an integral role in modelling
and exploiting structures of signals, for methods in signal processing.

Bilevel optimisation problems

To conclude this subsection, we introduce a class of optimisation problems in which there
is another layer of complexity to account for. These are bilevel optimisation problems, in
which one seeks to optimise the parameters that go into a variational regularisation problem.
As mentioned earlier, it is common to parametrise regularisation terms, e.g. with ϑ in (1.8),
yet choosing these parameters optimally can be difficult.

A bilevel optimisation problem is given by

min
ϑ∈Ω

E(xϑ ,ϑ) s.t. xϑ ∈argmin
x∈Rn

F(x,ϑ), (1.11)

where Ω⊂ Rm is the parameter space, E : Rn×Ω→ R is an upper-level objective function
which takes as input the parameter choice ϑ as well as the corresponding signal reconstruction
xϑ , and F : Rn×Ω→ R is a lower-level objective function, e.g. as given in (1.8).

What makes bilevel problems particularly difficult to solve is that the mapping ϑ 7→
argminx F(x,ϑ)might be set-valued if F(·,ϑ) is not strongly convex, nonsmooth if F is
nonsmooth, and the mapping ϑ 7→ E(xϑ ,ϑ) is generally nonconvex due to the nonlinearity
of the solution mapping ϑ 7→ xϑ . Furthermore, computing xϑ for a single choice of ϑ can be
computationally costly, and computing derivatives Dϑ xϑ , when this is possible, even costlier.

In summary, bilevel problems for nonsmooth variational regularisation problems are
nonsmooth, nonconvex, and computationally expensive. In fact, bilevel problems are in
general NP hard [70]. See [40] for a review of bilevel optimisation for image processing.

The combination of nonsmoothness and nonconvexity has proven to be particularly
challenging in optimisation problems, in comparison to for example convex, nonsmooth
problems, whose theory is fairly well understood (see Section 2.4). With the exception
of cases where the objective function can be split into a convex term and a smooth term,
there are relatively few methods available for solving nonsmooth, nonconvex optimisation
problems.
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Several of the methods studied in this thesis address this class of problems, and are
motivated by solving bilevel problems. That is, in Chapters 4 & 5, we propose derivative-free
methods for nonsmooth, nonconvex optimisation problems, with applications to bilevel
optimisation, and in Chapter 7, we study generalised differentiability of the solution mapping
ϑ 7→ xϑ for nonsmooth variational problems.

We conclude these sections by reemphasising that nonsmoothness is an essential aspect
of signal processing and optimisation methods. Yet in different contexts of optimisation, they
continue to pose challenges, and hence there is a need for new optimisation methods that
address these challenges, as well as new approaches to formulating and studying optimisation
schemes. Furthermore, while explicit gradient descent and proximal mappings are powerful
tools for solving various optimisation problems, they may not be applicable in cases where
gradients are not accessible or the nonsmooth functions are not simple. It is therefore of
interest to look at optimisation schemes that are applicable in more general settings.

1.1.3 Numerical integration

Numerical integration is the study of numerical methods for solving systems of differential
equations. In recent years, this field has received increasing attention from the mathematical
optimisation community, due to the idea that optimisation schemes can be understood through
their relation to continuous-time differential systems and the numerical integration methods
that connect them. We illustrate this with some examples.

The relevance of numerical integration to optimisation should not be surprising, consider-
ing that explicit and implicit gradient descent (1.2), (1.3), the two, main building blocks of
first-order optimisation methods can be viewed as the forward and backward Euler method
[114] respectively applied to the differential system known as the gradient flow,

ẋ(t) =−∇F(x(t)), x(0) = x0 ∈ Rn, t ≥ 0. (1.12)

Furthermore, their stability properties, e.g. unconditional dissipativity of (1.3) with respect
to the time step τk, can be inferred from the properties of the Euler method.

A prominent example of the study of differential equations and numerical integration to
address challenges in optimisation is that of understanding the acceleration phenomenon. In
1983, Nesterov introduced accelerated gradient descent [157] as a method that matches the
optimal convergence rate of O(1/k2) for first-order methods on L-smooth, convex functions.
Since the resurgence of first-order methods in the era of big data and high-dimensional
optimisation, acceleration techniques have received significant attention in the past decade,
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for solving problems such as compressed sensing [16], training of deep and recurrent neural
networks [210], and sparse linear regression [14].

In spite of its prevalence, the underlying dynamics of acceleration schemes are not
well-understood, prompting several recent approaches to identify a framework in which to
understand these schemes, taking perspectives from numerical integration. Su et al. [208]
and Wibisono et al. [219] identify second-order ordinary differential equations (ODEs)
that can be seen as continuous-time limits of the acceleration schemes. In the former
case, this enables them to explain the oscillatory behaviour of acceleration scheme by
interpreting the ODEs as damping systems. In the latter case, they present a family of
Bregman Lagrangian functionals which generate the original and new acceleration schemes.
Furthermore, they demonstrate that the choice of ODE discretisation method is crucial for
whether the acceleration phenomena is retained in the iterative scheme.

Several works have contributed to this setting of numerical analysis of acceleration
methods which bridges continous-time and discrete-time dynamics. Wilson et al. [220]
approach this from the perspective of Lyapunov theory, presenting Lyapunov functions
accounting for both continuous- and discrete-time dynamics. Betancourt et al. [23] present a
framework of sympletic optimisation, i.e. considering perspectives of Hamiltonian dynamics
and symplectic structure-preserving methods.

In a similar vein, recent papers by Maddison et al. [144] and França et al. [92] have
studied conformal Hamiltonian systems, with the former focusing on how information
about the the objective function’s convex conjugate can be incorporated to obtain stronger
convergence rates, and the latter on structure-preserving numerical methods and their relation
to different iterative schemes.

Another central issue for iterative optimisation schemes is the choice of time step τk,
which is closely tied to stability analysis of numerical methods. In this context, tools from
numerical integration can be used to formulate iterative schemes that allow for the use of
larger time steps and therefore faster progression towards the minimum. Eftekhari et al. [80]
achieve this for strongly convex problems, by formulating explicit stabilised descent methods
that use explicit Runge–Kutta methods to maximise the total length of time steps [1]. The
theoretical analysis demonstrates robustness with respect to the objective function’s condition
number, and in numerical examples the method is shown to outperform accelerated gradient
descent.

Other numerical integration methods include implicit Runge-Kutta methods, where
energy dissipation is ensured under mild time step restrictions [104]. Finally we mention that
one may consider gradient flows under non-Euclidean metrics, such as Bregman distances
(see Chapter 6) and the Wasserstein metric [5, 200] (see Section 8.3.1).
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Geometric numerical integration

In this thesis, we are particularly interested in geometric structure-preserving methods, which
is the domain of geometric numerical integration. As described by Iserles & Quispel in

‘Why Geometric Numerical Integration?’ [115], differential equations may exhibit geometric
invariants, such as conservation laws of Hamiltonian energies, or Lie point symmetries,
each of which imply that the solution to the differential equations is restricted to some
lower-dimensional manifold. One is then interested in numerical methods which preserve
these structures in some sense.

We highlight one class of methods from geometric integration, namely discrete gradient
methods [97, 116, 148, 183]. These are designed for differential equations that can be written
in linear-gradient-form, i.e.

ẋ(t) = A(x(t))∇F(x(t)), (1.13)

where A is a matrix-valued function. By applying the chain rule, we derive

dF(x(t))
dt

= ⟨∇F(x(t)),A(x(t))∇F(x(t))⟩,

from which one can observe that the system is conservative, i.e. F is constant along x(t), if A
is skew-symmetric, i.e. A∗ =−A. Similarly, we observe that the system is dissipative if A
is negative-definite i.e. −A is positive-definite—see Section 2.3. In fact, [148, Proposition
2.1 & Proposition 2.8] show that conservative and dissipative systems can in general be
expressed in linear-gradient form.

Discrete gradient methods preserve the geometric structures of linear-gradient systems,
e.g. energy conservation and dissipation laws, as well as Lyapunov functions. Furthermore,
the methods are unconditionally stable, in the sense that these properties are preserved for all
discretisation time steps τk > 0. This has prompted the study of discrete gradient methods
applied to gradient flows for solving optimisation problems. We give some examples.

Grimm et al. [100] propose using discrete gradient methods for solving variational
regularisation problems in image analysis. The applications include image inpainting and
denoising, and they prove that for continuously differentiable objective functions, the methods
converge to a set of stationary points. Furthermore, they compare the stability properties with
other methods, such as Euler methods. In a similar setting, Ringholm et al. [185] consider the
Itoh–Abe discrete gradient method for solving image inpainting problems regularised with
Euler’s elastica. These are nonconvex optimisation problems whose gradients are expensive
to compute, while the Itoh–Abe discrete gradient (defined in Section 2.7) is derivative-free.
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Their numerical results suggest that this method is competitive with state-of-art methods for
nonconvex variational optimisation problems.

Going beyond gradient flows in Euclidean space, Celledoni et al. [44] extend the discrete
gradient method to solve Riemannian gradient flow systems on manifolds. In this setting,
they prove that the iterates of the method converge to a set of stationary points. They apply
the method to solve eigenvalue problems, as well as imaging problems that can naturally be
formulated on manifolds.

For some reviews of the field of geometric numerical integration, we refer the reader to
[105, 115, 147].

In summary of this section, numerical integration has in recent years shown great promise
in providing new perspectives and frameworks for addressing challenges in optimisation. As
we detail in the next section, we are interested in various optimisation problems, including
those concerning nonsmooth energies, and we are interested in the use of discrete gradient
methods from geometric numerical integration applied in this setting.

1.2 Contributions

In what follows, we summarise the motivations for and contributions of each chapter.

Chapter 3: The foundations of discrete gradient methods for smooth
optimisation

This chapter is based on the preprint [81], which is joint work done in collaboration with
Matthias J. Ehrhardt, Torbjørn Ringholm, and Carola-Bibiane Schönlieb. The purpose of
this chapter is to provide a comprehensive analysis of discrete gradient methods for the
optimisation of continuously differentiable functions. While these optimisation methods have
already been applied in various contexts for variational regularisation problems [100, 185],
linear systems [153], and preserving Lyapunov functions [108], various aspects of the
theoretical analysis have until now been lacking.

In this chapter, we address several issues, including convergence rates of the methods,
well-posedness of the discrete gradient equation (2.8), and how to solve (2.8) efficiently. In
particular, in Theorem 3.4 we prove for the three main discrete gradient methods that the
discrete gradient equation admits a solution for all time steps. Furthermore, we prove that the
discrete gradient methods essentially inherit the convergence rates of explicit gradient descent,
yielding O(1/k) rates for convex functions, and linear rates for strongly convex functions.
Meanwhile, we propose a novel scheme for solving the discrete gradient equation, which we
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demonstrate to be theoretically and numerically superior in certain cases. Furthermore, we
propose and study a natural generalisation of the Itoh–Abe discrete gradient method, akin to
randomised coordinate descent and random pursuit methods. The theory is supported with
numerical experiments.

Chapter 4: Discrete gradient methods for nonsmooth, nonconvex opti-
misation

This chapter is based on the preprint [184], which is joint work done in collaboration with
Matthias J. Ehrhardt, G. R. W. Quispel, and Carola-Bibiane Schönlieb. In this chapter,
we consider the Itoh–Abe discrete gradient method for solving nonsmooth, nonconvex
optimisation problems. Since this discrete gradient is derivative-free, it provides us with a
notion of gradient flow-type dissipation in a black-box setting where we only have access to
function evaluations.

We consider the Clarke subdifferential framework [54], defined in Section 2.5, for locally
Lipschitz continuous functions. In this setting, we prove for randomised extensions of the
Itoh–Abe discrete gradient method, as well as deterministic variants, that the iterates converge
to a limit set of Clarke stationary points. Convergence guarantees in the deterministic case is
based on a property termed cyclical density. While the analysis in this chapter can be used
for discrete gradient methods, they are immediately generalisable to other line search-based,
derivative-free methods in the Clarke subdifferential setting, thus allowing for optimality
analysis for a wider class of derivative-free optimisation algorithms. Noting that many bilevel
problems are nonsmooth, nonconvex, and challenging to compute gradients for, we consider
the proposed methods for solving these problems. Furthermore, we compare with state-of-art
derivative-free optimisation algorithms, thereby demonstrating the competitiveness of the
proposed methods.

Chapter 5: Discrete gradient methods for nonsmooth, nonconvex, con-
strained optimisation

In this chapter, we build on the analysis of the previous chapter for derivative-free optimisation
of nonsmooth, nonconvex functions, by extending the algorithm and convergence analysis
to constrained optimisation problems. The reason for this is that parameter-optimisation
problems often involve constraints on the parameters, varying from explicit constraints to
more complicated, implicitly defined constraints. We study this problem in a general setting,
only assuming that the constraint is epi-Lipschitzian [188], which essentially means it is the
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level set of a locally Lipschitz continuous function. The Clarke subdifferential framework is
extended to define stationary points constrained to a set, and in this framework, we prove
that the algorithm converges to a set of stationary points.

Chapter 6: Bregman discrete gradient methods for sparse optimisation

This chapter is based on the article [20] published in the Journal of Mathematical Imaging
and Vision, and which is joint work done in collaboration with Martin Benning and Carola-
Bibiane Schönlieb. While in the previous chapters, we look at discrete gradient methods
applied to gradient flows, in this chapter we consider discrete gradient methods applied to
the inverse scale space flow [201], which is a dissipative differential system closely related
to Bregman iterative methods. This system allows us to incorporate additional structure
into the scheme, to promote sparsity or other features of the objective function and the
ground truth. We study the Itoh–Abe discrete gradient method applied to this flow, and prove
convergence in a nonsmooth, nonconvex subdifferential framework. We implement this
method for different Bregman distances and objective functions, generalising well-known
methods such as Gauss-Seidel and successive-over-relaxation (SOR) for sparse optimisation.
Through numerical experiments, we observe that for sparse ground truths, the Bregman
discrete gradient methods converge significantly faster than regular SOR. Furthermore, the
analysis in this chapter opens the door for the application of discrete gradient methods to
other, non-Euclidean gradient flows.

Chapter 7: Differentiation for nonsmooth bilevel optimisation

In this chapter, we focus exclusively on bilevel optimisation problems, seeking to exploit
structured nonsmoothness of the corresponding variational problem to differentiate with
respect to the parameters. To do so, we employ the framework of partial smoothness [130].
For a large class of bilevel problems, we demonstrate piecewise differentiability of the
solution mapping in Theorem 7.29, allowing us to characterise the Clarke subdifferential of
the bilevel objective function. Furthermore, we prove for various forward-backward type
algorithms, including accelerated variants, that the algorithmic derivatives converge to the
limiting, implicit derivative in Theorem 7.33.
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1.3 Outline of chapters

Chapter 2: Mathematical preliminaries

In Chapter 2, we define notation and basic mathematical tools used throughout the thesis.
Specifically, we provide background material for linear algebra, convex and nonconvex
optimality analysis, tools for first-order optimisation methods, and finally discrete gradient
methods and geometric numerical integration.

Chapter 3: The foundations of discrete gradient methods for smooth
optimisation

After the introduction, we present a new existence result for the discrete gradient equation,
based on the Brouwer fixed point theorem in Section 3.3. In Section 3.4 we study fixed
point iterative methods for solving the discrete gradient equation, including a relaxed fixed
point method with improved efficiency, while in Section 3.5, we study the dependence of
the update xk+1←[ xk on the time step τk > 0 for the mean value discrete gradient and the
Itoh–Abe methods. In Sections 3.6 and 3.7, we prove convergence rates for the discrete
gradient methods, and convergence guarantees for functions that satisfy the strong Kurdyka–
Łojasiewicz inequality, respectively. Before a brief discussion of preconditioned methods in
Section 3.8, we present numerical results in Section 3.9.

Chapter 4: Discrete gradient methods for nonsmooth, nonconvex opti-
misation

In Section 4.1, we discuss the background for nonsmooth, nonconvex optimisation, and
the purpose of the chapter. In Section 4.2 we provide the main theoretical results of the
chapter, namely that the generalised Itoh–Abe methods converge to a connected set of Clarke
stationary points. In Section 4.4 we propose an algorithm for solving black-box optimisation
problems, and in Section 4.5 we provide numerical examples.

Chapter 5: Discrete gradient methods for nonsmooth, nonconvex, con-
strained optimisation

In Section 5.1 we propose a modification of the Itoh–Abe methods for constrained problems
and discuss related works, while in Section 5.2 we provide preliminary results on epi-
Lipschitzian sets and Clarke subdifferential analysis in the constrained setting. In Section 5.3
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we study the proposed optimisation algorithm and prove that the methods converge to a
connected set of Clarke stationary points in the constrained setting as well. In Section 5.4 we
present numerical results.

Chapter 6: Bregman discrete gradient methods for sparse optimisation

After introducing the inverse scale space flow in Section 6.1, we propose to solve it using
a Bregman discrete gradient method based on the ISS flow in Section 6.2. In Section 6.3
we prove well-posedness and convergence results for this method in a nonconvex, nons-
mooth framework. Furthermore, in Sections 6.4 and 6.5, we discuss particular examples of
Bregman discrete gradient methods and prove equivalencies between methods derived from
different numerical integration schemes, respectively, before providing numerical results in
Section 6.6.

Chapter 7: Differentiation for nonsmooth bilevel optimisation

In Section 7.1 we discuss bilevel optimisation of nonsmooth variational problems and
motivations for studying the differential properties of the solution mapping. In Section 7.2,
we review examples of nonsmooth bilevel problems and existing approaches for solving
them in literature. In Section 7.3 we provide preliminary concepts for the subdifferential
analysis, and prove for a sufficiently general class of variational problems that they are
subdifferentially regular. In Section 7.4 we define partly smooth functions, and show
under reasonable assumptions that the solution mapping is piecewise differentiable. In
Section 7.5 we study algorithmic differentiation of various first-order methods for solving
nonsmooth variational methods, and prove convergence guarantees to the implicit derivative.
In Section 7.6 we present some numerical results, and in Section 7.7 we conclude.

Chapter 8: Conclusion & outlook

In Sections 8.1 and 8.2 we summarise and discuss the results of this thesis. In Section 8.3
we discuss future directions of research building on the work in this thesis. In particular, in
Section 8.3.1, we consider solving the Wasserstein gradient flow with discrete gradients. In
Section 8.3.2, we propose the use of mean value discrete gradient methods for nonsmooth
objective functions, under assumptions of partial smoothness. In Section 8.3.3, we discuss
future work for gradient-based approaches to bilevel problems, considering algorithmic
differentiation of primal-dual methods, and studying stability of algorithmic differentiation
methods when the number of iterations is determined by a stopping rule.





Chapter 2

Mathematical preliminaries

In this section, we provide mathematical preliminaries which will be used throughout the
thesis. We first consider basic properties of differentiable functions, followed by theory of
the class of convex, proper, lower semicontinuous functions. Next we provide an overview
of nonconvex generalised differential theory, which in comparison to its convex counterpart
is rather less unified. We conclude with an overview of geometric numerical integration and
in particular discrete gradients.

2.1 Basic notation and conventions

In a Euclidean space setting, we denote by ∥ · ∥ and ⟨·, ·⟩ the norm and associated inner
product. For x ∈ Rn and p > 0, the ℓp-norm ∥ · ∥p is defined as

∥x∥p := p
√

xp
1 + xp

2 + . . .+ xp
n ,

while ∥x∥∞ := maxi=1,...,n |xi|, and ∥x∥0 := |supp(x)|.
We denote by (ei)n

i=1 the standard coordinate vectors in Rn. We denote by [x,y] the line
segment between two points x,y ∈ Rn i.e.

[x,y] :=
{

λx+(1−λ )y : λ ∈ [0,1]
}
.

For ε > 0, x ∈Rn, we denote by Bε(x) the open ball of radius ε at x, {y ∈Rn : ∥x−y∥< ε},
and by Bε(x) the closed ball of radius ε at x, {y ∈ Rn : ∥x− y∥ ≤ ε}. We denote by Sn−1

the unit sphere in Rn, {x ∈ Rn : ∥x∥= 1}.



18 Mathematical preliminaries

We summarise big and small o-notation. For two functions f : Rn→Rm and g : Rn→Rl ,
if ∥ f (x)∥/∥g(x)∥→ 0 as ∥x∥→ 0, then f (x) = o(g(x)). If there is ε > 0 and C > 0 such that
∥x∥< ε implies ∥ f (x)∥ ≤C∥g(x)∥, then f (x) = O(g(x)).

Similarly, suppose (xn)k∈N ⊂Rn and (yn)k∈N ⊂Rm are two sequences. If ∥xk∥/∥yk∥→ 0
as k→ ∞, then xk = o(yk), while if there is C > 0 and K ∈ N such that ∥xk∥ ≤C∥yk∥ for all
k ≥ K, then xk = O(yk).

2.2 Notation and results for functions

First we introduce some notation for differentiable functions. For k ∈ N, the set of k-times
continuously differentiable functions f : Rn→ Rm is denoted by Ck(Rn;Rn), and Ck(Rn)

for short when m = 1. For f ∈C1(Rn;Rm), we denote by ∇ f (x) its gradient at x, and for
f ∈C2(Rn), we denote by ∇2 f (x) its Hessian at x. Furthermore, for parametrised functions
f (x,ϑ) we use D instead of ∇ to denote differentiation with respect to the parameters ϑ , and
we write ∇x f (x,ϑ) and Dϑ f (x,ϑ) to denote differentiation with respect to first and second
argument respectively.

We say that a function f on Rn is set-valued in Rm if for each x ∈ Rn, f (x) is a subset
of Rm, and we write f : Rn ⇒ Rm. An important example of a set-valued function is the
subdifferential given in Section 2.4.

Definition 2.1 (Graph). For a function f : Rn ⇒Rm, its graph is the subset of Rn×Rm given
by

gph f := {(x,v) ∈ Rn×Rm : v ∈ f (x)}.

For single-valued functions, the graph is defined analogously.

Definition 2.2 (Support). For a function f : Rn→ Rm, its support is the set of points for
which the function does not vanish, i.e.

supp f := {x ∈ Rn : f (x) ̸= 0}.

We also state the implicit function theorem, which we will apply to study properties
of discrete gradient equations in Chapter 3, as well as for computing gradients for bilevel
problems in Chapter 7.

Proposition 2.3 (Implicit function theorem [22, Proposition A.25]). Let f :Rn×Rm→Rn be
a function such that for some (x∗,y∗)∈Rn×Rm, f (x∗,y∗) = 0, f is locally C1-smooth around
(x∗,y∗), and ∇x f (x∗,y∗) ∈ Rn×n is a nonsingular matrix. Then there are neighbourhoods X
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and Y of x∗ and y∗ and a continuous function φ : Y → X, such that

f (x,y) = 0 ⇐⇒ x = φ(y), for all x ∈ X ,y ∈ Y.

Furthermore, if f is Cp-smooth for p ∈ N, then φ is Cp-smooth with gradient

∇φ(y) =−(∇x f (φ(y),y))−1
∇y f (φ(y),y).

2.3 Linear algebra

For a matrix A ∈ Cn,n, denote by ai ∈ Rn its ith row, AH its Hermitian and A∗ its adjoint. A
matrix is said to be Hermitian (resp. self-adjoint) if AH = A (resp. A∗ = A).

We denote by kerA the kernel of A, i.e. the subspace of vectors x such that Ax = 0.
Consider a Hermitian matrix A ∈ Cn,n. We say that A is positive-definite if

⟨x,Ax⟩> 0 for all x ∈ Cn,

and positive-semidefinite if

⟨x,Ax⟩ ≥ 0 for all x ∈ Cn.

A positive-definite matrix is always nonsingular, i.e. it admits an inverse A−1 ∈ Cn,n, which
is also positive-definite.

We denote by In the identity matrix in Rn,n and by 0n the zero matrix. When the dimension
is unambiguous, we occasionally write I instead.

The (operator) norm of a matrix A ∈ Rm,n is defined as

∥A∥ := sup
x∈Sn−1

∥Ax∥,

while the Frobenius norm is defined as

∥A∥F :=

√
n

∑
i, j=1

a2
i, j,

where ai, j = ai
j.

The rank of a matrix A is the dimension of the column space (or equivalently row space)
of the matrix, i.e. the number of linearly independent column vectors, and is denoted by
rank(A).
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Definition 2.4 (Spectrum). The spectrum of a square matrix A ∈Cn,n is its set of eigenvalues,

σ(A) := {λ ∈ C : ∃x ∈ Cn \{0} with λx = Ax}.

For a positive-definite matrix A, its condition number is the ratio κA := λn/λ1 ≥ 1,
where λn and λ1 are respectively the matrix’ largest and smallest eigenvalues. A large
condition number means the matrix is ill-conditioned while a low condition number means it
is well-conditioned.

Definition 2.5 (Spectral radius). The spectral radius of a square matrix A ∈ Cn,n is

ρ(A) := sup
λ∈σ(A)

|λ |.

Gelfand’s formula denotes an important relationship between A and its spectral radius.

Proposition 2.6 (Gelfand’s formula [124, Theorem 7.5.5]). For any square matrix A ∈ Cn,n,
the following limit holds:

lim
k→∞

k
√
∥Ak∥= ρ(A).

The following result is a variation on [179, Chapter 2, Theorem 1], a key ingredient for
showing convergence of various iterative schemes, based on Gelfand’s formula.

Proposition 2.7. Let (Ak)k∈N ⊂ Cn,n, (bk)k∈N ∈ Cn, and for d0 ∈ Cn, define the iterates

dk+1 = Akdk +bk, k ∈ N.

If Ak→ A and bk→ b with ρ(A)< 1, then the iterates (dk)k∈N converge linearly to the fixed
point (I−A)−1b.

Proof. Since ρ(A)< 1, it follows from Gelfland’s formula that the Neumann sequence

∑
∞
i=0 Ai is well-defined and equal to (I−A)−1. Therefore, d∗ := (I−A)−1b is the unique

fixed point of the mapping d 7→ Ad +b.
Write yk = dk−d∗, rk = (Ak−A)yk, and sk = (Ak−A)d∗+bk−b. Then

yk+1 = Ayk + rk + sk, rk = o(yk), ∥sk∥→ 0.
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Thus

yk+1 = Ak+1y0 +
k

∑
i=1

Ak−iri +
k

∑
i=1

Ak−isi,

∥yk+1∥ ≤ ∥Ak+1∥∥y0∥+
k

∑
i=1
∥Ak−i∥∥ri∥+

k

∑
i=1
∥Ak−i∥∥si∥.

By [179, Chapter 2, Lemma 1], for any ρ ∈ (ρ(A),1) there is c > 0 such that ∥Ak∥ ≤ cρk

for all k ∈ N, which implies

∥yk+1∥ ≤ cρ
k+1∥y0∥+ c

k

∑
i=1

ρ
k−i∥ri∥+ c

k

∑
i=1

ρ
k−i∥si∥.

Since ∥si∥→ 0, the third term vanishes as k→ ∞. Finally, as rk = o(yk), the result follows.

In Chapter 7, we will repeatedly make use of the following result to simplify the analysis.

Proposition 2.8. If A and B ∈ Cn,n are self-adjoint matrices, and B is positive-definite, then
σ(AB) = σ(BA)⊂ R.

Proof. By [124, Theorem 9.4.2], there is a self-adjoint, positive-definite square root of
B,
√

B ∈ Cn,n, such that
√

B
2
= B. One can verify that σ(AB) = σ(

√
BA
√

B). It remains to
note that

√
BA
√

B is self-adjoint, so by [124, Theorem 9.2.1], σ(
√

BA
√

B)⊂ R.
To show the equality σ(AB) = σ(BA), note that for any square matrix A, the eigenvalues

of AH equal the complex conjugates of the eigenvalues of A. Then the equality follows from
the fact that (AB)H = BA and that σ(AB)⊂ R.

Finally, we introduce the (Moore–Penrose) pseudoinverse which can be defined accord-
ingly in finite-dimensional spaces.

Definition 2.9 (Moore–Penrose pseudoinverse). Let A ∈ Rm,n be a matrix. The Moore–
Penrose pseudoinverse of A, A† ∈ Rn,m, is the (unique) matrix which satisfies the following
four conditions.

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

For square, invertible matrices A, we have A† = A−1. However, pseudoinverses are
also uniquely defined for non-square and singular matrices. For further details on the
pseudoinverse, see [83, Section 2.1].
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2.4 Convex analysis

We now review basic results of convex analysis. For the theory of convex functions and their
subdifferentials, see [82, 112, 191].

Definition 2.10 (Convex sets and functions). A set C ⊂ Rn is convex if for all x,y ∈C and
λ ∈ (0,1), one has λx+(1−λ )y ∈C.

A function f : Rn→ R is convex if for all x,y ∈ Rn and λ ∈ (0,1), one has

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).

Here R is the extended real number line R∪{±∞}.

Definition 2.11 (Lower semicontinuity). A function f : Rn→ R is lower semicontinuous at
x ∈ Rn if for all sequences (xk)k∈N converging to x, one has

liminf
k→∞

f (xk)≤ f (x).

If this holds at all x ∈ R, then we say that f is lower semicontinuous.

Definition 2.12 (Effective domain). The effective domain of a function f : Rn→R is defined
as dom( f ) = {x ∈ Rn : f (x)< ∞}.

We call a function proper if dom f ̸= /0 and f (x)>−∞ for all x ∈ Rn. The following set
of functions is central to convex analysis.

Definition 2.13. The set Γ0(Rn) consists of all functions f : Rn→ R that are convex, proper,
and lower semicontinuous.

Definition 2.14 (Subgradients and subdifferentials). For a convex function f : Rn → R,
p ∈ Rn is a subgradient of f at x if

f (y)− f (x)−⟨p,y− x⟩ ≥ 0 for all y ∈ Rn.

The subdifferential of f at x is the set ∂ f (x) of all subgradients of f at x.

Remark 2.15. We use the same subdifferential notation for the general subdifferential in
Chapter 7, which generalises the subdifferential to nonconvex functions.

The following property is immediate and generalises first-order optimality conditions to
nonsmooth, convex functions.
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Proposition 2.16. If f ∈ Γ0(Rn), then x ∈ Rn is a minimiser of f if and only if 0 ∈ ∂ f (x).

Definition 2.17 (Strong convexity). A proper, convex function f : Rn→R is strongly convex
with constant µ > 0, or µ-convex for short, if either of the following (equivalent) conditions
hold.

(i) The function f (·)− µ

2
∥ · ∥2 is convex.

(ii) f
(
λx+(1−λ )y

)
≤ λ f (x)+(1−λ ) f (y)− µ

2
λ (1−λ )∥x− y∥2 for all x,y in Rn and

λ ∈ [0,1].

(iii) For all x,y ∈ dom f , p ∈ ∂ f (x), and q ∈ ∂ f (y), one has ⟨p−q,x− y⟩ ≥ µ∥x− y∥2.

Remark 2.18. In this context, 0-convexity simply means convexity.

The following property can be derived from the third characterisation of µ-convexity
above.

Proposition 2.19. If f : Rn→ R is C2-smooth and µ-convex for µ > 0, then for all x ∈ Rn,
the Hessian ∇2 f (x) is positive-definite with

⟨y,∇2 f (x)y⟩ ≥ µ∥y∥2.

An important class of functions in Γ0(Rn) are indicator functions of convex sets, defined
in (1.6). Since

argmin
x∈C

f (x) = argmin
x∈Rn

f (x)+δC(x),

we can thus treat both constrained and unconstrained, convex optimisation problems under
the same framework.

We have already mentioned the proximal mapping in Chapter 1.

Definition 2.20 (Proximal mappings). For a function f : Rn→ R ∈ Γ0(Rn) and parameter
λ > 0, the proximal mapping is the function

proxλ f : Rn→ Rn, proxλ f (x) := argmin
y∈Rn

λ f (y)+
1
2
∥y− x∥2.

We also introduce another important concept in convex analysis, namely convex conju-
gates.

Definition 2.21 (Convex conjugate). For a function f : Rn→ R, its convex conjugate is the
function f ∗ : Rn→ R given by

f ∗(y) = sup
x∈Rn
⟨y,x⟩− f (x).
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While we do not go into the details of this, convex conjugates are important for primal-
dual methods and for transforming a variational optimisation problem into a saddle-point
problem. We point out the following result.

Proposition 2.22 ([192, Theorem 11.1]). If f ∈ Γ0(Rn), then f ∗ ∈ Γ0(Rn), and ( f ∗)∗ = f .

We also cover (generalised) Bregman distances [30], an important concept for convex
analysis and optimisation methods.

Definition 2.23 (Bregman distance). For a function f ∈ Γ0(Rn), x ∈ dom f and p ∈ ∂ f (x),
the Bregman distance of f is the function

Dp
f (y,x) := f (y)− f (x)−⟨p,y− x⟩.

Remark 2.24. It follows from the definition of subgradients that Dp
f (y,x)≥ 0 for all y, and

that if f is µ-convex, then Dp
f (y,x)≥

µ

2 ∥y− x∥2.

Example 2.25. If f (x) = ∥x∥2/2, then Dp
f (y,x) = ∥y− x∥2/2, i.e. the Euclidean norm

squared.

While Bregman distances are nonnegative, they are not metrics as they generally do not
satisfy symmetry or a triangle inequality. However, we can induce symmetry accordingly.

Definition 2.26 (Symmetric Bregman distance). Given p ∈ ∂ f (x) and q ∈ ∂ f (y), the sym-
metric Bregman distance between x and y is given by

Dsymm
f (x,y) = Dq

f (y,x)+Dp
f (x,y) = ⟨q− p,y− x⟩.

Although we drop the subgradient superscript in Dsymm
f , the choice of subgradient will

be clear from the context.

2.5 Nonconvex subdifferential theory

While convex optimality analysis is a well-understood and compact area, the picture is
quite different for nonconvex, nonsmooth optimality analysis. In this setting, there are
various generalisations of the subdifferential for different classes of functions, and there
exist research surveys dedicated merely to mapping the differences and nuances between
these generalisations. See e.g. [25, 26], and see [69] for various notions of stationarity in the
context of bilevel optimisation.
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In this thesis, we mainly focus on the nonconvex, nonsmooth optimality analysis frame-
work [54] proposed by Francis H. Clarke in his doctoral thesis [53], now termed the Clarke
subdifferential framework. It generalises the gradient of a differentiable function, as well as
the subdifferential [82] of a convex function.

There are alternative frameworks for generalising differentiability of nonsmooth, non-
convex functions, each with different analytical properties. For example, the Michel–Penot
subdifferential [152] coincides with the Gâteaux derivative when this exists, unlike the Clarke
subdifferential, which is larger and only coincides with strict derivatives [95]. However,
the Clarke subdifferential is outer semicontinuous, making it in most cases the preferred
framework for analysis. See [25] by Borwein and Zhu for a survey of various subdifferentials,
published on the 25th birthday of the Clarke subdifferential.

2.5.1 Clarke subdifferential theory

We summarise the main concepts of the Clarke subdifferential for locally Lipschitz continu-
ous, nonsmooth, nonconvex functions f : Rn→ R, and refer to [54] for further details.

We first define local Lipschitz continuity.

Definition 2.27 (Lipschitz continuity). A function f : Rn→ Rm is locally Lipschitz continu-
ous near x with Lipschitz constant L > 0 if there is a neighbourhood Nx of x such that for all
y,z ∈ Nx, one has

∥ f (y)− f (z)∥ ≤ L∥y− z∥.

f is locally Lipschitz continuous if the above property holds for all x ∈ Rn.

Definition 2.28 (Clarke directional derivative). For a function f :Rn→R and x∈Rn, d ∈Rn,
f is Clarke directionally differentiable at x along d if the limit

f o(x;d) := limsup
y→x, λ↓0

f (y+λd)− f (y)
λ

exists. If so, f o(x;d) is called the Clarke directional derivative.

Remark 2.29. Locally Lipschitz continuous functions are Clarke directionally differentiable.

Clarke directional differentiability extends directional differentiability, which we define
here for completeness.
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Definition 2.30 (Directional derivative). A function f : Rn→R is directionally differentiable
at x ∈ Rn along d ∈ Rn if the limit

f ′(x;d) := lim
λ↓0

f (x+λd)− f (x)
λ

exists. We refer to f ′(x;d) as the directional derivative of f at x along d.

Definition 2.31 (Clarke subdifferential). For a function f : Rn→ R and x ∈ Rn, p ∈ Rn is a
Clarke subgradient of f at x if

f o(x;d)≥ ⟨d, p⟩ for all d ∈ Rn.

The Clarke subdifferential of f at x, denoted by ∂C f (x), is the set of all such subgradients.

The Clarke subdifferential is well-defined for locally Lipschitz functions and coincides
with the standard subdifferential for convex functions [54, Proposition 2.2.7]. Furthermore,
if f is strictly differentiable at x ∈ Rn, then ∂C f (x) = {∇ f (x)} [54, Proposition 2.2.4]. We
additionally state three useful results, all of which can be found in [54, Chapter 2].

Proposition 2.32. Suppose f : Rn → R is locally Lipschitz continuous near x ∈ Rn with
Lipschitz constant L. Then

(i) ∂C f (x) is nonempty, convex and compact, and ∂C f (x)⊆ BL(0).

(ii) ∂C f (x) is outer semicontinuous. That is, for all ε > 0, there exists δ > 0 such that

∂
C f (y)⊂ ∂

C f (x)+Bε(0), for all y ∈ Bδ (x).

(iii) Denote by D( f ) the set of points x ∈ Rn at which f is differentiable. Then

∂
C f (x) = co

{
d ∈ Rn : ∃(xk)k∈N ⊂D( f ) s.t. xk→ x and ∇ f (xk)→ d

}
. (2.1)

Here co refers to the convex hull of the set.

Similarly to the convex case, the Clarke subdifferential framework provides us with the
following notion of a first-order optimality condition for nonsmooth, nonconvex functions.

Definition 2.33 (Clarke stationary point). For f : Rn→ R, x∗ ∈ Rn is a Clarke stationary
point of f if 0 ∈ ∂C f (x∗).

For our purposes, we also define Clarke directional stationarity.
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Definition 2.34 (Directional Clarke stationarity). For a direction d ∈ Rn \{0}, we say that
f : Rn→ R is Clarke directionally stationary at x∗ along d if

min
{

f o(x∗;d), f o(x∗;−d)
}
≥ 0.

Remark 2.35. A point x∗ is Clarke stationary if and only if f is Clarke directionally station-
ary at x∗ along d for all d ∈ Sn−1.

Any local maxima and minima of a function are Clarke stationary points. If f is convex,
then stationary points coincide with the global minima, by Proposition 2.16. For more
general classes of functions, the concept of Clarke stationary points also reduces to convex,
first-order optimality conditions.

Definition 2.36 (Pseudoconvexity [175]). A locally Lipschitz continuous function f :Rn→R
is pseudoconvex if, for all x,y ∈ Rn,

f (y)< f (x) =⇒ ∀p ∈ ∂
C f (x), ⟨p,y− x⟩< 0.

Remark 2.37. If f is pseudoconvex, then any Clarke stationary point is a global minimum
[11].

2.6 First-order optimisation methods

We now return to first-order optimisation methods, which we categorise as methods that
make use of gradients, subgradients, and proximal mappings.

Suppose f : Rn→R is a continuously differentiable function. A crucial subclass of these
methods are L-smooth functions.

Definition 2.38 (L-smooth). A function f : Rn→R is L-smooth for L > 0 if it is continuously
differentiable and the gradient is Lipschitz continuous with Lipschitz constant L.

We state some properties of L-smooth functions.

Proposition 2.39. Let f : Rn→ R be L-smooth. Then for all x,y ∈ Rn, the following holds.

(i) f (y)− f (x)≤ ⟨∇ f (x),y− x⟩+ L
2
∥y− x∥2. (Descent lemma)

(ii) f (λx+(1−λ )y)≥ λ f (x)+(1−λ ) f (y)− λ (1−λ )L
2

∥x− y∥2 for all λ ∈ [0,1].

(iii) If f is furthermore C2-smooth, then ∥∇2 f (x)∥ ≤ L for all x.
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Proof. Property (i). [22, Proposition A.24].
Property (ii). It follows from property (i) that the function x 7→ L

2∥x∥
2− f (x) is convex,

which in turn yields the desired inequality.
Property (iii). This follows from [158, Lemma 1.2.2]
For µ-convex, L-smooth functions f : Rn → R, its condition number is κ f := L/µ ,

and we use the same terminology as for a matrix’ condition number. Note furthermore
by Proposition 2.39 and Proposition 2.19 that κ f is also an upper bound for the condition
number of the Hessian of f .

Recall the explicit gradient descent method (1.2) for xk ∈ Rn and time step τk. Observe
that the update for xk+1 can be expressed as the solution to the variational problem given by

xk+1 = argmin
y∈Rn

f (xk)+ ⟨y− xk,∇ f (xk)⟩+ 1
2τk
∥y− xk∥2. (2.2)

Then, by Proposition 2.39, if f is L-smooth and τk = σ/L for σ ∈ (0,2), one has

f (xk+1)≤ f (xk)− 2σ −σ2

2L
∥∇ f (xk)∥2 ≤ f (xk),

i.e. for τk ∈ (0,2/L), the scheme is dissipative.
Similarly, recall that updates for implicit gradient descent also can be defined via a

minimisation step, i.e. (1.4), and that this update is unconditionally dissipative with respect
to τk.

Furthermore, note that in each case, the time step has a new interpretation as the weighting
for the Euclidean distance term ∥y− xk∥2. With this in mind, one can alter the descent
scheme by replacing the Euclidean energy with a different measure of distance. Of particular
relevance for optimisation is the use of Bregman distances.

For a function J ∈ Γ0(Rn), time step τk > 0, current iterate xk ∈ Rn, and subgradient
iterate pk ∈ ∂J(xk), the Bregman (proximal minimisation) method [18] is given by

xk+1 = argmin
y∈Rn

f (y)+
1
τk

Dpk

J (y,xk). (2.3)

Similarly, the linearised Bregman method is given by

xk+1 = argmin
y∈Rn

f (xk)+ ⟨y− xk,∇ f (xk)⟩+ 1
τk

Dpk

J (y,xk). (2.4)
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Note that one requires strong convexity, or at least strict convexity, of J for the linearised
Bregman method to be well-defined. In [13], Beck & Teboulle illustrate that the popular
mirror descent algorithm [156] can be rewritten as a linearised Bregman method.

We highlight this interpretation of first-order descent methods for two reasons. First,
Bregman iterations appear in several contexts in this thesis, first as a motivation for intro-
ducing Bregman discrete gradient methods in Chapter 6, and in the study of algorithmic
differentiation in Chapter 7. Second, this interpretation provides a way of defining gradient
flows with respect to non-Euclidean energies, via so-called minimising movements schemes
[5], an idea we return to in Chapter 6 and Section 8.3.1.

See [212] for a recent review of first-order optimisation methods, with a focus on Bregman
iterations. We furthermore refer the reader to [104] for a review of various energy-diminishing
discretisation methods for gradient systems, including implicit Euler and discrete gradient
methods.

2.7 Geometric numerical integration and discrete gradi-
ents

In Section 1.1.3, we discussed numerical integration and geometric numerical integration,
and their applications to optimisation. In what follows we define discrete gradients, introduce
the three most common examples of discrete gradients, and consider their applicability to the
Euclidean gradient flow (1.12).

Definition 2.40 (Discrete gradient). Let f be a continuously differentiable function. A
discrete gradient is a continuous map ∇ f : Rn×Rn→ Rn such that for all x,y ∈ Rn,

⟨∇ f (x,y),y− x⟩= f (y)− f (x) (Mean value), (2.5)

lim
y→x

∇ f (x,y) = ∇ f (x) (Consistency). (2.6)

Before we present the discrete gradient method, we briefly consider the dissipative
structure of the gradient flow (1.12). By applying the chain rule, we compute

d
dt

f (x(t)) = ⟨∇ f (x(t)), ẋ(t)⟩=−∥∇ f (x(t))∥2 =−∥ẋ(t)∥2 ≤ 0. (2.7)

Thus the gradient flow is characterised by the decrease of f (x(t)) along x(t) at the rate of
∥∇ f∥2 or equivalently ∥ẋ∥2.
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We now introduce the discrete gradient method for optimisation. For x0 ∈ Rn and time
steps (τk)k∈N ⊂ (0,+∞), we solve

xk+1 = xk− τk∇ f (xk,xk+1). (2.8)

This scheme preserves the dissipative structure of gradient flows, as can be seen by applying
(2.5),

f (xk+1)− f (xk) = ⟨∇ f (xk,xk+1),xk+1− xk⟩

=−τk∥∇ f (xk,xk+1)∥2 =−τk∥
xk+1− xk

τk
∥2. (2.9)

Note that the decrease holds for all time steps τk > 0, and that (2.9) can be seen as a discrete
analogue of the dissipative structure of gradient flows (2.7), replacing derivatives by finite
differences.

We assume throughout the thesis that there are bounds τmax ≥ τmin > 0 such that for all
k ∈ N,

τmin ≤ τk ≤ τmax. (2.10)

While there are infinitely many discrete gradients, there are three constructions that are
of particular relevance. We state these here.

1. The Gonzalez discrete gradient [97] (also known as the midpoint discrete gradient) is
given by

∇ f (x,y) = ∇ f
(

x+ y
2

)
+

f (y)− f (x)−⟨∇ f (x+y
2 ),y− x⟩

∥x− y∥2 (y− x), x ̸= y. (2.11)

This discrete gradient was introduced by Oscar Gonzalez in 1996, with the aim of
providing a formalistic way of numerically solving Hamiltonian systems.

2. The mean value discrete gradient [106], used for example in the average vector field
method [45], is given by

∇ f (x,y) =
∫ 1

0
∇ f
(
(1− s)x+ sy

)
ds, (2.12)

where
∫

denotes integration.
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3. The Itoh–Abe discrete gradient [116] (also known as the coordinate increment discrete
gradient) is given by

∇ f (x,y) =


f (y1,x2,...,xn)− f (x)

y1−x1
f (y1,y2,x3,...,xn)− f (y1,x2,...,xn)

y2−x2
...

f (y)− f (y1,...,yn−1,xn)
yn−xn

 , (2.13)

where 0/0 is interpreted as [∇ f (x)]i.

Proposition 2.41. The mappings defined by (2.11)-(2.13) are discrete gradients.

Proof. Continuity of the mappings follows from continuous differentiability of the
function f .

The mean value property (2.5) is straightforward to verify for the Gonzalez and Itoh–Abe
discrete gradients, by plugging in their respective expressions. For the mean value discrete
gradient, we derive〈∫ 1

0
∇ f
(
(1− s)x+ sy

)
ds,y− x

〉
=
∫ 1

0
⟨∇ f

(
(1− s)x+ sy

)
,y− x⟩ds = f (y)− f (x),

where the final equality follows by applying the fundamental theorem of calculus [198,
Theorem 7.16] to the function g(s) := f ((1− s)x+ sy).

Finally, as with continuity of the mappings, the consistency property (2.6) can be verified
directly using continuous differentiability of f .

While the first two discrete gradients are gradient-based , the Itoh–Abe discrete gradient
is derivative-free, and is evaluated by computing successive, coordinate-wise difference
quotients. In an optimisation setting, the Itoh–Abe discrete gradient is often preferable to the
others, as it is relatively computationally inexpensive. Solving the implicit equation (2.8)
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with this discrete gradient amounts to successively solving n scalar equations of the form

xk+1
1 = xk

1− τk
f (xk+1

1 ,xk
2, . . . ,x

k
n)− f (xk)

xk+1
1 − xk

1

xk+1
2 = xk

2− τk
f (xk+1

1 ,xk+1
2 ,xk

3, . . . ,x
k
n)− f (xk+1

1 ,xk
2, . . . ,x

k
n)

xk+1
2 − xk

2
...

xk+1
n = xk

n− τk
f (xk+1)− f (xk+1

1 ,xk+1
2 , . . . ,xk+1

n ,xk
n)

xk+1
n − xk

n
.



Chapter 3

The foundations of discrete gradient
methods for smooth optimisation

3.1 Introduction

This chapter is based on the preprint [81] and is joint work with Matthias J. Ehrhardt, Torbjørn
Ringholm, and Carola-Bibiane Schönlieb.

As discussed in the previous chapter, discrete gradient methods yield unconditionally
stable optimisation schemes when applied to the gradient flow (1.12). While these methods
are well understood in the setting of geometric numerical integration, only in recent years
have they been considered as optimisation schemes, and thus the analysis is lacking in
this context. In this chapter, we seek to lay the foundations for discrete gradient methods
for smooth optimisation, providing a comprehensive analysis of the well-posedness of the
discrete gradient equation (2.8), optimal choices of time steps τk, convergence rates for
different classes of functions, and guarantees of convergence to a unique limit.

We thus consider the unconstrained optimisation problem

min
x∈Rn

F(x), (3.1)

where the function F : Rn→ R is continuously differentiable.

3.1.1 Contributions and outline

While discrete gradient methods have existed in geometric integration since the 1980s, only
recently have they been studied in the context of optimisation, leaving significant gaps in our
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understanding of these schemes. In this chapter, we resolve fundamental questions about the
discrete gradient methods, including their well-posedness, efficiency, and optimal tuning.

In Section 3.2 we define discrete gradients and introduce the four discrete gradient
methods considered in this thesis. In Section 3.3, we prove that the discrete gradient equation
(the update formula) (2.8) is well-posed, meaning that for any time step τk > 0 and xk ∈ Rn,
a solution xk+1 exists, under mild assumptions on F . Using the Brouwer fixed point theorem,
this is the first existence result for the discrete gradient equation without a bound on the
time step. In Section 3.4, we propose an efficient and stable method for solving the discrete
gradient equation and prove convergence guarantees.

In Section 3.5, we analyse the dependence of the iterates on the choice of time step,
and obtain estimates for preferable time steps in the cases of L-smoothness and strong
convexity. In Section 3.6, we establish convergence rates for convex functions with Lipschitz
continuous gradients, and for functions that satisfy the Polyak–Łojasiewicz (PŁ) inequality
[120]. In Section 3.7, we establish convergence guarantees for functions that satisfy the
strong Kurdyka–Łojasiewicz inequality. In Section 3.9, we present numerical results for
several test problems, and a numerical comparison of different numerical solvers for the
discrete gradient equation (2.8).

We emphasise that the majority of these results hold for nonconvex functions.

3.2 Discrete gradient methods

In this chapter, we consider both deterministic schemes and stochastic schemes. For the
stochastic schemes, there is a random distribution Ξ on Sn−1 such that each iterate xk depends
on a descent direction dk which is independently drawn from Ξ. We denote by ξ k the joint
distribution of (di)k

i=1. We denote by Fk+1 the expectation of F(xk+1) conditioned on ξ k,

Fk+1 := Eξ k [F(xk+1)]. (3.2)

To unify notation for all the methods in this chapter, we will write Fk+1 instead of F(xk+1)

for the deterministic methods as well.
We recall the three discrete gradient methods in Section 2.7, using the mean value,

Gonzalez, and Itoh–Abe discrete gradients. In addition to these methods, we also propose
a generalisation of the Itoh–Abe discrete gradient method, from hereon referred to as ran-
domised Itoh–Abe methods. As the Itoh–Abe discrete gradient method is comparable to cyclic
coordinate descent (CCD), the generalised method is comparable to randomised coordinate
descent and random search methods.
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Thus, we consider a sequence of independent, identically distributed directions (dk)k∈N⊂
Sn−1 drawn from a random distribution Ξ, and solve

xk+1 = xk− τk
F(xk+1)−F(xk)

⟨xk+1− xk,dk+1⟩
dk+1, (3.3)

This can be rewritten as solving

xk+1 7→ xk−τkαkdk+1, where αk ̸= 0 solves αk =−
F(xk− τkαkdk+1)−F(xk)

τkαk
, (3.4)

where xk+1 = xk is considered a solution whenever ⟨∇F(xk),dk+1⟩= 0.
We also define the constant

ζ := min
e∈Sn−1

Ed∼Ξ[⟨d,e⟩2], (3.5)

and assume that Ξ is such that ζ > 0. For example, for the uniform random distribution on
both Sn−1 and on the standard coordinates (ei)n

i=1, we have ζ = 1/n. See [206, Table 4.1]
for estimates of (3.5) for these cases and others.

This scheme is a generalisation of the Itoh–Abe discrete gradient method, in the sense
that the methods are equivalent if (dk)k∈N cycle through the standard coordinates with the
rule

dk = e[(k−1)modn]+1, k = 1,2, . . .

However, the computational effort of one iterate of the Itoh–Abe discrete gradient method is
equal to n steps of the randomised method, so the efficiency of the methods should be judged
accordingly. Furthermore, the dissipation properties (2.9) can be rewritten as

F(xk+1)−F(xk) =−τk

(
F(xk+1)−F(xk)

∥xk+1− xk∥

)2

=− 1
τk
∥xk+1− xk∥2. (3.6)

Consequently, the dissipative structure of the Itoh–Abe methods is well-defined in a derivative-
free setting.

The motivation for introducing this randomised extension of the Itoh–Abe method is,
first, to tie discrete gradient methods in with other optimisation methods such as randomised
coordinate descent [89, 182, 221] and random pursuit [160, 206], and, second, because this
method extends to the nonsmooth, nonconvex setting, as we will show in Chapter 4.
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3.3 Existence of solutions to the discrete gradient steps

In this section, we prove that the discrete gradient equation

y = x− τ∇F(x,y). (3.7)

admits a solution y, for all time steps τ > 0 and points x ∈ Rn, under mild assumptions on
F and ∇F . The result applies to the three discrete gradients considered in this thesis, and
we expect that it also covers a vast number of other discrete gradients. These results do not
require convexity of F .

To the authors’ knowledge, the following result is the first without a restriction on time
steps. Norton and Quispel [164] provided an existence and uniqueness result for small time
steps for a large class of discrete gradients, via the Banach fixed point theorem. Furthermore,
the existence of a solution for the Gonzalez discrete gradient is established for sufficiently
small time steps via the implicit function theorem in [207, Theorem 8.5.4].

Throughout this section, we consider a function operator ∇ : C1(Rn)→C(Rn×Rn;Rn),
which maps a function F ∈ C1(Rn) to the discrete gradient ∇F . For a set K ⊂ Rn and
δ > 0, we define the δ -thickening, Kδ =

{
x ∈ Rn : dist(K,x)≤ δ

}
, where dist(K,x) :=

infy∈K ∥x− y∥.
We make two assumptions for the discrete gradient operator ∇, namely that boundedness

of the gradient implies boundedness of the discrete gradient, and that if two functions coincide
on an open set, their discrete gradients also coincide.

Assumption 3.1. There is a constant Cn that depends on the discrete gradient but is inde-
pendent of F, and a continuous, nondecreasing function δ : [0,∞]→ [0,∞], where δ (0) = 0,
δ (r)< ∞ for all r < ∞, and δ (∞) := limr→∞ δ (r), such that the following holds.

For any F ∈C1(Rn) and any convex set K ⊂Rn with nonempty interior, the two following
properties are satisfied.

(i) If ∥∇F(x)∥ ≤ L for all x ∈ K
δ(diam(K)), then ∥∇F(x,y)∥ ≤CnL for all x,y ∈ K.

(ii) If G is another continuously differentiable function such that F(x) = G(x) for all
x ∈ K

δ(diam(K)), then ∇F(x,y) = ∇G(x,y) for all x,y ∈ K.

The following result shows that the three discrete gradients considered satisfy the above
assumption.

Lemma 3.2. The three discrete gradients satisfy Assumption 3.1 with the following constants.

1. For the Gonzalez discrete gradient, Cn =
√

2 and δ ≡ 0.
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2. For the mean value discrete gradient, Cn = 1 and δ ≡ 0.

3. For the Itoh–Abe discrete gradient, Cn =
√

n and δ (r) = r.

Proof. Part 1. We first consider the Gonzalez discrete gradient. Denote by d the unit
vector (y− x)/∥y− x∥. There is a vector d⊥ such that ⟨d,d⊥⟩= 0, ∥d⊥∥= 1, and

∇F(x,y) =

〈
∇F
(

x+ y
2

)
,d⊥
〉

d⊥+
F(y)−F(x)
∥y− x∥

d.

By the mean value theorem, there is z ∈ [x,y] such that F(y)−F(x) = ⟨∇F(z),y− x⟩. There-
fore, we obtain

∇F(x,y) =

〈
∇F
(

x+ y
2

)
,d⊥
〉

d⊥+ ⟨∇F(z),d⟩d. (3.8)

From this, we derive

∥∇F(x,y)∥2 ≤
∥∥∥∥∇F

(
x+ y

2

)∥∥∥∥2

+
∥∥∇F(z)

∥∥2
.

This implies that property (i) holds with Cn =
√

2 and δ ≡ 0. To show property (ii), it is
sufficient to note that since K is convex and has nonempty interior, then ∇G

(
(x+ y)/2

)
=

∇F
(
(x+ y)/2

)
.

Part 2. Next we consider the mean value discrete gradient. It is clear that property (i)
holds with Cn = 1 and δ ≡ 0. Property (ii) is immediate from convexity of K.

Part 3. For the Itoh–Abe discrete gradient, we set δ (r) = r. By applying the mean value
theorem to

[∇F(x,y)]i =
F(y1, . . . ,yi,xi+1, . . . ,xn)−F(y1, . . . ,yi−1,xi, . . . ,xn)

yi− xi
, (3.9)

we derive that (∇F(x,y))i = [∇F(zi)]i, where zi = [y1, . . . ,yi−1,ci,xi+1, . . . ,xn]
T for some

ci ∈ [xi,yi]. Furthermore, we have ∥zi− x∥ ≤ ∥y− x∥, so z ∈ Kdiam(K). This implies that
property (i) holds with Cn =

√
n. Property (ii) is immediate.

The existence proof is based on the Brouwer fixed point theorem [31], which we state
here.

Proposition 3.3 (Brouwer fixed point theorem). Let K ⊂ Rn be a convex, compact set and
g : K→ K a continuous function. Then g has a fixed point in K.

We proceed to state the existence theorem.



38 The foundations of discrete gradient methods for smooth optimisation

Theorem 3.4 (Discrete gradient existence theorem). Suppose F is continously differentiable
and that ∇ satisfies Assumption 3.1. Then there exists a solution y to (3.7) for any τ > 0 and
x ∈ Rn, if F satisfies either of the following properties.

(i) The gradient of F is uniformly bounded.

(ii) F is coercive.

(iii) Both F and the gradient of F are uniformly bounded on co({y : F(y)≤ F(x)}) (the
bounds may depend on x), and δ ≡ 0 in Assumption 3.1.

Proof. Part (i). We define the function g(y) = x− τ∇F(x,y), and want to show that it
has a fixed point, y = g(y). There is L > 0 such that ∥∇F(y)∥ ≤ L for all y ∈ Rn. Therefore,
by Assumption 3.1, ∥∇F(x,y)∥ ≤CnL for all y ∈ Rn. This implies that g(y) ∈ BτCnL(x) for
all y ∈ Rn. Specifically, g maps BτCnL(x) into itself. As g is continuous, it follows from the
Brouwer fixed point theorem that there exists a point y ∈ BτCnL(x) such that g(y) = y, and
we are done.

Part (ii). Let σ > 0, K = co(
{

y : F(y)≤ F(x)
}
), and write δ = δ (diam(K)). Since F

is coercive, Kδ and Kδ+σ are bounded. By standard arguments [161, Corollary 2.5], there
exists a cutoff function ϕ ∈C∞

c (Rn; [0,1]) such that

ϕ(y) =

1 if y ∈ Kδ ,

0 if y /∈ Kδ+σ .

We define G : Rn→ R by G(y) := ϕ(y)
(
F(y)−F(x)

)
+F(x). G is continuously differen-

tiable and supp(∇G)⊂ Kδ+σ . Therefore, G has uniformly bounded gradient, so by part (i)
there is a y such that

y = x− τ∇G(x,y).

By (2.9), G(y) < G(x) which implies that y ∈ Kδ , so G(y) = F(y). Furthermore, since
G(x) = F(x), we deduce that F(y)< F(x), so y ∈ K. Lastly, since F and G coincide on Kδ ,
and x and y both belong to K, it follows from Assumption 3.1 (ii) that ∇F(x,y) = ∇G(x,y).
Hence a solution y = x− τ∇F(x,y) exists.

Part (iii). Set K = co
({

y : F(y)≤ F(x)
})

and M = supy∈K F(y). Furthermore let ε > 0

and set L = sup
{
∥∇F(y)∥ : F(y)≤M+ ε

}
and F =

{
y : F(y)≥M+ ε

}
. The mean value

theorem [162, Equation A.55] and the boundedness of ∇F imply that for all y ∈ K and z ∈ F ,
there is λ ∈ (0,1) such that

ε ≤ |F(y)−F(z)|= |⟨∇F(λy+(1−λ )z),y− z⟩| ≤ L∥y− z∥.
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Therefore, for all y ∈ K and z ∈ F , ∥y− z∥ ≥ ε/L. By Lemma A.1, there exists a cutoff
function ϕ ∈C∞(Rn; [0,1]) with uniformly bounded gradient, such that

ϕ(y) =

1 if y ∈ K,

0 if y ∈ F.

Consider G :Rn→R defined as in the previous case. The gradient of G is uniformly bounded,
so there is a fixed point y such that y = x− τ∇G(x,y). By the same arguments as in case (ii),
∇F(x,y) = ∇G(x,y), which implies that y solves y = x− τ∇F(x,y).

The third case in Theorem 3.4 covers optimisation problems where F is not coercive. This
includes the cases of linear systems with nonempty kernel and logistic regression problems
[129] without regularisation.

While the above theorem also covers the Itoh–Abe methods, there is a much simpler
existence result in this case, given in Chapter 4. This requires only continuity of the objective
function, rather than differentiability.

3.4 Solving the discrete gradient equation

In the previous section, we proved that the discrete gradient equation (3.7)

y = x− τ∇F(x,y),

admits a solution y for all τ > 0 and x ∈Rn. In what follows, we discuss how to approximate
a solution to (3.7) when no closed-form expression exists, using fixed point iterations. We do
not consider the Itoh–Abe discrete gradient, which simply involve solving successive scalar
equations.

Norton and Quispel [164] showed that for a given x ∈ Rn and sufficiently small time
steps, there exists a unique solution to (3.7) that can be approximated by the fixed point
iterations

yk+1 = Tτ(yk), where Tτ(y) := x− τ∇F(x,y). (3.10)

That is, the iterates converge to the fixed point y∗ = Tτ(y∗), i.e. a solution to (3.7). Their
analysis assumes that the time step τ is less than 1/(10LDG), where LDG is the Lipschitz
constant for a given x of the mapping y 7→ ∇F(x,y).

However, for optimisation, we are interested in larger time steps (for L-smooth functions,
the optimal time steps are typically around 2/L—see Section 3.6), while it is not so important
to have uniqueness of solutions to (3.7). Furthermore, as Theorem 3.4 ensures the existence
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of a solution for arbitrarily large time steps, we seek a constructive method for locating such
solutions. We therefore propose the following relaxation of the fixed point updates. For
θ ∈ (0,1], update

yk+1 = (1−θ)yk +θTτ(yk). (3.11)

For θ = 1, this reduces to (3.10). In the remainder of this section, we will prove convergence
guarantees of (3.11) for all time steps. In Section 3.9, we demonstrate its numerical efficiency.

In the following, we assume that the discrete gradient inherits smoothness and strong
convexity properties from the gradient. As with the previous section, we here consider the
discrete gradient as a function operator ∇ : C1(Rn)→C(Rn×Rn;Rn).

Assumption 3.5. There is λL,λµ > 0, such that the discrete gradient operator ∇ satisfies:

(i) (Smoothness) If F is L-smooth, then for all x ∈ Rn, y 7→ ∇F(x,y) is λLL-smooth.

(ii) (Monotonicity) If F is µ-convex, then for all x,y,z ∈ Rn, we have

⟨∇F(x,y)−∇F(x,z),y− z⟩ ≥ λµ µ∥y− z∥2.

We write LDG := λLL and µDG := λµ µ .

Remark 3.6. It always holds that µDG ≤ LDG.

It is trivial to show these properties for the mean value discrete gradient.

Proposition 3.7. The mean value discrete gradient satisfies Assumption 3.5 with LDG = L/2
and µDG = µ/2.

Proof. To show that the first property holds, we write

∥∇F(x,y)−∇F(x,z)∥ ≤
∫ 1

0
∥∇F(sy+(1− s)x)−∇F(sz+(1− s)x)∥ds

≤ L∥y− z∥
∫ 1

0
sds =

L
2
∥y− z∥.

Similarly, to show the second property, we write

⟨∇F(x,y)−∇F(x,z),y− z⟩=
∫ 1

0

1
s

〈
∇F(sy+(1− s)x)−∇F(sz+(1− s)x),sy− sz

〉
ds

≥ µ∥y− z∥2
∫ 1

0
sds =

µ

2
∥y− z∥2.
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Remark 3.8. We were unable to ascertain whether or not the properties hold for the Gonzalez
discrete gradient. However, we observe in practice that the scheme converges in this case
too.

The following result demonstrates that for convex objective functions, the scheme (3.11)
converges to a fixed point y∗ = Tτ(y∗) for arbitrary time steps τ .

Theorem 3.9. If F is L-smooth and ∇ satisfies Assumption 3.5, then for any x ∈ Rn the
iterates (yk)k∈N defined by (3.11) converge linearly to a fixed point y∗ = Tτ(y∗) if either of
the following cases hold.

(i) τ < 1/LDG.

(ii) F is µ-convex and θ ∈ (0,min{1, 2+2τµDG
1+τ2L2

DG+2τµDG
}).

Proof. Case (i). We write

∥yk+1− yk∥= ∥(1−θ)(yk− yk−1)+ τθ(∇F(x,yk−1)−∇F(x,yk)∥
≤
(
1− (1− τLDG)θ

)
∥yk− yk−1∥.

This converges whenever 1− (1− τLDG)θ < 1, i.e. when τ < 1/LDG.
Case (ii). In a similar fashion, we write

∥yk+1− yk∥2 = ∥(1−θ)(yk− yk−1)+ τθ(∇F(x,yk−1)−∇F(x,yk)∥2

= (1−θ)2∥yk− yk−1∥2 + τ
2
θ

2∥∇F(x,yk−1)−∇F(x,yk)∥2

−2τ(1−θ)θ⟨yk− yk−1,∇F(x,yk)−∇F(x,yk−1)⟩

≤
(
(1−θ)2 + τ

2
θ

2L2
DG−2τ(1−θ)θ µDG

)
︸ ︷︷ ︸

ω(θ)

∥yk− yk−1∥2.

One can check that the coefficient ω(θ) is less than 1 provided θ belongs to the interval
stated in the theorem. This concludes the proof.

Remark 3.10. In the second case of the above theorem, the coefficient ω(θ) is minimised
for

θ
∗ =

1+ τµDG

1+ τ2L2
DG +2τµDG

< 1, (3.12)

which yields the linear convergence rate

∥yk+1− yk∥2 ≤
τ2(L2

DG−µ2
DG)

(1+ τµDG)2 + τ2(L2
DG−µ2

DG)
∥yk− yk−1∥2.
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We note from this that the scheme converges faster for smaller time steps and for objective
functions with smaller condition numbers L/µ ≈ LDG/µDG =: κDG. Furthermore, if τ =

1/(aLDG) for some a≥ 1, where a typical choice is a = 1, then we obtain

θ
∗ =

1+ 1
aκDG

1+ 1
a2 +

2
aκDG

≥ a2

1+a2 , ω(θ ∗) =
1− 1

κ2
DG

a2 + 2a
κDG

+1
≤ 1

a2 +1
.

This shows that the fixed point scheme (3.11) is robust to ill-conditioned problems, both with
regards to appropriate choices of θ and the rate of convergence.

In Section 3.9.6, we compare the efficiency of the above scheme for different θ and of
the built-in solver scipy.optimize.fsolve in Python.

3.5 Analysis of time steps for discrete gradient methods

In this section, we study the implicit dependence of xk+1(τ) on the choice of time step τ .
We concentrate on the mean value and Itoh–Abe discrete gradient methods, establishing a
uniqueness result for the update assuming convexity, as well as bounds on optimal time steps
with respect to the decrease in F , for L-smooth, convex functions as well as strongly convex
functions.

3.5.1 Uniqueness for convex objectives

Lemma 3.11. If F is convex, then the solution y to the discrete gradient equation (3.7) is
unique for the mean value discrete gradient and the Itoh–Abe discrete gradient.

Proof. We first consider the mean value discrete gradient. Suppose there are two solutions
y1,y2 ∈ Rn to (3.7), i.e.

yi = x− τ∇F(x,yi), i = 1,2.

Then

∥y1− y2∥2 = τ

〈
x− y2

τ
− x− y1

τ
,y1− y2

〉
= τ⟨∇F(x,y2)−∇F(x,y1),y1− y2⟩ ≤ 0,

where the last inequality follows from Proposition 3.7.
To show uniqueness of the Itoh–Abe discrete gradient method, we note that the Itoh–Abe

update consists of a succession of scalar updates, and that for scalar problems all discrete
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gradients are the same. Hence uniqueness is inherited from uniqueness of the mean value
discrete gradient.

3.5.2 Implicit dependence on the time step for mean value discrete gra-
dient methods

In this subsection, we consider the mean value discrete gradient and study the dependence of
the update (3.7) on the choice of time step for convex functions. While we assume in the
proofs that F is C2-smooth, the statements can be generalised to C1-smooth functions, as we
can consider a sequence of C2-smooth functions Fk : Rn→ R such that ∥Fk−F∥1→ 0 and
∥∇Fk−∇F∥1→ 0 (which exist by [84, Section 5.2, Theorem 3]), and pass to the limit for
the discrete gradient equation.

In the previous subsection, we showed that the update (3.7) is unique for convex F . It
follows that for a given x, we can consider the unique mapping τ 7→ yτ implicitly defined by

yτ = x− τ∇F(x,yτ).

It is straightforward to show that it is a continuous path, by arguing similarly to the proof of
Proposition 3.7. We furthermore want to show that it is differentiable. To do so, we can use
the implicit function theorem Proposition 2.3.

Define the function

G : Rn× (0,∞) 7→ Rn, G(y,τ) = y− x+ τ∇F(x,y), (3.13)

so that yτ is the unique solution to G(yτ ,τ) = 0. Assuming that F is C2-smooth, then G is
C2-smooth, and the gradients are given by

∇yG(y,τ) = I + τ

∫ 1

0
s∇

2F((1− s)x+ sy)ds, ∇τG(y,τ) = ∇F(x,y).

Since F is convex, the Hessian ∇2F is positive-definite, so ∇yG(y,τ) is invertible for all y,τ .
By the implicit function theorem Proposition 2.3, we conclude with the following.

Proposition 3.12. Let F : Rn→ R be convex and C2-smooth, and let G be defined by (3.13).
Then mapping τ 7→ yτ is C1-smooth, and its gradient is given by

Dyτ =−

(
I + τ

∫ 1

0
s∇

2F((1− s)x+ syτ)ds

)−1

∇F(x,yτ). (3.14)
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For notational brevity, we write Hτ :=
∫ 1

0 s∇2F((1− s)x+ syτ)ds.
From this, we can derive a number of properties of the dependence on the time step. First

we show that the distance from x to yτ strictly increases with τ .

Lemma 3.13. Let F : Rn→ R be a C1-smooth and convex function. If τ2 > τ1, then ∥yτ2−
x∥> ∥yτ1− x∥.

Proof. We suppose F is C2-smooth and calculate

Dτ

1
2
∥yτ − x∥2 = ⟨Dyτ ,yτ − x⟩=−

〈
(I + τHτ)

−1
∇F(x,yτ),yτ − x

〉
=

1
τ

〈
(I + τHτ)

−1 (yτ − x),yτ − x
〉
> 0,

where the last inequality follows from positive-definiteness of (I + τHτ)
−1. The result

follows for C2-smooth functions F , and as explained above, we can apply an approximation
argument to extend the result to C1-smooth functions.

Next we analyse the dependence of F(yτ) on τ for L-smooth and µ-convex functions.
We make use of the following properties.

Proposition 3.14. Let F : Rn→R be C2-smooth, L-smooth and µ-convex, for µ ≥ 0. Denote
by Aτ the matrix (I + τHτ)

−1, and by κτ the condition number of Aτ . Then F and Aτ satisfy
the following properties.

(i) (Norms:) ∥Aτ∥ ≤ 1/(1+ τµ/2) and ∥A−1
τ ∥ ≤ 1+ τL/2.

(ii) (Descent lemma:) ⟨∇F(y),Aτ(x− y)⟩ ≥ F(x)−F(y)− L
2
√

κτ⟨x− y,Aτ(x− y)⟩.

(iii) (Convexity:) ⟨∇F(y),Aτ(x− y)⟩ ≤ F(y)−F(x)− µ

2∥Aτ∥⟨x− y,Aτ(x− y)⟩.

Proof. Case (i). Consider the inverse of Aτ , I + τHτ . We know that ∥Aτ∥= 1/σ1, where
σ1 is the smallest singular value of I + τHτ . Since F is µ-convex, it follows from Proposi-
tion 3.7 that σ1 ≥ 1+ τµ/2, which yields the first bound. Similarly, using L-smoothness of
F , it is straightforward to derive the second bound.

Case (ii). Consider the inner product ⟨x,y⟩Aτ
:= ⟨x,Aτy⟩ with its associated norm ∥ · ∥Aτ

.
One can show that if F is L-smooth with respect to the norm ∥ · ∥, then F is L

√
κτ -smooth

with respect to ∥ · ∥Aτ
. Thus we obtain the desired inequality by applying the regular descent

lemma Proposition 2.39 with respect to the inner product ⟨·, ·⟩Aτ
.

Case (iii). By µ-convexity, for all x,y ∈ Rn and s ∈ (0,1), we have

F(sx+(1− s)y)≤ sF(x)+(1− s)F(y)− µ

2
s(1− s)⟨x− y,x− y⟩

≤ sF(x)+(1− s)F(y)− µ

2∥Aτ∥
s(1− s)⟨x− y,Aτ(x− y)⟩
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Hence, F is µ/∥Aτ∥-convex with respect to the inner product ⟨·, ·⟩Aτ
, and the result follows.

We proceed to show that if F is L-smooth, then for τ ∈ (0, 2
L

√
2κF/(κF +1)), the

function value F(yτ) is decreasing with respect to τ . Here κF denotes the conditioning
number of F , L/µ .

Lemma 3.15. If τ1 < τ2 ≤ 2
L

√
2κF/(κF +1), then F(yτ1)> F(yτ2).

Proof. We calculate

dτ F(yτ) = ⟨∇F(yτ),dτ yτ⟩=−
〈

∇F(yτ),(I + τHτ)
−1

∇F(x,yτ)
〉

=−1
τ

〈
∇F(yτ),(I + τHτ)

−1 (x− yτ)
〉

≤ 1
τ

(
F(yτ)−F(x)+

L
2
√

κAτ
⟨x− yτ ,Aτ(x− yτ)⟩

)
=

1
τ

(
−1

τ
∥x− yτ∥2 +

L
2
√

κAτ
⟨x− yτ ,Aτ(x− yτ)⟩

)
≤ 1

τ

(
L
2
√

κAτ
− 1

τ

)
∥x− yτ∥2.

This is strictly negative if τ < 2/(L
√

κAτ
). We have

κAτ
=

1+ τ
L
2

1+ τ
µ

2
≤ κAτ

≤ 2κF

κF +1
,

since the condition number strictly increases with τ , and τ < 2/L. This concludes the
proof.

Finally, we show that if F is µ-convex for µ > 0, then for

τ >
κF −1+

√
(κF −1)2 +4
µ

, (3.15)

the function value F(yτ) is increasing with respect to τ .

Lemma 3.16. Let F : Rn → R be L-smooth and µ-convex for µ > 0. If τ2 > τ1 and τ1

satisfies (3.15), then F(yτ2)> F(yτ1).
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Proof. We suppose F is C2-smooth and that τ satisfies (3.15), and calculate

DτF(yτ) =−
〈

∇F(yτ),(I + τHτ)
−1

∇F(x,yτ)
〉
=

1
τ

〈
∇F(yτ),(I + τHτ)

−1 (yτ − x)
〉

≥ 1
τ

(
F(yτ)−F(x)+

µ

2∥Aτ∥
⟨x− yτ ,Aτ(x− yτ)⟩

)

=
1
τ

〈x− yτ ,

(
µ

2∥Aτ∥
Aτ −

1
τ

I
)
(x− yτ)

〉 .

The operator µ

2∥A∥A−
1
τ
I is positive-definite, provided τ > 2

µ
∥Aτ∥∥A−1

τ ∥. By solving for τ ,
we can show that this follows from (3.15).

The above analysis shows that the updates of the discrete gradient method behave as one
would expect, with respect to time step, and furthermore provides us with a sense of optimal
time step choices. In the following subsection, we give a similar analysis for the Itoh–Abe
methods, but with sharper bounds on the optimal time steps. Furthermore, one may compare
the bounds derived in this section, with those derived for the convergence rate analysis, e.g.
in Lemma 3.21.

3.5.3 Implicit dependence on the time step for Itoh–Abe methods

For the remainder of the section, we restrict our focus to Itoh–Abe methods. We fix a starting
point x, direction d ∈ Sn−1 and time step τ , and study the solution y to

y = x−αd, where α ̸= 0 solves α =−τ
F(x−αd)−F(x)

α
. (3.16)

By the analysis in Section 3.3, there exists a solution y for all τ > 0. For convenience and
to exclude the case y = x, we assume ⟨∇F(x),d⟩> 0. For notational brevity, we rewrite the
optimisation problem in terms of a scalar function f , i.e. solve

f (α)

α2 =−1
τ
, where f (α) := F(x−αd)−F(x). (3.17)

For optimisation schemes with a time step τ , it is common to assume that the distance
between x and y increases with the time step. For explicit schemes, this naturally holds, and
in the previous subsection, we showed that it holds for the Itoh–Abe discrete gradient method
on convex functions. However, for general functions this is not necessarily the case, as the
following example shows.
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Example 3.17. Define F(x) :=−x3 and x = 0. For all τ > 0, (3.16) is solved by

y =
1
τ
.

Then, as τ → 0, we have y→ ∞, and as τ → ∞, we have y→ x.

The above example illustrates that for nonconvex functions, decreasing the time step
might lead to a larger step y←[ x and vice versa.

The remainder of this section is devoted to deriving bounds on optimal time steps, with
respect to the decrease in the objective function when the objective function is L-smooth or
µ-convex. We first consider L-smooth functions, and show that any time step τ < 2/L is
suboptimal. We recall the scalar function f (α) = F(x−αd)−F(x). The following statement
is the scalar version of Lemma 3.15, noting that in the scalar case, we can set κAτ

= 1 and
update the analysis in the proof.

Lemma 3.18. If F is convex and L-smooth, then τ 7→ f (α(τ)) is strictly decreasing for
τ ∈ (0,2/L).

We next show that for strongly convex functions, any time step τ > 2/µ yields a subopti-
mal decrease. This is the scalar version of Lemma 3.16. We provide a separate proof with a
sharper bound on the time step.

Lemma 3.19. If F is µ-convex with µ > 0, then τ 7→ f (α(τ)) is strictly increasing for
τ > 2/µ .

Proof. Let α solve (3.17) for τ > 2/µ . Fix λ ∈ (2/(τµ),1), and plug in 0 and α for y
and x respectively in Definition 2.17 (ii) to get, after rearranging,

f (λα)≤ λ f (α)− µλ (1−λ )

2
α

2.

Plugging in (3.17) gives us

f (λα)≤
(

λ +
τµλ (1−λ )

2

)
f (α).

We want to show that f (λα)< f (α), i.e. that λ + τµλ (1−λ )/2 > 1. By rearranging and
solving the quadratic expression, we find that this is satisfied if λ ∈ (2/(τµ),1). The result
follows from convexity of f and Lemma 3.13.

Remark 3.20. This result also holds for strongly convex, non-differentiable functions.
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3.6 Convergence rate analysis

In this section we derive convergence rates for L-smooth, convex functions, µ-convex
functions, and more generally functions that satisfy the Polyak–Łojasiewicz (PŁ) inequality.
We follow the arguments in [15, 159] on convergence rates of coordinate descent.

We recall the notation in (3.2), Fk+1 := Eξ kF(xk+1), where Fk+1 = F(xk+1) for deter-
ministic methods. Estimates of the following form will be crucial to the analysis, for some
descent constant β > 0.

β

(
F(xk)−Fk+1

)
≥ ∥∇F(xk)∥2 (3.18)

We first provide this estimate for each of the four methods. We assume throughout that the
time steps (τk)k∈N satisfy arbitrary bounds (2.10).

We consider coordinate-wise Lipschitz constants for the gradient of F as well as a
directional Lipschitz constant. For i = 1, . . . ,n, we suppose [∇F ]i : Rn→ Rn is Lipschitz
continuous with Lipschitz constant Li ≤ L. We denote by Lsum the ℓ2-norm of the coordinate-

wise Lipschitz constants, Lsum =

√
∑

n
i=1 L2

i ∈ [L,
√

nL].
Furthermore, for a direction d ∈ Sn−1, we consider the Lipschitz constant Ld ≤ L, such

that for all x ∈ Rn and α ∈ R, we have

|⟨∇F(x+αd),d⟩−⟨∇F(x),d⟩| ≤ Ld|α|.

For the Itoh–Abe discrete gradient method or when Ξ only draws from the standard coor-
dinates, we write Li instead of Lei . We define Lmax ≤ L to be the supremum of Ld over all
d in the support of the probability density function of Ξ. That is, Lmax ≥ Ld for all d ∼ Ξ.
In the case where Ξ draws from a restricted set, such as the standard coordinates, Lmax

can be notably smaller than L. In this setting, we can refine the L-smoothness property in
Proposition 2.39 (i) to

F(x+αd)−F(x)≤ α⟨∇F(x),d⟩+ Ld

2
α

2 ≤ α⟨∇F(x),d⟩+ Lmax

2
α

2, (3.19)

for all α ∈ R and d in the support of the density of Ξ [15, Lemma 3.2].

Lemma 3.21. If F is L-smooth, then the three discrete gradient methods and the randomised
Itoh–Abe method satisfy (3.18) with values for β given in Table 3.1.
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Table 3.1 Estimates of β , as well as optimal time steps τ∗ and corresponding β ∗. Recall ζ is
defined in (3.5).

Discrete gradient method β τ∗ β ∗

Gonzalez 2
(

1/τk +L2
τk/2

) √
2/L 2

√
2L

Mean value 2
(

1/τk +L2
τk/4

)
2/L 2L

Itoh–Abe 2
(

1/τk +L2
sumτk

)
1/Lsum 4Lsum

Randomised Itoh–Abe τk
(
1/τk +Lmax/2

)2
/ζ 2/Lmax 2Lmax/ζ

Proof. Part 1. We consider the characterisation (3.8) of the Gonzalez discrete gradient to
compute

∥∇F(xk)∥2 = ⟨∇F(xk),d⟩2 + ⟨∇F(xk),d⊥⟩2

≤ 2
(
∥∇F(xk,xk+1)∥2 + ⟨∇F(xk)−∇F(z),d⟩2+〈

∇F(xk)−∇F
(

xk+xk+1

2

)
,d⊥
〉2
)

≤ 2
(
∥∇F(xk,xk+1)∥2 + ⟨∇F(xk)−∇F(z),d⟩2 + 1

4
L2∥xk− xk+1∥2

)
.

Since ⟨∇F(z),d⟩= (F(xk+1)−F(xk))/∥xk+1− xk∥ and d = xk+1−xk

∥xk+1−xk∥ , we have

⟨∇F(xk)−∇F(z),d⟩2 = 1
∥xk− xk+1∥2

(
⟨∇F(xk),xk+1− xk⟩−F(xk+1)+F(xk)

)2

≤ 1
4

L2∥xk+1− xk∥2,

where the inequality follows from Proposition 2.39 (i). Therefore,

∥∇F(xk)∥2 ≤ 2
(

1
τk

+
1
2

L2
τk

)(
F(xk)−Fk+1

)
,

where we have used the discrete gradient properties (2.9).



50 The foundations of discrete gradient methods for smooth optimisation

Part 2. We compute

∥∇F(xk)∥2 ≤ 2∥∇F(xk,xk+1)∥2 +2

∥∥∥∥∥
∫ 1

0
∇F(sxk +(1− s)xk+1)−∇F(xk)ds

∥∥∥∥∥
2

≤ 2∥∇F(xk,xk+1)∥2 +2L2∥xk− xk+1∥2

(∫ 1

0
sds

)2

= 2
(

1
τk

+
1
4

L2
τk

)(
F(xk)−Fk+1

)
.

Part 3. We apply the mean value theorem like in (3.9) to obtain
(

∇F(xk,xk+1)
)

i
=

[∇F(yi)]i, where yi = [xk+1
1 , . . . ,xk+1

i−1 ,ci,xk
i+1, . . . ,x

k
n]

T for ci ∈ [xk
i ,x

k+1
i ]. This gives

∥∇F(xk)∥2 =
n

∑
i=1
|[∇F(xk)]i|2 ≤ 2

n

∑
i=1

(
|[∇F(yi)]i|2 + |[∇F(yi)]i− [∇F(xk)]i|2

)
≤ 2

(
∥∇F(xk,xk+1)∥2 +L2

sum∥xk− xk+1∥2
)

≤ 2
(

1
τk

+L2
sumτk

)(
F(xk)−Fk+1

)
.

Part 4. By (3.19), we have

⟨∇F(xk),xk− xk+1⟩ ≤ F(xk)−F(xk+1)+
Lmax

2
∥xk− xk+1∥2

=

(
1
τk

+
Lmax

2

)
∥xk− xk+1∥2,

where the second equality follows from (3.6).
Furthermore, ⟨∇F(xk),xk− xk+1⟩= |⟨∇F(xk),dk+1⟩|∥xk− xk+1∥. From this, we derive

⟨∇F(xk),dk+1⟩2 ≤
(

1
τk

+
Lmax

2

)2

∥xk− xk+1∥2. (3.20)

By the definition of ζ , we have

Edk+1∼Ξ⟨∇F(xk),dk+1⟩2 ≥ ζ∥∇F(xk)∥2. (3.21)

Combining (3.20) and (3.21), we derive

∥∇F(xk)∥2 ≤ τk

ζ

(
1
τk

+
Lmax

2

)2(
F(xk)−Fk+1

)
.
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This concludes the proof.

Remark 3.22. Note that these estimates do not require convexity of F. Also note that they
immediately result in convergence rates for the gradient as well, inherited from the rates of
the objective function.

3.6.1 Optimal time steps and estimates of descent constant

Lower values for β in (3.18) correspond to better convergence rates, as can be seen in
Theorems 3.25 and 3.27. In what follows, we briefly discuss the time steps that yield minimal
values of β , denoted by τ∗ and β ∗ in Table 3.1.

For the Gonzalez and mean value discrete gradient methods, it is natural to compare
rates to those of explicit gradient descent, which has the estimate β ∗ = 2L [158]. Hence, the
mean value discrete gradient method recovers the optimal rates of gradient descent, while
the estimate for the Gonzalez discrete gradient is worse by a factor of

√
2.

For the Itoh–Abe discrete gradient method, we compare its rates to those obtained for
CCD schemes in [221, Theorem 3] and [15, Lemma 3.3],

β
∗ = 8

√
nL,

where we have set their parameters Lmax and Lmin to
√

nL. Hence, the estimate for the
Itoh–Abe discrete gradient method is stronger, being at most half that of CCD, even in the
worst-case scenario Lsum =

√
nL.

Remark 3.23. Note however that we can improve the estimate for the CCD scheme to
recover the same rate. See Appendix A.2.

We give one motivating example for considering the parameter Lsum.

Example 3.24. Let F be a least squares problem F(x) = ∥Ax− f∥2/2. We then have

Lsum ≤
√

rank(A)L. (3.22)

Thus, for low-rank system where rank(A)≪ n, the convergence speed of the Itoh–Abe discrete
gradient method improves considerably.

To derive (3.22), one can show that L = ∥A∗A∥ and Lsum = ∥A∗A∥F . The bound then
follows from the fact that ∥B∥F ≤

√
rank(B)∥B∥ [109, Table 6.2] and that rank(A∗A) =

rank(A) [149, Statement 4.5.4].
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We compare the rates for the randomised Itoh–Abe methods to randomised coordinate
descent (RCD). Recall that when Ξ is the random uniform distribution on the coordinates
(ei)n

i=1 or on the unit sphere Sn−1, we have ζ = 1/n. This gives us β ∗ = 2nLmax for the
randomised Itoh–Abe methods, which is the optimal bound for randomised coordinate
descent [221, Equation 30].

3.6.2 Lipschitz continuous gradients

For the next result, we use the notation R(x0) = diam
{

x ∈ Rn : F(x)≤ F(x0)
}

. This is
bounded, provided F is coercive.

Theorem 3.25. Let F be an L-smooth, convex, coercive function. Then for all four methods,
we have

Fk−F∗ ≤ βR(x0)2

k+2β

L

.

where β is given in Table 3.1 and F∗ := minx F(x).

Proof. Let x∗ be a minimizer of F . By respectively convexity, the Cauchy-Schwarz
inequality, and Lemma 3.21, we have

(F(xk)−F∗)2 ≤
〈

∇F(xk),xk− x∗
〉2

≤ ∥∇F(xk)∥2∥xk− x∗∥2 ≤ βR(x0)2(F(xk)−Fk+1).

Taking expectation on both sides with respect to ξk−1, we get

(Fk−F∗)2 ≤ βR(x0)2(Fk−Fk+1).

Via the above and by monotonicity of Fk we find that

1
Fk+1−F∗

− 1
Fk−F∗

=
Fk−Fk+1

(Fk−F∗)(Fk+1−F∗)
≥ 1

βR(x0)2
Fk−F∗

Fk+1−F∗
≥ 1

βR(x0)2 .

Summing terms from 0 to k−1 yields

1
Fk−F∗

− 1
F(x0)−F∗

≥ k
βR(x0)2 ,
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and, rearranging, we derive

Fk−F∗ ≤ βR(x0)2

k+β
R(x0)2

F(x0)−F∗

.

To eliminate dependence on the starting point, we use Proposition 2.39 (i),

F(x0)−F∗ ≤ L
2
∥x0− x∗∥2 ≤ L

2
R(x0)2,

which gives us

Fk−F∗ ≤ βR(x0)2

k+2β

L

.

3.6.3 The Polyak–Łojasiewicz inequality

The next result states that for L-smooth functions that satisfy the PŁ inequality, we achieve a
linear convergence rate. A function is said to satisfy the PŁ inequality with parameter µ > 0
if, for all x ∈ Rn,

1
2
∥∇F(x)∥2 ≥ µ

(
F(x)−F∗

)
. (3.23)

Originally formulated by Polyak in 1963 [178], it was recently shown that this inequality
is weaker than other properties commonly used to prove linear convergence [58, 120, 154].
This is useful for extending linear convergence rates to functions that are not strongly convex,
including some nonconvex functions.

Proposition 3.26 ([120]). Let F : Rn→ R be µ-convex. Then F satisfies the PŁ inequality
(3.23) with parameter µ .

We now proceed to the main result of this subsection.

Theorem 3.27. Let F be L-smooth and satisfy the PŁ inequality (3.23) with parameter µ .
Then the three discrete gradient methods and the randomised Itoh–Abe method obtain the
linear convergence rate

Fk−F∗ ≤
(

1− 2µ

β

)k(
F(x0)−F∗

)
, (3.24)

with β given in Table 3.1.
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Proof. We combine the PŁ inequality (3.23) with the estimate in Lemma 3.21 to get

F(xk)−Fk+1 ≥
2µ

β
(F(xk)−F∗).

By taking expectation of both sides with respect to ξk−1, we obtain

Fk+1−F∗ ≤
(

1− 2µ

β

)
(Fk−F∗),

from which the result follows.

3.7 Finite path of iterates

In this section, we prove that the Kurdyka–Łojasiewicz inequality can be applied to discrete
gradient methods to ensure convergence of the iterates (xk)k∈N to a unique limit x∗.

The Łojasiewicz inequality was first studied in the context of gradient flows for analytic
functions, and is used to prove that if the path of a gradient flow admits an accumulation
point, then this point is also the unique limit of the path. Kurdyka later extended this result to
functions that are definable in o-minimal structures [126]—for the definition of definable
functions, we refer to the same paper. This has since been applied to prove convergence
to a unique limit of the iterates of various optimisation algorithms for smooth as well as
nonsmooth problems [2, 7, 24, 165, 163].

We recall the result of Kurdyka [126].

Proposition 3.28 (Kurdyka–Łojasiewicz inequality). Let F : Rn → R be a continuously
differentiable, definable function. Then there is ε > 0, a neighbourhood Nx∗ of x∗, and a
continuously differentiable, strictly increasing function ψ : [0,∞)→ (0,∞), such that

∥∇F(x)∥≥ 1
ψ ′(F(x)−F(x∗))

, for all x∈Nx∗∩{y∈Rn : F(x)−F(x∗)∈ (0,ε)}. (3.25)

Definition 3.29 (Strong Kurdyka–Łojasiewicz inequality). Let F : Rn→R be a continuously
differentiable function. We say that the strong Kurdyka–Łojasiewicz inequality holds for F
at x∗ ∈ Rn if (3.25) holds and ψ is concave.

We proceed to prove the convergence result, which is a simple application of standard
Łojasiewicz arguments.

Theorem 3.30. Let F : Rn → R be a coercive, L-smooth function, and suppose x∗ is an
accumulation point of the iterates (xk)k∈N. For each of the four discrete gradient methods, if
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F satisfies the strong Kurdyka–Łojasiewicz inequality at x∗, then

lim
k→∞

xk = x∗.

Proof. In [2, Theorem 3.4], it is proven that if gradient descent-type methods satisfy the
growth condition given by

C(F(xk)−Fk+1)≥ ∥∇F(xk)∥∥xk+1− xk∥, (3.26)

then the existence of an accumulation point x∗ at which the strong Kurdyka–Łojasiewicz
inequality holds implies that xk→ x∗.

If F is L-smooth, then by (2.9) and (3.18), it follows that (3.26) holds for C =
√

βτmax.
Thus their proof is applicable to the setting of discrete gradient methods, and the result
follows.

3.8 Preconditioned discrete gradient method

We briefly discuss the generalisation of the discrete gradient method (2.8) to a preconditioned
version

xk+1 = xk−Ak∇F(xk,xk+1), (3.27)

where (Ak)k∈N ⊂ Rn×n is a sequence of positive-definite matrices. Denoting by λ1,k and λn,k

the smallest and largest singular values of Ak respectively, we have, for all x,

λ1,k∥x∥ ≤ ∥Akx∥ ≤ λn,k∥x∥.

It is straightforward to extend the results in Section 3.3 and Section 3.6 to this setting, under
the assumption that there are λmax ≥ λmin > 0 such that λmin ≤ λ1,k,λn,k ≤ λmax for all k ∈N.

There are several possible motivations for this preconditioning. In the context of geomet-
ric integration, it is typical to group the gradient flow system (1.12) with the more general
dissipative system

ẋ =−A(x)∇F(x),

where A(x) ∈ Rn×n is positive-definite for all x ∈ Rn [183]. This yields numerical schemes
of the form (3.27), where we absorb τk into Ak. There are optimisation problems in which
the time step τk should vary for each coordinate. This is, for example, the case when one
derives the SOR method from the Itoh–Abe discrete gradient method [153]. More generally,
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if one has coordinate-wise Lipschitz constants for the gradient of the objective function, it
may be beneficial to scale the coordinate-wise time steps accordingly.

3.9 Numerical experiments

In this section, we apply the discrete gradient methods to various test problems. The codes
for the figures have been implemented in Python and MATLAB. For solving the discrete
gradient equation (2.8) with the Gonzalez and mean value discrete gradients, we use the
fixed point method (3.11) detailed in Section 3.4 and tested numerically in Section 3.9.6
under the label ‘R’. For solving (2.8) for the Itoh–Abe method, we use the built-in solver
scipy.optimize.fsolve in Python.

3.9.1 Setup

We fix the following time steps for the different methods, unless otherwise specified. For the
mean value discrete gradient method, we use τMV = 2/L, for the Gonzalez discrete gradient
method, we use τG = 2/L, and for the Itoh–Abe methods, we use the coordinate-dependent
time steps τIA,i = τRIA,i = 2/Li. Note that the time steps for the Itoh–Abe discrete gradient
method are not the optimal choice suggested in Table 3.1, but were heuristically optimal for
the test problems we considered.

In figure captions and legends, the abbreviations CIA and RIA refer respectively to the
(cyclic) Itoh–Abe discrete gradient method and the randomised Itoh–Abe method drawing
uniformly from the standard coordinates. For the sake of comparison, we define one iterate
of the randomised Itoh–Abe methods as n scalar updates, so that the computational time is
comparable to the standard Itoh–Abe discrete gradient method.

Unless otherwise specified, matrices and vectors for the test problems were created from
independent, random, draws from the standard Gaussian distribution in 1D. To provide the
matrix with a given condition number, we compute its singular value decomposition and
linearly transform its eigenvalues accordingly.

3.9.2 Linear systems

We first solve linear systems of the form

min
x∈Rn

F(x) =
1
2
∥Ax−b∥2, (3.28)

where A ∈ Rn×n and b ∈ Rn.
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For linear systems, the Gonzalez and the mean value discrete gradient are both given by

∇F(x,y) = ∇F
(

x+ y
2

)
= A∗

(
A

x+ y
2
−b
)
,

so we consider these jointly. As discussed previously, the Itoh–Abe methods reduce to SOR
methods for solving linear systems and are therefore explicit.

Effect of the condition number

We set n = 500 and consider one linear system with a low condition number κ = L/µ = 102

and one with a high condition number κ = 108. In both cases, we set x0 = 0. See Figure 3.1
for the results for both cases.
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Fig. 3.1 DG methods for linear systems with condition number κ = 10 (left) and κ = 1,000
(right). Convergence rate plotted as relative objective [F(xk)−F∗]/[F(x0)−F∗]. Linear
rate is observed for all methods and is sensitive to condition number.

Sharpness of proven convergence rates

We test the sharpness of the convergence rate (3.24)

Eξ k−1[F(xk)]−F∗ ≤
(

1− 2µ

β

)k

(F(x0)−F∗),

for the randomised Itoh–Abe method. To do so, we run 100 instances of the numerical exper-
iment in the previous subsection and plot the mean convergence rate and 90%-confidence
intervals, and compare the results to the proven rate. We do this for two condition numbers,
κ = 1.2 and 10. The results are presented in Figure 3.2. These plots suggest that the proven
convergence rate estimate is sharp for the randomised Itoh–Abe method.
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Fig. 3.2 Comparison of observed convergence rate with theoretical convergence rate (3.24),
for randomised Itoh–Abe method applied to linear system with condition numbers κ = 1.2
(left) and κ = 10 (right). Average convergence rate and confidence intervals are estimated
from 100 runs on the same linear system. The sharpness of the proven convergence rate is
observed in both cases.

Linear system with kernel

Next we consider linear systems where the operator A has a nontrivial kernel, meaning that
the objective function is not strongly convex, but nevertheless satisfies the PŁ inequality.
We let A ∈ Rm×n and b ∈ Rm, where n = 800 and m = 400, meaning the kernel of A has
dimension 400. See Figure 3.3 for the numerical results.
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Fig. 3.3 DG methods for linear systems with nontrivial kernel, and convergence rate plotted
as relative objective. Due to the kernel, the function is not strongly convex but nevertheless
satisfies the PŁ inequality, hence the linear convergence rates.

A note of caution

The performance of coordinate descent methods and their optimal time steps varies signifi-
cantly with the structure of the optimisation problem [103, 209, 222]. If the linear systems
above were constructed with random draws from a distribution whose mean is not zero, then
the results would look different. We demonstrate this with a numerical test with results in
Figure 3.4.
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We compare two time steps for the cyclic Itoh–Abe method, τi = 2/Li and τi = 2/(Li
√

n),
denoted by the curves labelled “heuristic" and “proven" respectively. While the heuristic
time step was superior for most of the test problems considered in this section, it performs
significantly worse for this example. Furthermore, in this case the randomised Itoh–Abe
method converges faster than the cyclic one.
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Fig. 3.4 CIA and RIA methods applied to linear system, with matrix entries created from
uniform distribution. CIA with the time step τ = 1/[

√
nL] (orange, circle) performs better

than the same method with heuristic time step τ = 2/L (blue, triangle), but worse than
RIA. This is the reverse of what is observed if the matrix entries are created from Gaussian
distribution.

3.9.3 Regularised logistic regression

We consider a l2-regularised logistic regression problem, with training data
{

xi,yi

}m

i=1
, where

xi ∈ Rn is the data and yi ∈ {−1,1} is the class label. We wish to solve the optimisation
problem

min
w∈Rn

F(w) =C
m

∑
i=1

log(1+ e−yi⟨w,xi⟩)+
1
2
∥w∥2, (3.29)

where C > 0. We set n = 100, m = 200, C = 1, and the elements of (yi)
m
i=1 is drawn from

{−1,1} with equal probability. The mean value discrete gradient is given by

∇F(w,z) =C
m

∑
i=1

log
(

1+ e−yi⟨xi,w⟩
)
− log

(
1+ e−yi⟨xi,z⟩

)
⟨xi,w− z⟩

xi +
w+ z

2
,
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and the Gonzalez discrete gradient is given by

∇F(w,z) =C
m

∑
i=1

−yie−yi⟨w+z
2 ,xi⟩

1+ e−yi⟨w+z
2 ,xi⟩

(
xi− ⟨x

i,w− z⟩
∥w− z∥2 (w− z)

)

+
log(1+ e−yi⟨w,xi⟩)− log(1+ e−yi⟨z,xi⟩)

∥w− z∥2 (w− z)

)
+

w+ z
2

.

See Figure 3.5 for the numerical results.
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Fig. 3.5 DG methods for l2-regularised logistic regression. Convergence rate plotted as
relative objective. The rates of randomised and cyclic Itoh–Abe methods almost coincide,
and so do the mean value and Gonzalez discrete gradient methods.

3.9.4 Nonconvex function

We solve the nonconvex problem

min
x∈Rn

F(x) = ∥Ax∥2 +3sin2(⟨c,x⟩), (3.30)

where A ∈ Rn×n is a square, nonsingular matrix, and c ∈ Rn satisfies Ac = c and ∥c∥ = 1.
This is a higher-dimensional extension of the scalar function x2 +3sin2(x) considered by
Karimi et al. in [120]. This scalar function satisfies the PŁ inequality (3.23) for µ = 1/32,
and it follows that F satisfies it for µ = 1/(32κ), where κ is the condition number of A∗A.
Furthermore, the nonconvexity of F can be observed by considering the restriction of F to
x = λc for λ ∈ R, which has the form of the original scalar function. The function has the
unique minimiser x∗ = 0 with F∗ = 0.

We set n = 50 and choose x0 constructed by random, independent draws from a Gaussian
distribution. See Figure 3.6 for the numerical results.
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Fig. 3.6 DG methods applied to nonconvex problem that satisfies the PŁ inequal-
ity. Left: Plots of relative objective. Right: Plots of norm of gradient (normalised)
∥∇F(xk)∥ / ∥∇F(x0)∥.

3.9.5 Comparison of Itoh–Abe and explicit coordinate descent for stiff
problems

As discussed in Chapter 1, variational optimisation problems for image analysis and signal
processing often feature nonsmooth regularisation terms that promote sparsity, e.g. in the
gradient domain or a wavelet basis. To overcome the nonsmoothness, these terms may be
replaced with smooth approximations. This, however, leads to optimisation problems that
suffer from stiffness, i.e. local, rapid variations in the gradient, requiring the use of severely
small time steps for explicit numerical methods. In such cases, the cost of solving an implicit
equation such as (2.8) may be preferrable to explicit methods.

We investigate this scenario, by comparing the Itoh–Abe discrete gradient method to
explicit coordinate descent, for solving (smoothened) total variation denoising problems.
We consider a ground truth image xtrue ∈ Rn and a noisy image xδ = xtrue +δ , where δ is
random Gaussian noise. The total variation regulariser is defined as TV(x) := ∑

n
i=1 |[∇x]i|,

with ∇ : Rn→ R2×n a discretised spatial gradient as defined in [47], and | · | : R→ R the
absolute value function. As the nonsmoothness is induced by the absolute value function, we
approximate the regulariser by TVε(x) := ∑

n
i=1 |[∇x]i|ε , where

|x|ε :=
√

x2 + ε.

The optimisation problem is thus given by

argmin
x∈Rn

1
2
∥x− xδ∥2 +λ TVε(x). (3.31)

Unless otherwise specified, the time step for explicit coordinate descent (CD) is τCD =

1/(2λ
√

ε +1) and for the Itoh–Abe discrete gradient method (DG) is τDG = 1/10.
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In Figure 3.7, we compare the DG method for a range of time steps to CD. This demon-
strates that the superior convergence rate of the DG method is stable with respect to a wide
range of time steps. In Figure 3.8, we compare the DG method to CD for different values
of ε , demonstrating that the benefits of using the DG method increases as ε gets smaller.
In Figure 3.9, we compare different time steps for CD to the DG method, showing that for
large time steps, the scheme is unstable and fails to decrease while for small time steps, the
iterates decrease too slowly. In Figure 3.10, we employ a simple backtracking line search
(LS) method based on the Armijo-Goldstein condition, and compare this to the DG method.
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Fig. 3.7 Top left: Comparison of explicit coordinate descent with τCD = 1/(2λ
√

ε +1) vs the
Itoh–Abe discrete gradient methods with time steps 0.025, 0.1, 1, and 2, and with ε = 10−8.
Top right: Ground truth image. Bottom left: Noisy image. Bottom right: Total variation
denoising with ε = 10−8.

3.9.6 Comparison of methods for solving the discrete gradient equa-
tion

We test the numerical performance of four methods for solving the discrete gradient equation
(2.8), building on the fixed point theory in Section 3.4.
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Fig. 3.8 Comparison of CD to DG for three values of ε , 10−2, 10−4, and 10−8. The time
steps are set to τDG =

√
τCD where the latter time step is set to 1/L.

The first method, denoted F, is the fixed point updates (3.10) proposed in [164] (θ =

1). The second method, denoted R, is the relaxed fixed point method (3.11), where θ is
optimised according to (3.12) if F is convex, and is otherwise set to 1/2. The third method,
denoted F+R, is also the updates (3.11) with θ = 1 by default, but whenever the discrepancy
∥T (yk+1)− yk+1∥ is greater than ∥T (yk)− yk∥, then the update is repeated with θ set to half
its previous value. This third option might be desirable in cases where θ = 1 is expected
to give faster convergence but also be unstable. The fourth method is the built-in solver
scipy.optimize.fsolve in Python.

To test these methods, we performed 50 iterations of the discrete gradient method for
different test problems, where at each iterate the discrete gradient solver would run until

∥rk∥∞ < ε, where rk
i :=

yk
i − yk−1

i

yk−1
i

if yk−1
i ̸= 0, and rk

i := yk
i otherwise,

for a specified tolerance ε > 0, or until k reaches a given maximum Kmax. We then compare
the average CPU time (s) for each of these methods. If a method fails to converge to a fixed
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Fig. 3.9 Comparison of different time steps for CD vs fixed time step for DG. For smaller
time steps, the CD iterates decrease too slowly, and for larger steps, they become unstable
and fail to decrease.
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Fig. 3.10 Comparison of DG to simple backtracking line search (LS) in terms of coordinate
evaluations.

point for a significant number of the iterations (> 10%), we consider the method inapplicable
for that test problem.

We test the methods for the mean value discrete gradient applied to three of the previous
test problems, for ε = 10−6 and 10−12. We have not included results for the Gonzalez
discrete gradient and other tolerances, as the results were largely the same.

The results are given in Table 3.2. We see that R is superior in stability, being the only
method that locates the minimiser in every case. In all cases, R or F+R were the most
efficient or close to the most efficient method. However, the relative performance of the
different methods varies notably for the different test problems. This suggests that optimising
for θ would require it to be tuned according to the optimisation problem, e.g. by an initial
line search procedure.
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Table 3.2 Average CPU time (s) over 50 iterations of (2.8) with the mean value discrete
gradient. Tolerance ε = 10−6.

Test problem F R F + R fsolve ε

Linear system (3.28) N/A (0.003) 0.006 0.002 0.190 10−6

Logistic regression (3.29) 0.001 0.016 0.001 N/A (0.054)
Nonconvex problem (3.30) N/A (0.019) 0.003 N/A (0.020) N/A (0.427)

Linear system (3.28) N/A (0.011) 0.012 0.005 0.206 10−12

Logistic regression (3.29) 0.055 0.037 0.019 N/A (0.076)
Nonconvex problem (3.30) N/A (0.033) 0.005 N/A (0.031) 0.513

3.10 Conclusion and outlook

In this chapter, we have studied the discrete gradient method for optimisation, and provided
several fundamental results on well-posedness, convergence rates and optimal time steps. We
have focused on four methods, using the Gonzalez discrete gradient, the mean value discrete
gradient, the Itoh–Abe discrete gradient, and a randomised version of the Itoh–Abe method.
Several of the proven convergence rates match the optimal rates of classical methods such
as gradient descent and stochastic coordinate descent. For the Itoh–Abe discrete gradient
method, the proven rates are better than previously established rates for comparable methods,
i.e. cyclic coordinate descent methods [221].

There are open problems to be addressed in future work. First, similar to acceleration for
gradient descent and coordinate descent [15, 157, 159, 221], we will study acceleration of
the discrete gradient method to improve the convergence rate from O(1/k) to O(1/k2).





Chapter 4

Discrete gradient methods for
nonsmooth, nonconvex optimisation

4.1 Introduction

This chapter is based on the preprint [184], and is joint work with Matthias J. Ehrhardt, G. R.
W. Quispel, and Carola-Bibiane Schönlieb.

In the previous chapter, we studied and provided analyis for discrete gradient methods in
the continuously differentiable setting. In this chapter, we switch the focus to nonsmooth,
nonconvex optimisation problems.

Thus we consider the unconstrained problem

min
x∈Rn

F(x), (4.1)

where the objective function F is locally Lipschitz continuous, bounded below and coercive.
The function may be nonconvex and nonsmooth, and we assume no knowledge besides
point evaluations x 7→ F(x). To solve (4.1), we consider generalised Itoh–Abe type methods,
namely the randomised Itoh–Abe methods studied in Chapter 3, as well as a deterministic
variant. In this chapter, we therefore seek to extend discrete gradient methods from the
differentiable setting to the nonsmooth setting.

Itoh–Abe methods

We recall the Itoh–Abe scalar update (3.4), defined via

xk+1 7→ xk− τkαkdk+1, where αk ̸= 0 solves αk =−
F(xk− τkαkdk+1)−F(xk)

τkαk
.
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We thus refer to αk as the implicit solution to this scalar equation, and consider the following
algorithm.

Algorithm 1 Generalised Itoh–Abe method
Input: starting point x0, directions (dk)k∈N, time steps (τk)k∈N.

for k = 0,1,2, . . . do
Update xk+1 = xk− τkαkdk+1 via (3.4)

end for

4.1.1 Bilevel optimisation and blackbox problems

An important motivation for the methods studied in this chapter is nonsmooth bilevel prob-
lems, which we introduced in Chapter 1. We briefly recall these problems in the more general
setting of simulation-based optimisation. We suppose a simulation model depends on some
tunable parameters ϑ ∈ Rn, such that for a given parameter choice ϑ , the model returns an
output xϑ . Furthermore, there is a cost function Φ, which assigns to output xϑ a numerical
score Φ(xϑ ) ∈ R, which we want to minimise with respect to ϑ . The associated parameter
optimisation problem becomes

ϑ
∗ ∈ argmin

ϑ∈Rn
Φ(xϑ ).

Another example of parameter optimisation problems is supervised machine learning.
In this chapter, we consider bilevel problems for variational regularisation models, i.e.

(1.11). Namely, we consider a variational regularisation problem for image denoising,

xϑ ∈ argmin
x

1
2
∥x− f δ∥2 +Rϑ (x),

where f δ is a noisy image and ϑ is the regularisation parameter. For training data with
desired reconstruction x†, we consider a scoring function Φ that estimates the discrepancy
between x† and the reconstruction xϑ . In Section 4.5.2, we apply generalised Itoh-Abe
methods to solve these problems.

As discussed in Section 1.1.2, bilevel problems, and parameter optimisation problems
in general, pose several challenges. They are often nonconvex and nonsmooth, due to the
nonsmoothness and nonlinearity of ϑ 7→ xϑ . Furthermore, the model simulation ϑ 7→ xϑ

is an algorithmic process for which gradients or subgradients are challenging to compute1.

1Note that we address this issue for bilevel problems in depth in Chapter 7.
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Such problems can then be modelled as blackbox optimisation problems, for which one only
has access to point evaluations of the function. It is therefore of great interest to develop
efficient and robust derivative-free methods for such optimisation problems.

There is a rich literature on bilevel optimisation for variational regularisation problems in
image analysis, c.f. e.g. [40, 66, 125, 166]. In Chapter 7 we provide a wider literature review
for this topic.

Furthermore, model parameter optimisation problems appear in many other applications.
These include optimising for the management of water resources [91], approximation of a
transmembrane protein structure in computational biology [98], image registration in medical
imaging [168], the building of wind farms [77], and solar energy utilisation in architectural
design [119], to name a few.

4.1.2 Related literature on nonsmooth, nonconvex optimisation

Although nonsmooth, nonconvex problems are known for their difficulty compared to convex
problems, a rich optimisation theory has grown since the 1970s. As the focus of this chapter
is derivative-free optimisation, we will compare the methods’ convergence properties and
performance to other derivative-free solvers. Audet and Hare [10] recently provided a
reference work for this field.

While there is a myriad of derivative-free solvers, few provide convergence guarantees
for nonsmooth, nonconvex functions. Audet and Dennis Jr [9] introduced the mesh adaptive
direct search (MADS) method for constrained optimisation, with provable convergence guar-
antees to stationary points for nonsmooth, nonconvex functions in the Clarke subdifferential
framework. Direct search methods evaluate the function at a finite polling set, compare
the evaluations, and update the polling set accordingly. Such methods only consider the
ordering of the evaluations, rather than the numerical differences. A significant portion of
derivative-free methods are direct search methods, and the most well-known of these is the
Nelder–Mead method (also known as the downhill simplex method) [155].

Alternatively, derivative-free model-based methods that build a local quadratic model
based on evaluations are well-documented [42, 180, 181]. While such methods tend to work
well in practice, they are normally designed only for smooth functions, so their performance
on nonsmooth functions is not guaranteed.

Fasano et al. [87] formulated a derivative-free line search method termed DFN and anal-
yse its convergence properties for nonsmooth functions for the Clarke subdifferential, in the
constrained setting. Building on the DFN algorithm, Liuzzi and Truemper [139] formulated
a derivative-free method that is a hybrid between DFN and MADS. The Itoh–Abe methods
share many similarities with DFN, such as performing line searches along dense directions,
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and they employ a similar convergence analysis. However, the line search methods differ,
and the Itoh–Abe methods are in particular motivated by structure-preservation of gradient
flow-type dissipativity. Furthermore, our convergence analysis is more comprehensive, con-
sidering both stochastic and deterministic methods, and obtaining convergence guarantees
using the cyclical density property.

Furthermore, we note the resemblance of randomised Itoh–Abe methods (3.4), when
(dk)k∈N is randomly, independently drawn from Sn−1, to the random search method proposed
by Polyak in [179] and studied for nonsmooth, convex functions by Nesterov in [160], given
by

xk+1 = xk− τk
F(xk +αkdk+1)−F(xk)

αk
dk+1,

where the sequence (dk)k∈N is randomly, independently drawn from Sn−1. The implicit
equation (3.4) can be treated as a line search rule for the above method, with constraints
imposed by τmin, τmax.

While our focus is on derivative-free methods, we also mention some popular methods
for nonsmooth, nonconvex optimisation that use gradient or subgradient information. Central
in nonsmooth optimisation are bundle methods, where a subgradient [54] is required at
each iterate to construct a linear approximation to the objective function—see [121] for an
introduction. A close alternative to bundle methods are gradient sampling methods (see [38]
for a recent review by Burke et al.), where the descent direction is determined by sampling
gradients in a neighbourhood of the current iterate. Curtis and Que [60] formulated a hybrid
method between the gradient sampling scheme of [59] and the well-known quasi-Newton
method BFGS adapted for nonsmooth problems [133]. These methods have convergence
guarantees in the Clarke subdifferential framework, under the assumption that the objective
function is differentiable in an open, dense set. Last, we mention a derivative-free scheme
based on gradient sampling methods, proposed by Kiwiel [123], where gradients are replaced
by Gupal’s estimates of gradients of the Steklov averages of the objective function. This
method has convergence guarantees in the Clarke subdifferential framework, but has a high
computational cost in terms of function evaluations per iterate.

4.1.3 Contributions

In this chapter, we formulate generalised Itoh–Abe methods for solving nonsmooth functions.
We prove that the methods always admit a solution, and that the iterates converge to a set of
Clarke stationary points, for any locally Lipschitz continuous function, and both for deter-
ministic and randomly chosen search directions. Consequently, the scope of discrete gradient
methods for optimisation is significantly broadened, and we conclude that the dissipativity
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properties of gradient flows can meaningfully be preserved even beyond differentiability.
Ultimately, this provides a new, robust, and versatile optimisation scheme for nonsmooth,
nonconvex functions.

The theoretical convergence analysis for the Itoh–Abe methods is thorough and foun-
dational, and we provide examples that demonstrate that the conditions of the convergence
theorem are not just sufficient, but necessary. Furthermore, the statements and proofs are
sufficiently general so that they can be adapted to other schemes, such as the aforementioned
DFO method, thus enhancing the theory of these methods as well.

We show that the method works well in practice, by solving bilevel optimisation problems
for variational regularisation problems, as well as solving benchmark problems such as
Rosenbrock functions.

The rest of the chapter is structured as follows. In Section 4.2, the main theoretical results
of the chapter are presented, namely existence and optimality results in the stochastic and
deterministic setting. In Section 4.3, we briefly discuss the Itoh–Abe discrete gradient for
general coordinate systems. In Section 4.4 and Section 4.5, the numerical implementation is
described and results from test problems are presented.

4.2 The discrete gradient method for nonsmooth optimisa-
tion

In this section, we present the main theoretical results for the generalised Itoh–Abe methods.
In particular, we prove that the update (3.4),

xk+1 7→ xk− τkαkdk+1, where αk ̸= 0 solves αk =−
F(xk− τkαkdk+1)−F(xk)

τkαk
,

admits a solution for all τk > 0. We also prove under minimal assumptions on F and (dk)k∈N
that the iterates converge to a connected set of Clarke stationary points, both in a stochastic
and deterministic setting.

4.2.1 Existence result

Lemma 4.1. Suppose F is a continuous function bounded below, and that x ∈ Rn, d ∈ Sn−1

and τ > 0. Then at least one of the following statements hold.

(i) There is α ̸= 0 that solves (3.4), i.e. that satisfies F(x−ταd)−F(x)
τα

=−α .

(ii) F is Clarke directionally stationary at x along d.
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Proof. Suppose the second statement does not hold. Then there is ε > 0 such that

min
{

Fo(x;−d),Fo(x;d)
}
<−ε,

so assume without loss of generality that Fo(x;−d)<−ε . By definition of Fo, there is δ > 0
such that for all α ∈ (0,δ ),

F(x− ταd)−F(x)
τα

≤−ε/2.

Taking α → 0, we get that

lim
α→0+

F(x− ταd)−F(x)
τα2 ≤ lim

α→0+
− ε

2α
=−∞,

so there is a α1 ∈ (0,δ ) such that

F(x− τα1d)−F(x)
τα2

1
<−1.

On the other hand, as F is bounded below, we have

liminf
α→∞

F(x− τα2d)−F(x)
τα2

2
≥ lim

α2→∞

min
{

0,F(x− τα2d)
}
−F(x)

τα2
2

= 0.

Thus there is α2 such that
F(x− τα2d)−F(x)

τα2
2

>−1.

Since the mapping α 7→ F(x−ταd)−F(x)
τα2 is continuous for α ∈ (0,∞), we conclude by the

intermediate value theorem [197, Theorem 4.23] that there is α ∈ (α1,α2) that solves the
discrete gradient equation

F(x− ταd)−F(x)
τα2 =−1.

Remark 4.2. Note that by the above proof it is straightforward to identify an interval in
which a solution to (3.4) exists, allowing for the use of standard root solver algorithms.

The following lemma, which is an adaptation of [100, Theorem 1] for the nonsmooth
setting, summarises some useful properties of the methods.

Lemma 4.3. Suppose that F is continuous, bounded from below and coercive, and let (xk)k∈N
be the iterates produced by (3.4). Then, the following properties hold.
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(i) F(xk+1)≤ F(xk).

(ii) limk→∞
F(xk+1)−F(xk)
∥xk+1−xk∥ = 0.

(iii) limk→∞ ∥xk− xk+1∥= 0.

(iv) (xk)k∈N has an accumulation point x∗.

Proof. Property (i) follows from the equation F(xk+1)−F(xk) =−τkα2
k .

Next we show properties (ii) and (iii). Since F is bounded below and (F(xk))k∈N is
decreasing, F(xk)→ F∗ for some limit F∗. Therefore, by (3.6)

F(x0)−F∗ =
∞

∑
k=0

F(xk)−F(xk+1) =
∞

∑
k=0

τk

(
F(xk)−F(xk+1)

∥xk+1− xk∥

)2

≥ τmin

∞

∑
k=0

(
F(xk)−F(xk+1)

∥xk+1− xk∥

)2

.

Similarly, by (3.6)

F(x0)−F∗ =
∞

∑
k=0

F(xk)−F(xk+1) =
∞

∑
k=0

1
τk
∥xk− xk+1∥2 ≥ 1

τmax

∞

∑
k=0
∥xk− xk+1∥2.

We conclude

lim
k→∞

F(xk)−F(xk+1)

∥xk+1− xk∥
= lim

k→∞
∥xk+1− xk∥= 0,

which proves properties (ii) and (iii).
Last, we prove that property (iv) holds. Since (F(xk))k∈N is a decreasing sequence, the

iterates (xk)k∈N belong to the set
{

x ∈ Rn : F(x)≤ F(x0)
}

. Therefore, by coercivity of F ,

the iterates (xk)k∈N are bounded, and admit an accumulation point.
We denote by S the limit set of (xk)k∈N, which is the set of accumulation points,

S =
{

x∗ ∈ Rn : ∃(xk j) j∈N s.t. xk j → x∗
}
. (4.2)

By the above lemma, S is nonempty. We now prove further properties of the limit set.

Lemma 4.4. The limit set S is compact, connected and has empty interior. Furthermore, F
is constant on S.

Proof. Boundedness of S follows from coercivity of F combined with the fact that
S belongs to {x ∈ Rn : F(x) ≤ F(x0)}. Since any accumulation point of S is also an
accumulation point of (xk)k∈N, S is closed. Hence S is compact.
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We prove connectedness by contradiction. Suppose there are two disjoint and nonempty
open sets A and B such that S⊂A∪B. The sequence (xk)k∈N jumps between A and B infinitely
many times and ∥xk+1− xk∥→ 0, which implies that there is a subsequence of (xk j) j∈N in
Rn \(A∪B). However, (xk j) j∈N is a bounded sequence and has an accumulation point, which
must belong in Rn \ (A∪B). This contradicts the assumption that all accumulation points of
(xk)k∈N are in A∪B.

We show that S has empty interior by contradiction. Suppose S contains an open ball
Bε(x) in Rn. Then as ∥xk+1−xk∥→ 0, there is a j ∈N such that x j ∈ Bε(x)⊂ S. However, as
F takes the same value on all of S, we deduce that F(x j) = limk→∞ F(xk). Since (F(xk))k∈N
is a decreasing sequence, F(xk) = F(x j) for all k > j. It follows from (3.6) that xk = x j

for all k > j. Therefore, S = {x j}, which contradicts the assumption that S has nonempty
interior.

Last, since (F(xk))k∈N is a decreasing sequence and F(x∗) = limk→∞ F(xk) for all x∗ ∈ S,
it follows that F is constant on S.

Discrete gradients versus subgradients

One could hope that the consistency property (2.6) extends to nonsmooth functions, i.e. that
the Itoh–Abe discrete gradient converges to a subgradient, and that one could thereby prove
that limit points are Clarke stationary. We provide a counterexample to show that this is not
the case. That is, for nondifferentiable F , discrete gradients do not necessarily approximate a
subgradient or even an ε-approximate subgradient.2

Example 4.5. Let F(x1,x2) :=
√

x2
1 + x2

2, and set xk = [1
k ,0]

T and yk = [0, 1
k ]

T . We have

∇F(xk,yk) = [1,1]T , lim
k→∞

xk = lim
k→∞

yk = [0,0]T .

However, [1,1]T is not in ∂F(0,0) = B1(0,0). In fact, for all ε > 0, we have [1,1]T /∈
∂εF(0,0).

4.2.2 Optimality result

We now proceed to the main result of this chapter, namely that all points in the limit set S are
Clarke stationary. We consider the stochastic case and the deterministic case separately.

In the stochastic case, we assume that the directions (dk)k∈N are randomly, independently
drawn, and that the support of the probability density of Ξ is dense in Sn−1. It is straightfor-

2For convex functions, p ∈ Rn is an ε-approximate subgradient if for all y ∈ Rn one has F(y) ≥ F(x)+
⟨p,y− x⟩− ε [110].



4.2 The discrete gradient method for nonsmooth optimisation 75

ward to extend the proof to the case where (dnk+1, . . . ,dn(k+1)) are drawn as an orthonormal
system under the assumptions that the directions (dnk+1)k∈N are independently drawn from
Sn−1 and that the support of the density of the corresponding marginal distribution is dense
in Sn−1.

We define X to be the set of nonstationary points,

X = {x ∈ Rn : 0 /∈ ∂F(x)}. (4.3)

Theorem 4.6. Let (xk)k∈N solve (3.4) where (dk)k∈N are independently drawn from the
random distribution Ξ, and suppose that the support of the density of Ξ is dense in Sn−1.
Then P(S∩X ̸=∅) = 0, i.e. the limit set S is almost surely in the set of stationary points.

Proof. We will construct a countable collection of open sets (B j) j∈N, such that X ⊂⋃
j∈NB j and so that for all j ∈ N we have P(S∩B j ̸=∅) = 0. Then the result follows from

countable additivity of probability measures.
First, we show that for every x ∈ X , there is d ∈ Sn−1, ε > 0, and δ > 0 such that

F(y−λe)−F(y)
λ

≤−ε, ∀y ∈ Bδ (x), e ∈ Bδ (d)∩Sn−1, λ ∈ (0,δ ). (4.4)

To show this, note that if x ∈ X , then by definition there is d ∈ Sn−1 and ε > 0 such that

Fo(x;−d) = limsup
y→x
λ↓0

F(y−λd)−F(y)
λ

≤−ε.

Therefore, there is η > 0 such that for all λ ∈ (0,η) and all y ∈ Bη(x), we have

F(y−λd)−F(y)
λ

≤−ε/2.

As F is Lipschitz continuous around Bη(x), it is clear that the mapping

e 7→ F(y−λe)−F(y)
λ

,

is also locally Lipschitz continuous (of the same rank). It follows that there exists δ ∈ (0,η)

such that for all y ∈ Bδ (x), all e ∈ Bδ (d)∩Sn−1, and all λ ∈ (0,δ ), we have

F(y−λe)−F(y)
λ

≤−ε/3.

This concludes the first part.
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Next, for m ∈ N, we define the set

Xm =
{

x ∈ X : (4.4) holds for some d ∈ Sn−1,ε > 0 and all δ < 1/m
}
.

Clearly
X =

⋃
m∈N

Xm.

Let (yi)i∈N be a dense sequence in Xm, which exists because Qn is both countable and dense
in Rn. We define Y (m)

i = Bδ (yi), where δ = 1
m+1 . Therefore,

Xm ⊂
⋃
i∈N

Y (m)
i =⇒ X ⊂

⋃
m∈N

⋃
i∈N

Y (m)
i .

Since a countable union of countable sets is countable, we conclude with the following
statement. For each i ∈ N there is yi ∈ Rn, εi,δi > 0, and d̃i ∈ Sn−1, such that for all
z ∈ Bδi(y

i), all d̃ ∈ Bδi(d̃
i)∩Sn−1, and all λ ∈ (0,δi), we have

F(z−λ d̃)−F(z)
λ

≤−εi,

and such that
X ⊂

⋃
i∈N

Bδi(y
i). (4.5)

Finally, we show that for each i ∈ N, almost surely, S∩Bδi(y
i) =∅. For a given i, write

Bi := Bδi(y
i), and define m := minx∈Bi F(x), M := maxx∈Bi F(x). We argue accordingly: The

existence of an accumulation point of (xk)k∈N in Bi would imply that there is a subsequence
(xk j) j∈N ⊂ Bi. Suppose xk j ∈ Bi and dk j+1 ∈ Bδi(d̃

i), so that xk j+1 = xk j −λdk j+1 for some
λ > 0. If λ < δi, then

F(xk j −λdk j+1)−F(xk j)≤−εiλ =−εi∥xk j+1− xk j∥.

However,

F(xk j+1)−F(xk j) =− 1
τk j

∥xk j+1− xk j∥2,

so, combining these equations, we get

εiτk j ≤ ∥x
k j+1− xk j∥.
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This in return implies
F(xk j)−F(xk j+1)≥ ε

2
i τmin.

On the other hand, if λ ≥ δi, then

F(xk j)−F(xk j+1)≥ δ 2
i

τmax
.

Setting µ = min
{

ε2
i τmin,

δ 2
i

τmax

}
, it follows that whenever xk j ∈ Bi and dk j+1 ∈ Bδi(d̃

i), then

F(xk j)−F(xk j+1)≥ µ.

Choosing K ∈ N such that Kµ > M−m, we know that this event only has to occur K times
for (xk j) j∈N to leave Bi. In other words, almost surely, there is no subsequence (xk j) j∈N ⊂ Bi.
This concludes the proof.

Deterministic case

We now cover the deterministic case, in which (dk)k∈N is required to be cyclically dense.

Definition 4.7. A sequence (dk)k∈N ⊂ Sn−1 is cyclically dense in Sn−1 if, for all ε > 0, there
is N ∈ N such that for any k ∈ N, the set

{
dk, . . . ,dk+N−1

}
forms an ε-cover of Sn−1,

Sn−1 ⊂
k+N−1⋃
i=k+1

Bε(di).

Remark 4.8. Randomly drawn sequences are almost surely not cyclically dense, hence the
separate treatment of the stochastic and deterministic methods.

Many constructions of dense sequences are also cyclically dense. We provide an example
of such a sequence on the unit interval [0,1].

Example 4.9. Let σ ∈ (0,1) be an irrational number and define the sequence (λk)k∈N in
[0,1] by

λk = (σk) (mod 1) = σk−⌊σk⌋ ,

where ⌊σk⌋ denotes the largest integer less than or equal to σk.
To see that (λk)k∈N is cyclically dense in [0,1], set ε > 0 and note by sequential compact-

ness of [0,1] that there is k,r ∈N such that |λk−λk+r|< ε . We can write δ = |λk−λk+r|> 0,
where we know that δ is strictly positive, as no value can be repeated in the sequence due to
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σ being irrational. By modular arithmetic, we have for any l ∈ N,

λk+rl = λk + lδ (mod 1).

In other words, the subsequence (λk+rl)l∈N moves in increments of δ < ε on [0,1]. Setting
N = r

⌈
1
δ

⌉
+ k, where ⌈δ⌉ denotes the smallest integer greater than or equal to δ , it is clear

that for any j ∈ N, the set {λ j,λ j+1, . . . ,λ j+N−1} forms an ε-cover of [0,1].
One could naturally extend this construction to higher dimensions [0,1]n, by choosing n

irrational numbers such that any (non-zero) linear combinations with rational coefficients is
also irrational.

Theorem 4.10. Let (xk)k∈N solve (3.4), where (dk)k∈N are cyclically dense. Then all accu-
mulation points x∗ ∈ S satisfy 0 ∈ ∂F(x∗).

Proof. We consider the setup in the proof to Theorem 4.6, where X is the set of nonsta-
tionary points (4.3) and is covered by a countable collection of open balls (4.5),

X ⊂
⋃
i∈N

Bδi(y
i).

We will show that an accumulation point x∗ ∈ S cannot belong to the ball Bδi(y
i), from which

it follows that S is a subset of the set of stationary points. For contradiction, suppose that
there is a subsequence (xk j) j∈N→ x∗ ∈ Bδi(y

i). By Lemma 4.3 (iii), since ∥xk− xk+1∥→ 0
as k→ ∞, we deduce that for any N ∈ N, there is j ∈ N such that

{xk j ,xk j+1, . . . ,xk j+N−1} ⊂ Bδi(y
i).

Then, by cyclical density, we can choose N such that the directions {dk j ,dk j+1, . . . ,dk j+N−1}
form an εi-cover of Sn−1. Therefore, there exists xk ∈ Bδi(y

i) and dk ∈ Bδi(d̃
i), so we can

argue as in Theorem 4.6, that
F(xk)−F(xk+1)≥ µ,

where µ = min
{

ε2
i τmin,

δ 2
i

τmax

}
. If (xk j) j∈N had a limit in Bδi(y

i), this would happen arbitrar-

ily many times, which is a contradiction. This concludes the proof.

4.2.3 Necessity of search density and Lipschitz continuity

For nonsmooth problems, it is necessary to employ a set of directions (dk)k∈N larger than
the set of basis coordinates {e1, . . . ,en}. To see this, we can consider the function F(x,y) =
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max{x,y} and the starting point x0 = [1,1]T . With the standard Itoh–Abe discrete gradient
method, the iterates would remain at x0, even though this point is nonstationary.

We show with a simple example that the assumption of density of (dk)k∈N in Theorem 4.6
is not only sufficient, but also necessary.

Example 4.11. We suppose F : R2 → R is defined by F(x1,x2) = |x1|+N|y2| for some
N ∈ N, and set x0 = [−1,0]T . For θ ∈ [−π/2,π/2], let d = [cosθ ,sinθ ]T . Then −d is a
direction of descent if and only if θ ∈ (−arctan(1/N),arctan(1/N)). This interval can be
made arbitrarily small by choosing N to be sufficiently large. Therefore, for an Itoh–Abe
method to descend from x0 for arbitrary functions, the directions (dk)k∈N need to include a
convergent subsequence to the direction [1,0]T . As this direction is arbitrary, we deduce that
(dk)k∈N must be dense.

Theorem 4.6 also assumes that F is locally Lipschitz continuous. We briefly discuss why
this assumption is necessary, and provide an example to show that for functions that are
merely continuous, the theorem no longer holds.

By Proposition 2.1.1. (b) in [54], the mapping (y,d) 7→ Fo(y;d) is upper semicontinuous
for y in a neighbourhood of x, due to the local Lipschitz continuity of F near x. That is,

Fo(y∗;d∗)≥ limsup
y→y∗,d→d∗

Fo(y;d).

This property is crucial for the convergence analysis of Itoh–Abe methods, as it implies

Fo(x∗,d∗)≥ limsup
k∈N

Fo(xk;dk) = 0.

Without local Lipschitz continuity, it is possible to have

xk→ x∗, dk→ d∗, and Fo(xk;dk)→ 0, but Fo(x∗;d∗)< 0.

In this case, there is no guarantee that the limit x∗ is Clarke stationary. We demonstrate this
with an example.

Example 4.12. We will first state the iterates (xk)k∈N and then construct a function F : R2→
R that fits these iterates. Let (dk)k∈N be a cyclically dense sequence in S1 and assume
without loss of generality that [0,1]T /∈ (dk)k∈N. Replacing dk with −dk does not change the
step in (3.4), so we assume that dk

1 < 0 for all k. We set x0 = [0,0]T and define (xk)k∈N and
(F(xk))k∈N to be

xk+1 = xk− 1
(k+1)2 dk, F(xk+1) = F(xk)− 1

(k+1)4 , F(x0) = 0.



80 Discrete gradient methods for nonsmooth, nonconvex optimisation

Since ∑k∈N ∥xk− xk+1∥< ∞, it follows that xk converges to some limit x∗, and F(xk) clearly
decreases to a limit F∗ ∈ R. Furthermore, these steps satisfy (3.4) with τk = 1. We then
define F on the line segments [xk,xk+1] := {λxk +(1−λ )xk+1 : λ ∈ [0,1]} by interpolating
linearly from (xk,F(xk)) to (xk+1,F(xk+1)).

Next, we define F on R2 as a function that linearly decreases everywhere in the direction
[0,1]T at the rate of 1, and so that its value is consistent with the values given on the
predefined line segments [xk,xk+1]. Note that this is a well-defined and continuous function,
since each line in the direction [0,1]T crosses at most one point on at most one line segment,
due to our assumptions on (dk)k∈N.

We conclude the example by noting that the limit x∗ is not Clarke stationary—in fact, no
point is Clarke stationary—since Fo(x; [0,1]T ) =−1 for all x.

4.2.4 Nonsmooth, nonconvex functions with further regularity

For a large class of nonsmooth optimisation problems (convex and nonconvex), the objective
function is sufficiently regular so that the standard Itoh–Abe discrete gradient method is also
guaranteed to converge to Clarke stationary points. These are functions F for which x∗ ∈ Rn

is Clarke stationary if and only if Fo(x∗;ei)≥ 0 for i = 1, . . . ,n. One example is functions of
the form

F(x) = E(x)+λ∥x∥1,

where E is a continuously differentiable function that may be nonconvex, ∥x∥1 denotes
|x1|+ . . .+ |xn|, and λ > 0. See for example Proposition 2.3.3 and the subsequent corollary
in [54], combined with the fact that the nonsmooth component of F , i.e. ∥ · ∥1, separates into
n coordinate-wise scalar functions. This implies that the Clarke subdifferential is given by

∂F(x) = {∇E(x)}+λ

n

∏
i=1

sgn(xi),

where ∏ denotes the Cartesian product and

sgn(xi) :=


{1}, if xi > 0,

{−1}, if xi < 0,

[−1,1], if xi = 0.

Since this chapter is chiefly concerned with the blackbox setting where no particular
structure of F is assumed, we do not include a rigorous analysis of the convergence properties
of the standard Itoh–Abe discrete gradient method for functions of the above form. However,
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we point out that for nonsmooth, nonconvex optimisation problems where Clarke stationarity
is equivalent to Clarke directional stationarity along the standard coordinates, one can adapt
Theorem 4.6 in a straightforward manner to prove that the iterates converge to a set of
Clarke stationary points when the directions (dk)k∈N are drawn from the standard coordinates
(ei)n

i=1.
Furthermore, one could drop the requirement that F is locally Lipschitz continuous, and

replace ∥x∥1 with ∥x∥p
p, where p ∈ (0,1), and ∥x∥p

p = |x1|p + . . .+ |xn|p.

4.3 Rotated Itoh–Abe discrete gradients

We briefly discuss a generalised Itoh–Abe method that retains the Itoh–Abe discrete gradient
structure, by ensuring that the directions (dkn+1,dkn+2, . . . ,dk(n+1)) are orthonormal. Equiv-
alently, we consider each block of n directions to be independently drawn from a random
distribution on the set of orthogonal transformations on Rn with determinant 1, denoted by
SO(n).

Definition 4.13. The orthogonal group of dimension n, SO(n), is the set of orthogonal
matrices in Rn with determinant 1, so if R ∈ SO(n), then R−1 = RT . Therefore R maps one
orthonormal basis of Rn to another.

Each element of SO(n) corresponds to a rotated Itoh–Abe discrete gradient.

Definition 4.14 (Rotated Itoh–Abe discrete gradient). Suppose R ∈ SO(n) maps the basis
(ei)n

i=1 to another orthonormal basis ( f i)n
i=1, i.e. R f i = ei. For continuously differentiable

functions F, the rotated Itoh–Abe discrete gradient, denoted by ∇RF, is given by

∇RF(x,y) = RT
∇̂RF(x,y),

where

(
∇̂RF(x,y)

)
i
:=

F
(

x+∑
i
j=1⟨y− x, f j⟩ f j

)
−F

(
x+∑

i−1
j=1⟨y− x, f j⟩ f j

)
⟨y− x, f i⟩

.

It is straightforward to check that it is a discrete gradient, as defined for continuously
differentiable functions F .

Proposition 4.15. ∇RF is a discrete gradient.
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Proof. For any x,y ∈ Rn, x ̸= y,

⟨∇RF(x,y),y− x⟩
= ⟨RT

∇̂RF(x,y),y− x⟩
= ⟨∇̂RF(x,y),R(y− x)⟩

=
n

∑
i=1

F
(

x+∑
i
j=1⟨y− x, f j⟩ f j

)
−F

(
x+∑

i−1
j=1⟨y− x, f j⟩ f j

)
⟨y− x, f i⟩

· ⟨y− x, f i⟩

=
n

∑
i=1

F

x+
i

∑
j=1
⟨y− x, f j⟩ f j

−F

x+
i−1

∑
j=1
⟨y− x, f j⟩ f j


= F(y)−F(x).

The convergence property limy→x ∇RF(x,y) = ∇F(x) is immediate, providing F is conti-
nously differentiable.

Thus, we can implement schemes that are formally discrete gradient methods, and also
fulfill the convergence theorems in Section 4.2.

4.4 Numerical implementation

We consider three ways of choosing (dk)k∈N.

1. Standard Itoh–Abe method. The directions cycle through the standard coordinates,
with the rule dk = e[(k−1)modn]+1. Performing n steps of this method is equivalent to
one step with the standard Itoh–Abe discrete gradient method.

2. Random pursuit. The directions are independently drawn from a random distribution
Ξ on Sn−1. We assume that the support of the density of Ξ is dense in Sn−1.

3. Rotated Itoh–Abe method. For each k ∈ N, the block of n consecutive directions
(dkn+1,dkn+2, . . . ,d(k+1)n) is drawn from a random distribution on O(n), the orthogonal
group of dimension n. In other words, the directions form an orthonormal basis. This
retains the discrete gradient structure of the standard Itoh–Abe discrete gradient method.
We assume that each draw from O(n) is independent, and, for notational continuity,
we denote by Ξ the marginal distribution of dkn+1 on Sn−1, and again assume that the
support of the density is dense in Sn−1.

We formalise an implementation of randomised Itoh–Abe methods with two algorithms,
an inner and an outer one. Algorithm 3 is the inner algorithm and solves (3.4) for xk+1,
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given xk, dk and time step bounds τmin,τmax. Algorithm 2 is the outer algorithm, which calls
the inner algorithm for each iterate xk, and provides a stopping rule for the methods. The
stopping rule in Algorithm 2 takes two positive integers K and M as parameters, such that the
algorithm stops either after K iterations, or when the iterates have not sufficiently decreased
F in the last M iterations. We typically set M ≈ n, n being the dimension of the domain. The
exception to this is when the function F is expected to be highly irregular or nonsmooth,
in which case we choose a larger M, as directions are generally prone to yield insufficient
decrease. This stopping rule can be replaced by any other heuristic.

Algorithm 3 is a tailormade scalar solver for (3.4) that balances the tradeoff between
optimally decreasing F given constraints τmin,τmax and using minimal function evaluations.
Rather than solving for a given τk, it ensures that there exists some τk ∈ [τmin,τmax] that
matches the output xk+1. It requires a preliminary τ ∈ [τmin,τmax], which we heuristically
chose as τ =

√
τminτmax. This method is particularly suitable when τmin≪ τmax, and can be

replaced by any other scalar root finder algorithm.
The generalised Itoh–Abe methods have been implemented on Python.

Algorithm 2 Generalised Itoh–Abe method with solver and stopping criterion
Input: starting point x0, directions (dk)k∈N, time step bounds (τmin,τmax), tolerance for
function reduction η , maximal number of iterations K, maximal number of consecutive
directions without descent before stopping M, internal solver described by Algorithm 3.
Initialise: counter m = 0.

for k = 0, . . . ,K−1 do
Update xk+1←[ (xk,dk+1,τmin,τmax) via Algorithm 3
if F(xk)−F(xk+1)≤ η then

m = m+1
else

m = 0
end if
if m≥M then

Terminate
end if

end for

4.5 Examples

In this section, we use the generalised Itoh–Abe methods to solve several nonsmooth,
nonconvex problems. In Section 4.5.1, we consider some well-known optimisation challenges
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Algorithm 3 Solver for Itoh–Abe step (3.4)
Input: current point x, direction d, time step upper bound τmax, time step lower bound τmin,
predicted time step τ =

√
τminτmax, tolerance for x, ε , scalar σ ∈ (0,1).

if F(x+ εd)≥ F(x) then
d =−d
if F(x+ εd)≥ F(x) then

return x (stationary along d)
end if

end if
Solve for α assuming linear extrapolation of F and with predicted τ (assume for simplicity
α > ε):

α =−F(x+ εd)−F(x)
ετ

x0 = x, x1 = x+ εd, x2 = x+αd

while F is concave between x0, x1 and x2 (meaning F(x2)−F(x1)
x2−x1 ≤ F(x1)−F(x0)

x1−x0 ) do
α = α/σ , x2 = x+αd.

end while
Do step of parabolic interpolation (see [107, Section 6.2.2]) between x0, x1 and x2, i.e.

y = x1− 1
2
(x1− x0)2(F(x1)−F(x2))− (x1− x2)2(F(x1)−F(x0))

(x1− x0)(F(x1)−F(x2))− (x1− x2)(F(x1)−F(x0))

while Parabolic step has not decreased F do
Update parabolic interpolation points xi, i = 0,1,2.

end while
y = xi is optimal point from parabolic interpolation step
while |F(y)−F(x)|

∥y−x∥2 /∈
[
1/τmax,1/τmin

]
do

if |F(y)−F(x)|
∥y−x∥2 > 1/τmin then
y = y/σ

else
y = σy

end if
end while
return y

developed by Rosenbrock and Nesterov. In Section 4.5.2, we solve bilevel optimisation of
parameters in variational regularisation problems.3

3Test images are taken from the Berkeley database [146]. Available online: https://www2.eecs.berkeley.
edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html
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We compare our method to state-of-the-art derivative-free optimisation methods Py-
BOBYQA [42, 181] and the LT-MADS solver provided by NOMAD [9, 128, 127]. For
purposes of comparing results across solvers for these problems, we do not measure objective
function value against iterates, but objective function value against function evaluations.

4.5.1 Rosenbrock functions

We consider the well-known Rosenbrock function [194]

F(x,y) = (1− x)2 +100(y− x2)2. (4.6)

Its global minimiser [1,1]T is located in a narrow, curved valley, which is challenging for
the iterates to navigate. We compare the three variants of the Itoh–Abe method, for which
we set the algorithm parameters ε = 10−5, τmin = 10−4, τmax = 102, η = 10−9, and M = 30.
See Figure 4.1 for the numerical results. All three methods converge to the global minimiser,
which shows that the Itoh–Abe methods are robust. Unsurprisingly, the random pursuit
method and the rotated Itoh–Abe method, which descend in varying directions, perform
significantly better than the standard Itoh–Abe method.

We additionally consider a nonsmooth variant of (4.6), termed Nesterov’s (second)
nonsmooth Chebyshev–Rosenbrock function [102],

F(x,y) =
1
4
|x−1|+

∣∣y−2|x|+1
∣∣ . (4.7)

In this case too, the global minimiser [1,1]T is located along a narrow path. Furthermore,
there is a nonminimising, stationary point at [0,−1]T , which is nonregular—i.e. it has
negative directional derivatives.

We also compare the three Itoh–Abe methods for this example, and set the algorithm
parameters ε = 10−10, τmin = 10−4, τmax = 102, η = 10−16, and M = 100. See Figure 4.2
for the results from this. As can be seen, the standard Itoh–Abe discrete gradient method
is not suitable for the irregular paths and nonsmooth kinks of the objective function, and
stagnates early on. The two randomised Itoh–Abe methods perform better, as they descend
in varying directions. For the remaining 2D problems in this chapter, we will consider the
rotated Itoh–Abe method, although we could just as well have used the random pursuit
method. For higher-dimensional problems, we recommend the random pursuit method.

We compare the performance of the randomised Itoh–Abe (RIA) method to Py-BOBYQA
and LT-MADS for Nesterov’s nonsmooth Chebyshev–Rosenbrock function. We set the
parameters of the Itoh–Abe method to ε = 10−10, τmin = 10−4, τmax = 102, η = 10−16,
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Fig. 4.1 Comparison of three variants of the Itoh–Abe method applied to the Rosenbrock
function. Top left: Itoh–Abe method with standard frame. Top right: Rotated Itoh–Abe
method. Bottom left: Itoh–Abe method with random pursuit. Bottom right: Convergence
rates of the relative objective F(xk)−F∗

F(x0)−F∗ for the three variants.
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Fig. 4.2 Comparison of three variants of the Itoh–Abe method applied to Nesterov’s nons-
mooth Chebyshev–Rosenbrock function. Top left: Itoh–Abe method with standard frame.
Top right: Rotated Itoh–Abe. Bottom left: Itoh–Abe with random pursuit. Bottom right:
Convergence rates of the relative objective F(xk)−F∗

F(x0)−F∗ for the three variants.
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Fig. 4.3 Comparison of rotated Itoh–Abe method, LT-MADS and Py-BOBYQA applied to
Nesterov’s nonsmooth Chebyshev–Rosenbrock function. Top left: The iterates from the
Itoh–Abe method locate the unique minimiser to an order of accuracy of about 10−11. Top
right: The iterates from the LT-MADS method locate the nonminimising stationary point.
Bottom left: The iterates from the Py-BOBYQA method stagnate due to nonsmoothness.
Bottom right: A plot of the relative objective F(xk)−F∗

F(x0)−F∗ with respect to function evaluations,
for each method.

and M = 100, the parameters of Py-BOBYQA to rhobeg = 2, rhoend = 10−16 and npt =
(n+ 1)(n+ 2)/2, and the parameters of LT-MADS to DIRECTION_TYPE = LT 2N and
MIN_MESH_SIZE = 10−13. See Figure 4.3 and 4.4 for the numerical results for two
different starting points. In the first case, the Itoh–Abe method successfully converges to
the global minimiser, the LT-MADS method locates the nonminimising stationary point
at [0,−1]T , while the Py-BOBYQA iterates stagnate at a kink, reflecting the fact that the
method is not designed for nonsmooth functions. In the second case, both the Itoh–Abe
method and LT-MADS locate the minimiser, while the Py-BOBYQA iterates stagnate at a
kink.
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Fig. 4.4 Comparison of rotated Itoh–Abe method, LT-MADS and Py-BOBYQA applied
to Nesterov’s nonsmooth Chebyshev–Rosenbrock function with a different starting point.
Top left: The iterates from the Itoh–Abe method locate the unique minimiser to an order of
accuracy of about 10−11. Top right: The iterates from the Py-BOBYQA method stagnate
due to nonsmoothness. Bottom left: The iterates from the LT-MADS method locate the
nonminimising stationary point. Bottom right: A plot of the relative objective F(xk)−F∗

F(x0)−F∗ with
respect to function evaluations, for each method.
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Fig. 4.5 TV denoising reconstructions for different regularisation parameters. Top left: Graph
of F in (4.10). Top right: First parameter choice, ϑ1 = 10−2. Bottom left: Second parameter
choice, ϑ2 = 7×10−2. Bottom right: The third parameter choice, ϑ3 = 2×10−1.

4.5.2 Bilevel parameter learning in image analysis

In this subsection, we consider the Itoh–Abe method for solving bilevel optimisation problems
for the learning of parameters of variational imaging problems. We restrict our focus to
denoising problems, although the same method could be applied to any inverse problem. We
first consider one-dimensional bilevel problems with wavelet and TV denoising, and two-
dimensional problems with TGV denoising. In the TGV case, we compare the randomised
Itoh–Abe method to the Py-BOBYQA and LT-MADS methods. Throughout this section, we
set M = n, where n = 1,2.

Setup for variational regularisation problem

Consider an image x† ∈ L2(Ω), for some domain Ω⊂ R2, and a noisy image

f δ = x† + noise.
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To recover a clean image from the noisy one, we consider a parametrised family of regularis-
ers, {

Rϑ : L2(Ω)→ [0,∞] : ϑ ∈ [0,∞)n
}
,

and solve the variational regularisation problem

xϑ ∈ argmin
x

1
2
∥x− f δ∥2 +Rϑ (x). (4.8)

We list some common regularisers in image analysis. Total variation (TV) [36, 196] is
given by the function Rϑ (x) := ϑ TV(x), where ϑ ∈ [0,∞), and

TV(x) := sup
{∫

Ω

x(y)divφ(y)dy : φ ∈C1
c (Ω;Rd),∥φ∥∞ ≤ 1

}
.

This is one of the most common regularisers for image denoising. See Figure 4.5 for an ex-
ample of denoising with TV regularisation. We also consider its second-order generalisation,
total generalised variation [29, 28], Rϑ (x) = TGV2

ϑ
(x), where ϑ = [ϑ1,ϑ2]

T ∈ [0,∞)2 and

TGV2
ϑ (x)

:= sup
{∫

Ω

x(y)div2
φ(y)dy : φ ∈C2

c (Ω;Sym2(Rd)),∥divl
φ∥∞ ≤ ϑl+1, l = 0,1

}
.

Recall that we defined the discrete variants of TV and TGV in Chapter 1.
Recall that for a linear operator W on L2(Ω), the basis pursuit regulariser

Rϑ (x) := ϑ∥Wx∥1

promotes sparsity of the image x in the dictionary of W .
As illustrated in Figure 4.5, the quality of the reconstruction is sensitive to ϑ . If ϑ is too

low, the reconstruction is too noisy, while if ϑ is too high, too much detail is removed. As it
is generally not possible to ascertain the optimal choice of ϑ a priori, a significant amount
of time and effort is spent on parameter tuning. It is therefore of interest to improve our
understanding of optimal parameter choices. One approach is to learn suitable parameters
from training data. This requires a desired reconstruction x†, noisy data f δ , and a scoring
function Φ : L2(Ω)→ R that measures the error between x† and the reconstruction xϑ . The
bilevel optimisation problem is given by

ϑ
∗ ∈ argmin

ϑ∈[0,∞)n
Φ(xϑ ), s.t. xϑ solves (4.8). (4.9)



92 Discrete gradient methods for nonsmooth, nonconvex optimisation

In our case, we have strong convexity in the data fidelity term, which implies that xϑ is
unique for each ϑ ∈ [0,∞)n. We can therefore define a mapping

F(ϑ) := Φ(xϑ ). (4.10)

The bilevel problem (4.9) is difficult to tackle, both analytically as well as numerically. In
most cases, the lower level problem (4.8) does not have a closed form formulation. Instead, a
reconstruction xϑ is approximated numerically with an algorithm.

For the numerical experiments in this chapter, we reparametrise F(ϑ) as F(exp(ϑ)),
where the exponential operator is applied elementwise on the parameters. There are two
reasons for doing so. The first reason is that this chapter is concerned with unconstrained
optimisation, and this parametrisation allows us to optimise on Rn instead of [0,∞)n. The
second reason is that exp(ϑ) has been found to be a preferable scaling for purposes of numer-
ical optimisation. Note that in Chapter 5 we extend the Itoh–Abe optimisation framework to
nonsmooth, nonconvex, constrained optimisation problems.

Wavelet denoising

We consider the wavelet denoising problem

xϑ = argmin
x∈L2(Ω)

1
2
∥x− f δ∥2 +ϑ∥Wx∥1,

where W is a wavelet transform. In particular, W is an orthonormal basis, which implies that
the regularisation problem has the unique solution

xϑ =W−1S(W f δ ,ϑ),

where S is the shrinkage operator given in (1.5).
We first optimise ϑ for the scoring function

Φ(x) :=
1
2
∥x− x†∥2.

We set the parameters of the Itoh–Abe method to ε = 10−4, τmin = 10−1, τmax = 10, and
η = 10−1. See Figure 4.6 for the numerical results.
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(a) Plot with labels. (b) k = 0. ϑ = 1.50×102. (c) k = 1. ϑ = 1.02.

(d) k = 2. ϑ = 4.42×10−3. (e) k = 3. ϑ = 1.99×10−1. (f) k = 9. ϑ = 1.04×10−1.

Fig. 4.6 Wavelet denoising with L2 scoring function and the Itoh–Abe method. Top left: Plot
of iterates of the Itoh–Abe method. The rest: Image denoising results at different iterates k.

We also optimise ϑ with respect to the scoring function Φ(x) := 1−SSIM(x,x†), where
SSIM is the structural similarity function [218]

SSIM(x,y) :=
(2µxµy + c)(2σxy +C)

(µ2
x +µ2

y + c)(σ2
x +σ2

y +C)
.

Here µx is the mean intensity of x, σx is the unbiased estimate of the standard deviation of x,
and σxy is the correlation coefficient between x and y:

µx :=
1
m

m

∑
i=1

xi, σx :=

(
1

m−1

m

∑
i=1

(xi−µx)
2

) 1
2

, σxy :=
1

m−1

m

∑
i=1

(xi−µx)(yi−µy).

We set the parameters of the Itoh–Abe method to ε = 10−4, τmin = 10−3, τmax = 103, and
η = 10−2. See Figure 4.7 for the numerical results.

Total variation denoising

We consider the TV denoising problem

xϑ = argmin
x∈L2(Ω)

1
2
∥x− f δ∥2 +ϑ TV(x),
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(a) Plot with labels. (b) k = 0. ϑ = 10.0. (c) k = 2. ϑ = 4.71.

(d) k = 4. ϑ = 1.15. (e) k = 5. ϑ = 6.23×10−2. (f) k = 8. ϑ = 1.54×10−1.

Fig. 4.7 Wavelet denoising with SSIM scoring function and the Itoh–Abe method. Top left:
Plot of iterates of the Itoh–Abe method. The rest: Image denoising result at different iterates
k.

with the SSIM scoring function. We solve the above denoising problem using the PDHG
method [50]. We set the parameters of the Itoh–Abe method to ε = 10−4, τmin = 10−5,
τmax = 9×10−4, and η = 10−5. See Figure 4.8 for the numerical results.

Total generalised variation regularisation

We now consider the second-order total generalised variation (TGV) regulariser for denoising,
Rϑ1,ϑ2(x) = TGV2

ϑ1,ϑ2
(x), with the scoring function

Φ(x) := 1−SSIM(x,x†).

Like for TV denoising, we solve the denoising problem using the PDHG method. We set the
parameters of the randomised Itoh–Abe (RIA) method to ε = 10−1, τmin = 10−3, τmax = 105,
and η = 10−20. See Figure 4.9 for the numerical results.

We compare these results to the results from the Py-BOBYQA and LT-MADS solvers.
We set the parameters of Py-BOBYQA to rhobeg = 2, rhoend = 10−10 and npt = 2(n+1)
and the parameters of LT-MADS to DIRECTION_TYPE = LT 2N. See the results for two
different starting points in Figure 4.10 and 4.11. We note that the objective function is
approximately stationary across a range of values, which leads to the different points of
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(a) Plot with labels. (b) k = 0. ϑ = 2.00×10−1.

(c) k = 1. ϑ = 3.71×10−3. (d) k = 2. ϑ = 4.12×10−2. (e) k = 5. ϑ = 2.31×10−2.

Fig. 4.8 TV denoising with SSIM scoring function and the Itoh–Abe method. Top left: Plot
of iterates of the Itoh–Abe method. The rest: Image denoising result at different iterates k,
with a zoom to show the difference.
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(a) (b) j = 0, ϑ1 = 6.70×10−3, ϑ2 = 6.10×10−1.

(c) j = 6, ϑ1 = 5.96, ϑ2 = 25.5. (d) j = 10, ϑ1 = 4.09×10−1, ϑ2 = 10.4.

(e) j = 18, ϑ1 = 1.43×10−1, ϑ2 = 7.99×10−1. (f) j = 29, ϑ1 = 8.87×10−2, ϑ2 = 1.55.

Fig. 4.9 TGV denoising with SSIM scoring function and the Itoh–Abe method. Top left: Plot
of iterates of the method. The rest: Image denoising result at different function evaluations j.
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Fig. 4.10 Comparison of optimisation methods for TGV denoising with SSIM scoring
function. Top left: Plot of iterates of the Itoh–Abe method. Top right: Plot of iterates of the
LT-MADS method. Bottom left: Plot of iterates of the Py-BOBYQA method. Bottom right:
Comparison of convergence rates for the methods with respect to function evaluations.

convergence, and different limiting values of the objective function for different methods.
We see that the methods are all of comparable efficiency, although the Itoh–Abe method is
slower initially. The Itoh–Abe method seems to be the most efficient, once it is within a
neighbourhood of the minimiser.

4.6 Conclusion and outlook

In this chapter, we have shown that Itoh–Abe type methods are efficient and robust schemes
for solving unconstrained nonsmooth, nonconvex problems without the use of gradients or
subgradients. Furthermore, the favourable rates of dissipativity that the discrete gradient
method inherits from the gradient flow system extends to the nonsmooth case. We show,
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Fig. 4.11 Comparison of optimisation methods for TGV denoising with SSIM scoring
function for a different starting point. Top left: Plot of iterates of the Itoh–Abe method.
Top right: Plot of iterates of the LT-MADS method. Bottom left: Plot of iterates of the
Py-BOBYQA method. Bottom right: Comparison of convergence rates for the methods with
respect to function evaluations.
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under minimal assumptions on the objective function, that the methods admit a solution that
is computationally tractable, and the iterates converge to a connected set of Clarke stationary
points. Through examples, the assumptions are also shown to be necessary.

The methods are shown to be versatile optimisation schemes. It locates the global
minimisers of the Rosenbrock function and a variant of Nesterov’s nonsmooth Chebyshev–
Rosenbrock functions. The efficiency of the Itoh–Abe discrete gradient method for smooth
problems has already been demonstrated elsewhere [100, 153, 185]. We also consider its
application to bilevel learning problems (1.11) and compare its performance to the derivative-
free Py-BOBYQA and LT-MADS methods.





Chapter 5

Discrete gradient methods for
nonsmooth, nonconvex, constrained
optimisation

5.1 Introduction

In Chapter 4, we looked at Itoh–Abe type methods for derivative-free optimisation of
nonsmooth, nonconvex problems in the unconstrained setting. However, in the black-box
setting where one is likely to consider such derivative-free methods, the problem is often
subject to constraints.

In this section, we therefore consider nonsmooth, nonconvex optimisation problems with
nonsmooth, nonconvex constraints, and propose a modification of the Itoh–Abe method
which has convergence guarantees in this setting.

In the spirit of the previous chapter, where we sought to prove convergence assuming as
little structure as possible of the objective function, we now seek to consider constraints with
as little structure as possible. On that note, we consider the problem

argmin
x∈Ω

F(x), (5.1)

where F is locally Lipschitz continuous, coercive and bounded below, and Ω ⊂ Rn is an
epi-Lipschitzian set, to be defined in the next section. Furthermore, we assume that the
constraints are black-box in the sense that constraint projection maps are unavailable and
that constraint feasibility can only be verified on a point-by-point basis.
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Given x ∈Ω, a direction d ∈ Sn−1, and a function tolerance εF ≥ 0, we want α ̸= 0 that
solves ∣∣∣∣α + τ

F(x−αd)−F(x)
α

∣∣∣∣≤ εF , x−αd ∈Ω (5.2)

for a time step τ > 0. While in the unconstrained case, we showed that such an update exists
for all time steps, in the constrained case this is no longer the case. We therefore require that
each scalar update either solves (5.2) for τ , or is sufficiently close to bdΩ and decreases the
objective function F by any amount.

Thus we propose the following modification of the Itoh–Abe type methods in Chapter 4.
For each direction dk+1 ∈ Sn−1, we assume without loss of generality that Fo(xk;−dk+1)≤
Fo(xk;dk+1).

Algorithm 4 Itoh–Abe method for constrained optimisation
Input: starting point x0 ∈ Rn, time steps (τk)k∈N ⊂ [τmin,τmax], directions (dk)k∈N ⊂ Sn−1,
progress parameter γ ∈ (0,1), point tolerance εx ≥ 0, function tolerance εF ≥ 0, iteration
count k = 0, stopping rule.

while not stopping rule do
if F(xk− εxdk+1)−F(xk)>−ε2

x /τk (stationarity) or xk− εxdk+1 /∈Ω (activity) then
xk+1 = xk.

else
if ∃λ > εΩ s.t. xk−λdk+1 /∈Ω (potentially active constraint) then

xk+1 = xk−αkdk+1 where αk either solves (5.2) for τk, or solves (5.2) for
τ̃k ∈ (0,τk] such that αk ≥ γλ .

else
xk+1 = xk−αkdk+1 where αk solves (5.2) for τk.

end if
end if
k← k+1

end while

Remark 5.1. The intuition for the progress parameter γ is that the iterates shall always solve
a standard Itoh-Abe discrete gradient descent step when possible, but otherwise, the next
iterate will decrease the objective function value and progress towards the boundary at some
threshold rate γ . Clearly, when Ω = Rn, the scheme reduces to the standard, unconstrained
Itoh-Abe discrete gradient method.

We allow for εx,εF = 0, accounting for cases where we can compute Fo(xk;−dk+1),
solve the scalar update (5.2) exactly, and check if xk ∈ bdΩ.

In Section 5.3, we prove that this method is implementable in a derivative-free setting,
and that it comes with convergence guarantees.
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5.1.1 Literature review

In this chapter, we consider the Clarke subdifferential framework for functions defined on a
set Ω⊂ Rn. For an introduction to Clarke subdifferential analysis in this setting as it relates
to the Clarke tangent cone, see [118]. We also point out that Audet & Dennis Jr [9] applied
this framework to obtain optimality guarantees for MADS.

There is a range of types of constraints for bilevel problems and more generally simulation-
based optimisation, and we refer to [71] for a comprehensive classification of such constraints.
Furthermore, for constrained, nonconvex optimisation when the evaluation of constraints is
inexpensive compared to the evaluation of the objective function, see [43].

5.1.2 Contributions and outline

The rest of the chapter is structured as follows. In Section 5.2, we introduce epi-Lipschitzian
sets, and review the theory of Clarke subdifferentials and tangent cones, in order to extend
Clarke stationary points to constrained domains. In Section 5.3, we prove that the Itoh-
Abe discrete gradient method for constrained problems is well-defined and computationally
tractable. Furthermore, based on the theory from the previous section, we show that the
iterates of the method converge to a set of constrained Clarke stationary points. In Section 5.4
we present numerical results, and in Section 5.5 we conclude.

5.2 The Clarke subdifferential and tangent cones

In this section, we review and derive properties relating to epi-Lipschitzian sets, tangent
cones, and the Clarke subdifferential framework for constrained optimisation problems.

5.2.1 Epi-Lipschitzian sets

Epi-Lipschitzian sets were introduced by Rockafellar in 1978, in order to characterise
sufficient and necessary regularity at the set boundary for the tangent cone to have nonempty
interior [188, 190].

Definition 5.2 (Epi-Lipschitzian set). Let Ω be a subset of Rn and x ∈ Ω. The set Ω

is epi-Lipschitzian at x if there is a neighbourhood Nx of x, an invertible, linear map
A : Rn→ Rn−1×R and a function φ : Rn−1→ R that is locally Lipschitz continuous near
the Rn−1 component of A(x), such that

Ω∩Nx = Ω∩A−1(epiφ),
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where epiφ :=
{
(ξ , t) : φ(ξ )≤ t

}
.

Ω is epi-Lipschitzian if this holds for all x ∈Ω.

The following property [61, Theorem 1] provides an alternative characterisation of
epi-Lipschitzian sets.

Proposition 5.3. A set Ω⊂ Rn is epi-Lipschitzian if and only if there is a locally Lipschitz
continuous function φ : Rn→ R such that Ω and φ satisfy

Ω =
{

x ∈ Rn : φ(x)≤ 0
}
,

0 /∈ ∂φ(x) if φ(x) = 0.
(5.3)

That is, Ω is the level set of a locally Lipschitz continuous function that is not stationary on
bdΩ.

We recall from Chapter 2 that the Clarke tangent cone of Ω at x is given by

T Cl
Ω (x) :=

{
d ∈ Rn : ∃λk ↓ 0, xk ∈Ω, xk→ x, dk→ d, s.t. xk +λkdk ∈Ω ∀k

}
We furthermore define the hypertangent cone.

Definition 5.4. The hypertangent cone T H
Ω
(x) consists of all d ∈ Rn for which there exists

ε > 0 such that

y+λe ∈Ω for all y ∈Ω∩Bε(x), e ∈ Bε(d), λ ∈ (0,ε). (5.4)

The following key result summarises the relationship between the hypertangent cone and
the Clarke tangent cone [54, Corollary 1 to Theorem 2.5.8], as well as a more illuminating
characterisation of epi-Lipschitzian sets [188, Theorem 3].

Proposition 5.5. Suppose Ω⊂ Rn is locally closed at x ∈Ω. Then T H
Ω
(x) = intT Cl

Ω
(x).

Furthermore, T H
Ω
(x) ̸= /0 if and only if Ω is epi-Lipschitzian at x.

As Proposition 5.5 shows, a defining criteria of epi-Lipschitzian sets is that the set
of tangent cones must have nonempty interior. Thus, while this class include a variety
of nonsmooth, nonconvex sets, it does not include lower-dimensional objects, such as
hyperplanes. Another example of a non-epi-Lipschitzian set C is the epigraph of

√
| · | : R→

R, at x = [0,0]T . To see this, one may verify either that T H
C ([0,0])T = /0 or that

√
| · | is not

locally Lipschitz continuous near 0.
We now provide an example of a group of sets which are epi-Lipschitzian. For this we

define starshaped sets.
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Definition 5.6. The set Ω is starshaped with respect to x∗ ∈ Ω if, for all x ∈ Ω and all
λ ∈ [0,1], we have λx∗+(1−λ )x ∈Ω.

Example 5.7. Suppose Ω is a closed set for which there is x ∈Ω and ε > 0 such that Ω is
starshaped with respect to all y ∈ Bε(x). Then Ω is epi-Lipschitzian. To see this, note that
for each z ∈Ω, T H

Ω
(z)⊃ {Bε(x)− z}.

Remark 5.8. This includes all convex sets with nonempty interior.

5.2.2 Clarke stationarity for constrained problems

For nonsmooth, nonconvex, constrained optimisation problems, the following constrained
adaptation of the Clarke directional derivative for domain constraints was proposed by Jahn
[118].

Definition 5.9 (Constrained Clarke directional derivative). For x ∈Ω and d ∈Rn, the Clarke
directional derivative constrained to Ω is given by

Fo(x;d) := limsup
y→x, λ↓0

y∈Ω, y+λd∈Ω

F(y+λd)−F(y)
λ

. (5.5)

We derive some basic properties of this mapping.

Proposition 5.10. The Clarke directional derivative for F constrained to Ω has the following
properties.

(i) If Ω is epi-Lipschitzian at x, then Fo(x;d) exists for all d ∈ Rn.

(ii) If F is Lipschitz continuous near x with Lipschitz constant L> 0, then |Fo(x;d)| ≤L∥d∥
for all d ∈ Rn.

(iii) If x ∈ intΩ, then Fo(x;d) reduces to the standard Clarke directional derivative for
unconstrained functions.

Proof. Property (i). Let d ∈ Rn. We want to show that for all δ > 0, there is y ∈ Bδ (x)
and λ ∈ (0,δ ) such that y+λd ∈Ω. By Proposition 5.5, there is e ∈ T H

Ω
(x) and ε > 0 such

that for all y ∈Ω∩Bε(x), η ∈ (0,ε), and f ∈ Bε(e), one has y+η f ∈Ω. Choose η and λ

sufficiently small such that

y+ηe ∈ Bδ (x), e+
λ

η
d ∈ Bε(e).
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It follows that y+ηe+λd ∈Ω. Therefore the limit in (5.5) is well-defined.
Property (ii). By local Lipschitz continuity, there is δ > 0 such that for all y ∈Ω∩Bδ (x)

and λ ∈ (0,δ ),
|F(y+λd)−F(y)| ≤ Lλ∥d∥.

The property follows by plugging this inequality into the limit in (5.5).
Property (iii). This can be seen directly from the definition.
We are now ready to define Clarke stationary points for constrained optimisation prob-

lems.

Definition 5.11 (Constrained Clarke stationary points). Let F : Rn→ R be locally Lipschitz
continuous near x ∈Ω and d ∈ Rn. We say that F is directionally Clarke optimal at x along
d if

Fo(x;d)≥ 0.

If this holds for F at x for all d ∈ TC
Ω
(x), then we call x a constrained Clarke stationary

point restricted to Ω.

This notion of first-order optimality is also considered by Audet & Dennis Jr for estab-
lishing optimality of MADS [9].

As we know from Chapter 2 in the unconstrained case, if x ∈ Rn is a local minimiser
of F : Rn→ R, then 0 ∈ ∂CF(x), and for convex functions, the reverse also holds. We now
present a result to show that the above notion of a constrained Clarke stationary point is
consistent with these comparisons, i.e. Definition 5.11 is a sufficient optimality criteria for a
wide range of optimisation problems.

For this we recall pseudoconvex functions which were defined in Chapter 2, and star-
shaped sets from the previous subsection. We define Clarke regular functions.

Definition 5.12 (Clarke regularity). A function F : Rn→ R is (Clarke) regular at x if the
directional derivative

F ′(x;d) := lim
λ↓0

F(x+λd)−F(x)
λ

exists for all d ∈ Rn and Fo(x;d) = F ′(x;d). If this holds for all x, we say that F is regular.

Lemma 5.13. Consider a function F : Ω̂→ R for which Ω b Ω̂, and a point x ∈Ω at which
F is regular, directionally differentiable, pseudoconvex, and locally Lipschitz continuous.
Furthermore, suppose that Ω is starshaped with respect to x and that Ω is epi-Lipschitzian
and regular at x. Then x is a Clarke stationary point of F restricted to Ω if and only if x is a
global minimiser of F.
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Proof. This follows from [118, Theorem 4.19], noting that by regularity of Ω, the
contingent cone and the Clarke tangent cone coincide [26, Corollary 6.1], and that by
regularity of F , F ′(x;d) = Fo(x;d).

5.3 Convergence of the algorithm

In Chapter 4, we considered Itoh–Abe type methods for unconstrained optimisation of
nonsmooth, nonconvex functions. In Theorems 4.6, 4.10 , we proved that if the directions
(dk)k∈N are cyclically dense or randomly drawn from Sn−1, then the iterates (xk)k∈N converge
to a limit set of Clarke stationary points. In this section, we prove that under the same
assumptions on the sequence of directions, the iterates of Algorithm 4 converge to a limit set
of constrained Clarke stationary points of F on Ω.

First, we prove that Algorithm 4 is a well-defined and implementable scheme.

Proposition 5.14. Let Ω be an epi-Lipschitzian subset of Rn, and let F : Ω→R be continuous
and bounded below on Ω. Then for any current iterate xk and dk+1 ∈ Sn−1, Algorithm 4
admits a solution xk+1.

Proof. By Proposition 5.10 (i), the Clarke directional derivatives Fo(xk;dk+1) and
Fo(xk;−dk+1) are well-defined. If the current point is approximately directionally stationary
or the constraint is (approximately) active, i.e. F(xk− εxdk+1)−F(xk) > −ε2

x /τk, or xk−
εxdk+1 /∈Ω, then set xk+1 = xk and we are done.

Otherwise, xk−εxdk+1 ∈Ω and F(xk−εxdk+1)−F(xk)≤−ε2
x /τk. In the unconstrained

case, we know from Chapter 4 that a solution to (5.2) for τk can be found by a number
of scalar root-finder methods. In the constrained case, such a method will either locate
α that solves (5.2), in which case one can set αk = α , or locate some α > 0 such that
xk−αdk+1 /∈Ω.

It remains to consider the latter case. Set λ = α and α = γλ . If xk −αdk+1 ∈ Ω

and F(xk−αdk+1)−F(xk)<−α2/τk, then α solves (5.2) for τ̃k := α2/(F(xk−αdk+1)−
F(xk)) ≤ τk and α ≥ γλ , so αk = α is an admissible update for Algorithm 4. Else, if
xk−αdk+1 /∈ Ω, then we can repeat this step, setting λ = α and α = γλ . After repeating
this step a finite number of times, we will have εx ≥ γλ , in which case αk = εx will be an
admissible update. Finally, if xk−αdk+1 ∈Ω and F(xk−αdk+1)−F(xk)>−α2/τk, then
by the analysis in Lemma 4.1, either there is a solution αk ∈ (εx,α) to (5.2) for τk or there is
another point λ ∈ (εx,α) such that xk−λdk+1 /∈Ω. In the former case, we are done, while
in the latter case we can repeat this step a finite number of times.

The following lemma summarises some basic properties of the method, along the lines of
Lemma 4.3.



108 Discrete gradient methods for nonsmooth, nonconvex, constrained optimisation

Lemma 5.15. Consider a locally Lipschitz continuous, coercive function F : Ω→ R defined
on an epi-Lipschitzian set Ω⊂ Rn, and suppose the iterates (xk)k∈N solve Algorithm 4. Then
the following properties hold.

(i) F(xk+1)≤ F(xk).

(ii) ∥xk− xk+1∥→ 0.

(iii) (xk)k∈N has an accumulation point.

Proof. Property (i). This follows immediately from the algorithm.
Property (ii). By coercivity and local Lipschitz continuity, F is bounded below, so we

can define F∗ := limk→∞ F(xk). We have

F(x0)−F∗ = ∑
k∈N

F(xk)−F(xk+1) = ∑
k∈N

1
τk
∥xk− xk+1∥ ≥ 1

τmax
∑
k∈N
∥xk− xk+1∥.

Therefore ∥xk− xk+1∥→ 0.
Property (iii). This follows from coercivity of F .
We denote by the limit set S of (xk)k∈N as given in (4.2), which is nonempty by the above

lemma. The following result is a standard extension of Lemma 4.4 and the same proof holds.

Lemma 5.16. The limit set S is compact, connected and has empty interior. Furthermore, F
is constant on S.

5.3.1 Stochastic case

We proceed to the convergence proofs. We first prove convergence when (dk)k∈N are
chosen stochastically. As in the previous chapter, we suppose that (dk)k∈N are randomly,
independently drawn, and that the support of the probability density of Ξ is dense in Sn−1.

We will make use of the following results from [9], which extend the Lipschitz continuity
of the Clarke generalised derivative to the constrained case for the hypertangent cone, and
continuity to its closure, the Clarke tangent cone.

Proposition 5.17 ([9, Lemma 3.8]). Let F be Lipschitz continuous with Lipschitz constant
L > 0 near x ∈Ω. If d and e are in T H

Ω
(x), then

|Fo(x;d)−Fo(x;e)| ≤ L∥d− e∥.
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Proposition 5.18 ([9, Proposition 3.9]). Let F be Lipschitz continuous near x ∈Ω. If Ω is
epi-Lipschitzian at x and d ∈ T Cl

Ω
(x), then

Fo(x;d) = lim
e→d,

e∈T H
Ω
(x)

Fo(x;e).

Note that it follows from Proposition 5.18 that if Ω is epi-Lipschitzian at x, then for
Clarke stationarity on Ω, it is sufficient to verify optimality on T H

Ω
(x) rather than TC

Ω
(x).

We define X to be the set of nonstationary points,

X = {x ∈Ω : F is not Clarke stationary at x restricted to Ω}. (5.6)

Theorem 5.19. Let F : Ω→R be locally Lipschitz continuous, coercive, and bounded below,
where Ω ⊂ Rn is epi-Lipschitzian. Let (xk)k∈N solve Algorithm 4 for εx = εF = 0, where
(dk)k∈N are independently drawn from the random distribution Ξ, and suppose that the
support of the density of Ξ is dense in Sn−1. Then P(S∩X ̸=∅) = 0, i.e. the limit set S is
almost surely in the set of stationary points.

Proof. This proof is analogous to the proof for the unconstrained case, with the exception
of additional treatment of points satisfying the constraints, and the progress parameter γ .

We will construct a countable collection of open sets (B j) j∈N, such that X ⊂
⋃

j∈NB j

and so that for all j ∈ N we have P(S∩B j ̸=∅) = 0. Then the result follows from countable
additivity of probability measures.

First, we show that for every x ∈ X , there is d ∈ Sn−1∩T H
Ω
(x), ε > 0, and δ > 0 such that

y−λe ∈Ω,
F(y−λe)−F(y)

λ
≤−ε, ∀y ∈ Bδ (x), e ∈ Bδ (d)∩Sn−1, λ ∈ (0,δ ). (5.7)

To show this, note that if x ∈ X ⊂Ω, then as Ω is epi-Lipschitzian, there is d ∈ Sn−1∩T H
Ω
(x)

and ε > 0 such that

Fo(x;−d) = limsup
y→x, λ↓0

y∈Ω, y+λd∈Ω

F(y−λd)−F(y)
λ

≤−ε.

Therefore, there is η > 0 such that for all λ ∈ (0,η) and all y ∈ Bη(x), we have

F(y−λd)−F(y)
λ

≤−ε/2.
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As F is Lipschitz continuous around Bη(x), it is clear that the mapping

e 7→ F(y−λe)−F(y)
λ

,

is also locally Lipschitz continuous. By this and since d ∈ T H
Ω
(x), it follows that there exists

δ ∈ (0,η) such that for all y ∈ Bδ (x)∩Ω, all e ∈ Bδ (d)∩Sn−1, and all λ ∈ (0,δ ), we have

y−λe ∈Ω, and
F(y−λe)−F(y)

λ
≤−ε/3.

This concludes the first part.
Next, for m ∈ N, we define the set

Xm =
{

x ∈ X : (5.7) holds for some d ∈ Sn−1∩T H
Ω (x), ε > 0, and all δ < 1/m

}
.

Clearly
X =

⋃
m∈N

Xm.

Let (yi)i∈N be a dense sequence in Xm, which exists because Qn is both countable and dense
in Ω. We define Y (m)

i = Bδ (yi), where δ = 1
m+1 . Therefore,

Xm ⊂
⋃
i∈N

Y (m)
i =⇒ X ⊂

⋃
m∈N

⋃
i∈N

Y (m)
i .

Since a countable union of countable sets is countable, we conclude with the following
statement. For each i ∈ N there is yi ∈Ω, εi > 0, δi > 0, and d̃i ∈ Sn−1∩T H

Ω
(yi), such that

for all z ∈ Bδi(y
i), all d̃ ∈ Bδi(d̃

i)∩Sn−1, and all λ ∈ (0,δi), we have

z−λ d̃ ∈Ω,
F(z−λ d̃)−F(z)

λ
≤−εi,

and such that
X ⊂

⋃
i∈N

Bδi(y
i). (5.8)

Finally, we show that for each i ∈ N, almost surely, S∩Bδi(y
i) =∅. For a given i, write

Bi := Bδi(y
i), and define m := minx∈Bi F(x), M := maxx∈Bi F(x). We argue accordingly: The

existence of an accumulation point of (xk)k∈N in Bi would imply that there is a subsequence
(xk j) j∈N ⊂ Bi. Suppose xk j ∈ Bi and dk j+1 ∈ Bδi(d̃

i). Then xk j+1 = xk j −αk jd
k j+1, where
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αk j either solves (5.2) for τk j or solves (5.2) for some τ̃k j ∈ (0,τk j ] and such that αk j ≥ γδi

(since any λ such that xk−λdk+1 /∈Ω must be greater than δi).
If αk j solves (5.2) for τk j , then by the analysis in the proof of Theorem 4.6, we know that

F(xk j)−F(xk j+1)≥min

{
ε

2
i τmin,

δ 2
i

τmax

}
.

Otherwise, αk j > γδi and there is τ̃k j ∈ (0,τmax] such that xk j+1 = xk j +αk jd
k j+1 and

F(xk j)−F(xk j+1) =
1

τ̃k j

α
2
k j
.

In this case,

F(xk j)−F(xk j+1) =
1

τ̃k j

α
2
k j
≥ 1

τmax
α

2
k j
≥ 1

τmax
γ

2
δ

2
i .

Setting µ = min{ε2
i τmin,δ

2
i /τmax,γ

2δ 2
i /τmax}, it follows that whenever xk j ∈ Bi and dk j+1 ∈

Bδi(d̃
i), then

F(xk j)−F(xk j+1)≥ µ.

Choosing K ∈ N such that Kµ > M−m, we know that this event only has to occur K times
for (xk j) j∈N to leave Bi. In other words, almost surely, there is no subsequence (xk j) j∈N ⊂ Bi.
This concludes the proof.

Deterministic case

We now state the deterministic case, in which (dk)k∈N is required to be cyclically dense. Its
proof is simply that of Theorem 4.10, but referring to the proof of Theorem 5.19 instead of
Theorem 4.6.

Theorem 5.20. Let F : Ω→R be locally Lipschitz continuous, coercive, and bounded below,
where Ω ⊂ Rn is epi-Lipschitzian. Let (xk)k∈N solve Algorithm 4 for εx = εF = 0, where
(dk)k∈N are cyclically dense. Then the limit set S is in the set of stationary points.

5.4 Numerical experiments

We consider some simple numerical examples on R2. Algorithm 4 has been implemented on
MATLAB, using a simple bisectional search method to solve the scalar equation. For the
algorithmic parameters, we have chosen τk = 1 for all k ∈ N, dk drawn independently from
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Fig. 5.1 Numerical results for the optimisation problem in (5.9), with iterates going from red
to black.

the uniform distribution on Sn−1, γ = 0.5, εx = 10−5, and εF = 10−5. The algorithm is set to
stop if the objective value has decreased by less than εF over the last 30 iterates.

We first consider the optimisation problem (5.1) with F : R2→ R and Ω given by

F(x) := max{|cos(x1 + x2)+ sin(3x2)|, |sin(x1 +1)|},
Ω := {x ∈ R2 : (x1−4)2 +(x2−2.7)2 ≤ 4}.

(5.9)

The results are plotted in Figure 5.1, with increasing iterates plotted with darker colours, and
the infeasible region plotted in yellow.

Next, we consider the optimisation problem with nonsmooth, nonconvex constraints,
given by

F(x) := max{|cos(x1 + x2 +3)+ sin(3x2−0.5)|, |sin(x1 +4.5)|},
Ω := {−2x1 +1.2x2 ≤−4}∪{x1 + x2 ≥ 6}∪{x1 +2x2 ≤ 11.5} . . .

∩{−2x1 + x2 ≥−7}∩{−x1 + x2 ≤−1}

(5.10)

The results are plotted in Figure 5.2.

5.5 Conclusion and outlook

In this chapter, we have extended the Itoh–Abe methods to constrained optimisation prob-
lems, and proven convergence guarantees to Clarke stationary points in this setting. This
extension and analysis is important because bilevel problems and simulation-based parameter
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Fig. 5.2 Numerical results for the optimisation problem in (5.10), with iterates going from
red to black.

optimisation problems, which constitute a central motivation for the study of black-box
optimisation methods, often feature constraints in the domain. Furthermore, these constraints
might be implicitly defined so that we have no information of the feasible set beyond ver-
ifying feasibility point by point. It is therefore important to treat this in the nonsmooth,
nonconvex, derivative-free optimisation framework. We apply these methods to solve some
simple, numerical examples. A wider numerical investigation of this approach is left for
future work.





Chapter 6

Bregman discrete gradient methods for
sparse optimisation

6.1 Introduction

This chapter is based on the article [20] published in the Journal of Mathematical Imaging
and Vision, and is joint work with Martin Benning and Carola-Bibiane Schönlieb.

In Chapters 3–5, we studied the discrete gradient method applied to gradient flow in
various optimisation settings. In this chapter, we study these methods applied to a different
dissipative flow, namely the inverse scale space (ISS) flow.

We consider the constrained optimisation problem

min
x∈Ω

F(x), (6.1)

for an objective function F : Rn → R and constraint Ω ⊂ Rn. The function F may be
nonconvex and nonsmooth, as outlined in Assumption 6.1. In this chapter, we propose and
study discrete gradient methods applied to the ISS flow.

The ISS flow is a differential system which generalises gradient flows by replacing the
Euclidean distance by a Bregman distance, defined via a convex Bregman distance generating
function J : Rn→ R. The ISS flow is given by

ṗ(t) =−∇F(x(t)), p(t) ∈ ∂J(x(t)). (6.2)

The term inverse scale space flow goes back to Scherzer & Groetsch [201]. It is typically
derived as the continous-time limit of Bregman iterations (2.3). Like the gradient flow, the
ISS flow is a dissipative system, and its dissipative structure is determined by the function J.
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This allows one to solve (6.1) while incorporating a priori information into the optimisation
scheme, with the benefits of converging to superior solutions, and doing so faster. The
drawback of these methods is that the updates are in general implicit. Nevertheless, for many
simple variational problems, the updates turn out to be explicit.

In this chapter, we study the Itoh–Abe discrete gradient method applied to the ISS flow.
We prove that the method is well-defined and converges to a set of stationary points for
nonsmooth, nonconvex functions. Furthermore, building on the paper by Miyatake et al.
[153] where they establish the equivalence between the discrete gradient methods for linear
systems and successive-over-relaxation (SOR) methods, we point out equivalencies of various
approaches to least squares problems.

Bregman iterations, and related methods, are closely tied to inverse problems and regular-
isation methods, particularly in signal processing. We consider numerical examples in this
setting as well.

6.1.1 Related literature

Spurred by applications for variational regularisation in image processing and compressed
sensing, the ISS flow and the Bregman method have been active areas of research during the
last decade. The Bregman iterative method was originally proposed by Osher et al. [170] in
2005 for total variation-based image denoising, representing an extension of the Bregman
proximal algorithm [46, 78, 122, 211] to nonsmooth Bregman distance generating functions.
Subsequently the ISS flow was derived and analysed by Burger et al. [34, 37, 35, 32]. Since
then, researchers have studied the ISS flow with applications to generalised spectral analysis
in a nonlinear setting, i.e. by Burger et al. [33], Gilboa et al. [94], and Schmidt et al. [202].
The Bregman method has been studied for ℓ1-regularisation and compressed sensing by
Goldstein & Osher [96] and Yin et al. [223], and extended to primal-dual algorithms by
Zhang et al. [225].

The linearised Bregman method was proposed by Yin et al. [223] for applications to
ℓ1-regularisation and compressed sensing, and further studied in this setting by Cai et al.
[39], and Dong et al. [72]. An extension for nonconvex problems was proposed by Benning
et al. [17], proving global convergence for functions that satisfy the Kurdyka–Łojasiewicz
property. Lorenz et al. [142, 203] proposed a sparse variant of the Kaczmarz method for
linear problems based on linearised Bregman iterations. These and other methods were
unified in a Split Feasibility Problems framework for general convergence results by Lorenz
et al. [141]. For further details on Bregman iterations and linearised Bregman methods, we
refer to [18].
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6.1.2 Structure and contributions

The rest of the chapter is structured as follows. In Section 6.2, we introduce the ISS flow
and propose a Bregman discrete gradient method based on the ISS flow. In Section 6.3 we
prove well-posedness and convergence results in a nonconvex, nonsmooth framework. In
Section 6.4, we discuss particular examples of Bregman discrete gradient methods, while
in Section 6.5 we establish equivalencies to other optimisation schemes. In Section 6.6, we
present results from numerical experiments.

6.2 The discrete gradient method for the ISS flow

6.2.1 Inverse scale space flow and Bregman methods

For a convex function J : Rn → R, objective function F : Rn → R and starting points
x(0) = x0 ∈ Ω, p(0) ∈ ∂J(x0), the ISS flow is the dissipative differential system given
by (6.2). If J were twice continuously differentiable and µ-convex, then (6.2) could be
rewritten as

ẋ(t) =−(∇2J(x(t)))−1
∇F(x(t)),

and the energy F(x(t)) would dissipate over time as

d
dt

F(x(t)) =
〈
ẋ(t),∇F(x(t))

〉
=−

〈
ẋ(t),∇2J(x(t))ẋ(t)

〉
≤−µ∥ẋ(t)∥2.

We briefly discuss variants of Bregman methods as discretisations of (6.2). The Bregman
method is derived by backward Euler discretisation of (6.2), and is given by

pk+1 = pk− τk∇F(xk+1), pk+1 ∈ ∂J(xk+1)

which can be rewritten as

xk+1 = argmin
x∈Rn

F(x)+
1
τk

Dpk

J (x,xk). (6.3)

From (6.3), we see that the Bregman method is dissipative, as

F(xk+1)−F(xk)≤− 1
τk

Dpk

J (xk+1,xk)≤− µ

2τk
∥xk− xk+1∥2.
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Similarly, the linearised Bregman method is derived by forward Euler discretisation of
(6.2), and is given by

pk+1 = pk− τk∇F(xk), pk+1 ∈ ∂J(xk+1)

or equivalently

xk+1 = argmin
x∈Rn

F(xk)+ ⟨∇F(xk),x− xk⟩+ 1
τk

Dpk

J (x,xk).

The ISS flow and Bregman methods are considered for solving ill-conditioned linear
systems Ax = b, with the objective function

F(x) =
1
2
∥Ax−b∥2.

In this setting, iterates of both the Bregman method and the linearised Bregman method
converge [18, 141] to a solution of

min
x∈Rn
{J(x) s.t. Ax = b}.

Furthermore, applications of the ISS flow include image denoising with reduced contrast-loss
and staircasing effects [170], recovering eigenfunctions [202], and identifying sparse or
low-rank structures [223].

We make the following assumptions for the objective function F , the constraints Ω, and
the Bregman distance generating function J.

Assumption 6.1.

a) The function F : Rn→ R is locally Lipschitz continuous and bounded below.

b) x∗ ∈Rn is a Clarke stationary point of F restricted to Ω if and only if for all coordinate
vectors ei, we have Fo(x∗;ei),Fo(x∗;−ei)≥ 0.

c) The set Ω⊂ Rn consists of coordinate-wise box constraints, i.e. Ω =⊗n
i=1[li,ui].

d) The function J : Rn→ R is proper, lower-semicontinuous, and µ-convex with µ > 0.
Furthermore, J(x) = ∑

n
i=1 ji(xi)+δ[li,ui](xi), where [li,ui]⊂ dom( ji) for each i.
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6.2.2 The Bregman discrete gradient method

In what follows, we define discrete gradients, and propose the Bregman discrete gradient
method by discretising the ISS flow. For i = 1, . . . ,n, we denote by [∂F(x)]i the projection of
∂F(x) onto the ith coordinate, i.e. [∂F(x)]i = {pi : p ∈ ∂F(x)}.

We propose the Bregman discrete gradient method as follows. For a starting point x0 ∈Rn,
subgradient p0 ∈ ∂J(x0), and time steps (τk,i)

n
i=1 ⊂ [τmin,τmax]

n, solve for k = 0,1, . . .,

pk+1 = pk− τk∇F(xk,xk+1), pk+1 ∈ ∂J(xk+1). (6.4)

This scheme preserves the dissipative structure of the ISS flow and (linearised) Bregman
methods, as we see by applying the mean value property (2.12) and (6.4).

F(xk)−F(xk+1) = ⟨xk− xk+1,∇F(xk,xk+1)⟩

=
1
τk
⟨xk− xk+1, pk− pk+1⟩

=
1
τk

Dsymm
J (xk+1,xk)

≥ µ

τk
∥xk− xk+1∥2. (6.5)

Furthermore, if we plug in J(x) = ∥x∥2/2, we recover the discrete gradient method for the
gradient flow (2.8).

By Assumption 6.1, the subdifferential of J is separable in the coordinates, i.e.

∂J(x) =
n

∏
i=1

∂δ[li,ui](xi)+∂ ji(xi).

It follows that solving the Bregman Itoh–Abe equation (6.4) corresponds to successively
solving n scalar equations,

pk+1
i +qk+1

i = pk
i − τk,i

F(yk,i)−F(yk,i−1)

xk+1
i − xk

i
,

pk+1
i ∈ ∂ ji(y

k,i
i ), qk+1

i ∈ ∂δ[li,ui](y
k,i
i ),

yk,i = [xk+1
1 , . . . ,xk+1

i ,xk
i+1, . . . ,x

k
n], i = 1, . . . ,n.

(6.6)

Here yk,i denotes [xk+1
1 , . . . ,xk+1

i ,xk
i+1, . . . ,x

k
n]

T . For a choice of vk
i ∈ [∂F(yk,i−1)]i, if pk

i −
τk,ivk

i ∈ [∂J(yk,i−1)]i, then we consider xk+1
i = xk

i and pk+1
i +qk+1

i = pk
i −τk,ivk

i an admissible
update.
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We include the term qk+1 to absorb subdifferential updates due to active constraints, i.e.
∂δΩ, and to not include them in the next update. The purpose of this is first to prevent the
dual variables to diverge while the primal variables are unchanged, and second to obtain
guarantees of first-order optimality for accumulation points of the iterates. Additionally,
since 0 ∈ ∂δΩ(x) for all x ∈Ω, we still have pk+1 ∈ ∂J(xk+1) and (6.5) still holds.

6.3 Well-posedness and convergence

In this section, we prove that the Bregman discrete gradient method (6.6) is well-defined.
Furthermore, we prove that all accumulation points of the iterates (xk)k∈N defined via (6.6)
are Clarke stationary points.

6.3.1 Well-posedness

Lemma 6.2. For any τ > 0, xk ∈ Rn, and pk ∈ ∂J(xk), there exists an update (xk+1, p̃k+1 =

pk+1 +qk+1) that satisfies (6.6).

Proof. As (6.6) consists of successive scalar updates, it is sufficient to consider a scalar
problem, v : R→ R, j : R→ R. For x ∈ R and p ∈ ∂ j(x) we either want y ̸= x such that

p− τ
v(y)− v(x)

y− x
∈ ∂ j(y), (6.7)

or y = x and p− τw ∈ ∂ j(x), for some w ∈ ∂v(x).
If such a w exists, we are done. Otherwise, we have min{vo(x;1),vo(x;−1)} < 0 and

may assume that vo(x;1) < 0. In this case, we will show that there exists y > x such that
(6.7) holds.

Since p− τvo(x;1) > p and p ∈ ∂ j(x), we deduce that p− τvo(x;1) > ∂ j(x). By the
outer semicontinuity of subdifferentials and definition of Clarke directional derivatives, there
is δ > 0 such that

p− τ
v(y)− v(x)

y− x
> ∂ j(y) for all y ∈ (x,x+δ ).

On the other hand, as v is bounded below,

y 7→ (v(y)− v(x))/(y− x)
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is bounded below for all y ∈ [x+ δ ,+∞), while by µ-convexity of j, we have ∂ j(y) ≥
∂ j(x)+µ(y− x) for all y ∈ [x+δ ,+∞). Hence, there is r≫ 0 such that

p− τ
v(y)− v(x)

y− x
< ∂ j(y) for all y≥ x+ r.

By continuity of v, and by outer semicontinuity of subdifferentials, it follows that there exists
y ∈ (x+δ ,x+ r) that solves (6.7). This concludes the proof.

Corollary 6.3. If F : Rn→ R is convex, then there exists a unique solution (xk+1, p̃k+1 =

pk+1 +qk+1) to (6.6).

Proof. The existence of a solution to (6.6) is guaranteed by Lemma 6.2. To establish
uniqueness, we argue as follows. An update yk,i must satisfy

pk
i − τk,i

F(yk,i)−F(yk,i−1)

xk+1
i − xk

i
∈ [∂J(yk,i)]i.

The left-hand-side is non-increasing with respect to xk+1
i , due to the difference quotient term

of a convex function F , while the right-hand side is strictly increasing, due to the strong
convexity of J. Hence there cannot be two distinct solutions for yk,i

i to the scalar equation.
This implies uniqueness of the update.

Remark 6.4. If the update is stationary, i.e. xk+1
i = xk

i , then the subgradient update pk+1
i is

unique only up to the choice of subderivative vi ∈ [∂F(yk,i−1)]i.

6.3.2 Convergence theorem

Lemma 6.5. Let F : Rn→ R, J : Rn→ R, and Ω satisfy Assumption 6.1, and let (xk, pk)k∈N
be iterates that solve (6.6) for time steps (τk)k∈N ⊂ [τmin,τmax]. Then the following properties
hold.

(i) F(xk+1)≤ F(xk).

(ii) limk→∞ ∥xk+1− xk∥= 0.

(iii) If F is coercive, then there exists a convergent subsequence of (xk, pk)k∈N.

(iv) The set of limit points S is compact, connected, and has empty interior. Furthermore,
F is single-valued on S.

Proof. Property (i) follows from (6.5).
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As F is bounded below and (F(xk))k∈N is decreasing, F(xk)→ F∗ for some limit F∗.
Therefore, by (6.5),

F(x0)−F∗ =
∞

∑
k=0

F(xk)−F(xk+1)

≥
∞

∑
k=0

µ

τk
∥xk− xk+1∥2 ≥ µ

τmax

∞

∑
k=0
∥xk− xk+1∥2.

This implies property (ii).
Properties (iii) and (iv) follow from (i) and (ii) and are proven respectively in Lemma 4.3

and Lemma 4.4.
We now state and prove the main result of this chapter.

Theorem 6.6. Let the sequence of iterates (xk, pk)k∈N solve (6.6) for time steps (τk)k∈N ⊂
[τmin,τmax]. Then all accumulation points x∗ ∈ S are Clarke stationary points restricted to Ω.

Proof. Let x∗ ∈ S and consider a convergent subsequence (xk j) j∈N. We want to show
for each basis vector ei that either Fo(x∗;ei) ≥ 0 or x∗i = ui, and analogously that either
Fo(x∗;−ei)≥ 0 or x∗i = li. As the arguments are identical, we only consider the first case.

Suppose for contradiction that Fo(x∗;ei)<−η for some η > 0, and that x∗i < ui. By the
definition of the Clarke directional derivative, there are ε,δ > 0 such that for all x ∈ Bε(x∗)
and λ ∈ (0,δ ), we have

F(x+λei)−F(x)
λ

≤−η

2
. (6.8)

Since xk j → x∗ and ∥xk j+1− xk j∥→ 0, for each N ∈ N there exists K such that for all j ≥ K,
we have xk ∈ Bε(x∗) and ∥xk− xk+1∥ < δ for k = k j,k j + 1, . . . ,k j +N. By making ε > 0
sufficiently small, we have Bε(x∗i ) < ui. Furthermore, since xk+1

i ≥ xk
i for k = k j, . . . ,k j +

N−1, we deduce that the constraint component qk
i is zero. By (6.8), it follows that

pk j
i − pk j+N

i =
N−1

∑
k=k j

pk
i − pk+1

i =
N−1

∑
k=k j

τ
k
i

F(yk,i)−F(yk,i−1))

xk+1
i − xk

i

≤−τmin

N−1

∑
k=k j

η

2
=−Nτmin

η

2
. (6.9)

By Assumption 6.1, ∂ ji is bounded on U = Bε(x∗)∩ [li,ui]. Since pk, j
i , . . . , pk j+N

i ∈ ∂ ji(U),
we can choose N such that Nτmin

η

2 > max∂ ji(U)−min∂ ji(U) and arrive at a contradiction.
Thus, x∗ is a Clarke stationary point restricted to Ω.
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6.4 Examples of Bregman discrete gradient schemes

In this section, we describe several schemes based on the Bregman Itoh–Abe discrete gradient
scheme (6.6). We will primarily consider objective functions of the form

F(x) =
1
2
⟨x,Ax⟩−⟨b,x⟩, (6.10)

where A ∈ Rn×n is a positive semi-definite matrix.
We are particularly interested in problems with underlying sparsity and/or constraints,

with applications in image analysis. Throughout this section, we use a time step vector τk

coordinate-wise scaled by the diagonal of A, i.e. τk = τ/diag(A) = [τ/a1
1, . . . ,τ/an

n] for all
k ∈ N, and some τ > 0.

We first introduce some well-known coordinate descent schemes for solving linear
systems, which Miyatake et al. [153] showed were equivalent to the Itoh–Abe discrete
gradient method. The SOR method [224] updates each coordinate sequentially according to
the rule

yk,0 = xk

yk,i = yk,i−1− ω

ai
i
(⟨ai,yk,i−1⟩−bi)ei,

xk+1 = yk,n,

(6.11)

where ω ∈ (0,2). For ω = 1, this is the Gauss-Seidel method [224]. The SOR method is
equivalent to the Itoh–Abe discrete gradient method

xk+1 = xk− τ∇F(xk,xk+1),

with F given by (6.10) with the time steps τi = 2ω/
(
(2−ω)ai

i

)
.

6.4.1 Sparse SOR method

We consider underdetermined linear systems and want to find sparse solutions x∗. Hence we
seek to apply the Bregman discrete gradient method (6.6) with objective function F given by
(6.10), and

J(x) =
1
2
∥x∥2 + γ∥x∥1, (6.12)

for γ > 0. We term this the Bregman SOR (BSOR) method.
By Corollary 6.3, the updates of this method are well-defined and unique. One can verify

that the updates are given as follows. Denote by x̃k+1
i the standard SOR coordinate update

from xk
i , (6.11). Furthermore, for pk ∈ ∂J(xk), we write pk = xk + γrk, where rk ∈ ∂∥xk∥1.
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Then (xk+1
i ,rk+1

i ) are given in closed form as

xk+1
i = S

(
x̃k+1

i +
2γ

2+ τ
rk

i ,
2γ

2+ τ

)
,

rk+1
i = rk

i +
τ

γai
i

(
bi−⟨ai,xk⟩−

ai
i(2+ τ)

2τ
(yi− xi)

)
,

(6.13)

where S is the shrinkage operator (1.5).

6.4.2 Sparse, regularised SOR

If b=Axtrue+δ , where xtrue is the sparse ground truth and δ is noise, then it may be necessary
to regularise the objective function as well. Hence we consider the objective function

F(x) =
1
2
⟨x,Ax⟩−⟨b,x⟩+λ∥x∥1, (6.14)

for some regularisation parameter λ > 0. The nonsmoothness induced by ∥ · ∥1 satisfies
Assumption 6.1, so Theorem 6.6 implies that the Bregman Itoh–Abe discrete gradient method
converges to stationary points of this problem.

For both J(x) = 1
2∥x∥

2 + γ∥x∥1 and J(x) = 1
2∥x∥

2, the scheme (6.6) can be expressed in
closed form for (6.14), albeit with a lengthy case-by-case analysis. Consider the Bregman
Itoh–Abe method with F given in (6.14) and J given in (6.12), and denote by x̃k+1

i the
standard SOR update (6.11) for the ith coordinate. Then the ℓ1-regularised sparse SOR
method can be expressed as follows.

1. If xk
i = 0 and |x̃k+1

i − γrk
i | ≤ γ +λτ/ai

i, then

xk+1
i = 0, rk+1

i =
γrk

i − x̃k+1
i

γ +λτ/ai
i
.

2. Else if
|(τ/2+1)x̃k+1

i + γrk
i | ≥ γ + τλ/ai

i,

then

xk+1
i = x̃k+1

i +
γrk

i −
(

γ + τλ/ai
i

)
sgn
(

x̃k+1
i + γ

τ/2+1rk
i

)
τ/2+1

rk+1
i = sgn

(
x̃k+1

i +
γrk

i(
τ/2+1

)) .
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3. Else if xk
i ̸= 0 and ∣∣∣(τ/2+1

)
x̃k+1

i + γrk
i − (λτ/ai

i)sgn(xk
i )
∣∣∣≤ γ,

then set

xk+1
i = 0,

rk+1
i = rk

i +
1
γ

((
τ/2+1

)
x̃k+1

i − (τλ/ai
i)sgn(xk

i )
)
.

4. Else if xi ̸= 0 and ∣∣∣∣∣2
(

ai
i

2
+

ai
i

τ

)
x̃k+1

i +

(
2ai

iγ

τ
+λ

)
sgn(xk

i )

∣∣∣∣∣
2

≤

bi−⟨ai,yk,i−1⟩+

(
2ai

iγ

τ
+λ

)
sgn(xk

i )

2

. . .

+8λ

(
ai

i
2
+

ai
i

τ

)
|xk

i |,

then set

xk+1
i = x̃k+1

i +
sgn(xk

i )

2
(

ai
i

2 +
ai

i
τ

)(2ai
iγ

τ
+λ . . .

−

√√√√√bi−⟨ai,xk⟩+

(
2ai

iγ

τ
+λ

)
sgn(xk

i )

2

+8λ

(
ai

i
2
+

ai
i

τ

)
|xk

i |

 ,

rk+1
i =−rk

i .

6.5 Equivalence of iterative methods for linear systems

In what follows, we discuss and demonstrate equivalencies for different iterative methods for
solving linear systems. We recall from the previous section that the SOR method (6.11) is
equivalent to the Itoh–Abe discrete gradient method [153].
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The explicit coordinate descent method [15, 221] is given by

yk,0 = xk

yk,i = yk,i−1−αi[∇F(yk,i−1)]iei,

xk+1 = yk,n,

(6.15)

where αi > 0 is the time step. As mentioned in [221], the SOR method is also equivalent to
the coordinate descent method with F given by (6.10) and the time step αi = ω/ai

i. Hence,
in this setting, the Itoh–Abe discrete gradient method is equivalent not only to SOR methods,
but to explicit coordinate descent.

It is not surprising that these iterative coordinate methods turn out to be the same,
given that the gradient F in (6.10) is linear. Furthermore, these equivalencies extend to
discretisations of the ISS flow with J given by (6.12). The resultant Bregman Itoh–Abe
scheme for (6.10) is described in Section 6.4.1. We may compare this to a Bregman linearised
coordinate descent scheme,

yk,0 = xk, pk ∈ ∂J(xk)

zi = argmin
y

[∇F(yk,i−1)]i · y+
ai

i
αi

Dpk

J (yk,i−1 + yei,yk,i−1),

yk,i = yk,i−1 + ziei,

xk+1 = yk,n.

One can verify that this scheme is equivalent to (6.15) for the parameters

τi =
2α

(2−α)ai
i
, λ

∗ =
λ

1+ α

2−α

.

6.6 Numerical examples

In this section, we present numerical results for the schemes described in Section 6.4.

6.6.1 Sparse SOR

We construct a matrix A ∈ R1024×1024 from independent standard (zero mean, unit variance)
Gaussian draws, and construct the sparse ground truth xtrue by choosing 10% of the indices
at random determined by uniform draws on the unit interval. We then solve the problem

argmin
x

1
2
∥Ax−b∥2,
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Fig. 6.1 Comparison of SOR and sparse SOR methods, for Gaussian linear system without
noise. Left: Convergence rate for relative objective, i.e. [F(xk)−F∗]/[F(x0)−F∗]. Right:
Support error with respect to iterates, i.e. proportion of indices i s.t. sgn(xk

i ) = sgn(x∗i ).
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Fig. 6.2 Comparison of SOR and sparse SOR methods, for Gaussian linear system without
noise, and binary ground truth. Left: Convergence rate for relative objective. Right: Support
error with respect to iterates.

where b = Axtrue. We compare the SOR method (J(x) = ∥x∥2/2) and the BSOR method
(J(x) = ∥x∥2/2+ γ∥x∥1), where γ = 1. We set time steps to τ = 2/diag(A), corresponding
to the Gauss-Seidel method. See Figure 6.1 for the results.

For the same test problem, but where the ground truth is binary, i.e. only takes values 1
or 0, see Figure 6.2.

6.6.2 Sparse, regularised SOR

We construct A∈R1024×1024 and xtrue as in the previous subsection. However, we add noise to
the data, i.e. b = Axtrue+δ , where δ is independent Gaussian noise with a standard deviation
of 0.1∥Axtrue∥∞. Since the added noise destroys the sparsity structure of A−1b, the sparse
SOR method fails to improve the convergence rate. The results for F(x) = ∥Ax−b∥2/2 are
in Figure 6.3.
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Fig. 6.3 Comparison of SOR and sparse SOR methods, for Gaussian linear system with noise.
Left: Convergence rate for relative objective. Right: Support error with respect to iterates.
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Fig. 6.4 Comparison of SOR and sparse SOR methods, for ℓ1-regularised linear system with
noise. Left: Convergence rate for relative objective. Right: Support error with respect to
iterates.

We therefore include regularisation in the objective function of the form

F(x) =
1
2
∥Ax−b∥2/2+λ∥x∥1,

where λ = 100, and with initialisation x0 constructed by random, independent Gaussian
draws. The results are visualised in Figure 6.4.

In all of these cases, the sparsity structure when utilised properly leads to significantly
faster convergence rates with the BSOR method. We note that while we only consider linear
systems, these methods could be implemented for arbitrary problems.

6.7 Conclusion and outlook

In this chapter, we propose to discretise the ISS flow with the Itoh–Abe discrete gradient. The
resultant schemes exhibit a dissipative structure (6.5) related to the symmetrised Bregman
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distance of a function J. This generalises the discrete gradient method for gradient flows, and
can be viewed as a discrete gradient version of Bregman iterations. Building on the analysis
of Chapter 4, we prove convergence guarantees of the Bregman Itoh–Abe discrete gradient
method in the Clarke subdifferential framework.

We consider numerical examples motivated by linear systems and searching for sparse
solutions. These results indicate that for sparse reconstructions, popular iterative solvers such
as the SOR method can be significantly sped up by incorporating a Bregman step.

Future work is dedicated to proving convergence rates for the Bregman Itoh–Abe methods,
and to compare the scheme to related methods such as the sparse Kaczmarz method [141].





Chapter 7

Differentiation for nonsmooth bilevel
optimisation

7.1 Introduction

In this chapter, we study bilevel optimisation of nonsmooth variational problems1. While in a
previous chapter we treated this class of problems as black-box, and employed derivative-free
optimisation methods to solve them, we now study methods for differentating the lower-level
solution map. Moving from a derivative-free approach to a gradient-based approach can be
necessary when the parameter space becomes high-dimensional.

We recall the bilevel problem (1.11) discussed in Chapters 1 and 4. Namely, there is a
lower-level variational problem

xϑ ∈ argmin
x∈Rn

F(x,ϑ), (7.1)

and an upper-level problem

min
ϑ∈Ω

E(xϑ ,ϑ), such that xϑ solves (7.1), (7.2)

where Ω is an open, connected2 subset of Rm. For each parameter ϑ ∈Ω, F(·,ϑ) : Rn→ R
belongs to Γ0(Rn). We furthermore assume that E : Rn×Ω→ R is C1-smooth. We also

1I am grateful to Jingwei Liang for many helpful comments and pointers.
2The domain Ω can also be more general. However, we assume the parameters ϑ lie in the interior of the

domain, so we do not need to treat differentiation along boundaries.
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denote by E the bilevel objective function

E(ϑ) := E(xϑ ,ϑ). (7.3)

As previously discussed, bilevel optimisation poses several challenges, due to each
point evaluation involving the minimisation of a variational function. When the lower-level
problem is not strictly convex or nonconvex, the relation ϑ 7→ xϑ might not be unique,
leading to discontinuities in the upper-level problem, and could require one to treat it as
a set-valued optimisation problem. Furthermore, from a practical point of view, bilevel
optimisation is computationally intensive due to the typically high cost of solving (7.1) for
each parameter choice, and the difficulty in computing gradients of ϑ 7→ xϑ (if they exist).
Even when xϑ is uniquely defined, its dependence on ϑ tends to be highly nonlinear, and, in
the case of nonsmooth variational problems, nonsmooth.

7.1.1 Contributions and structure of chapter

In this chapter, we study the first-order behaviour of xϑ with respect to ϑ , and the corre-
sponding impact of nonsmoothness of F . Broadly speaking, there are two approaches to
computing gradients of ϑ 7→ x(ϑ); implicit differentiation and algorithmic differentiation. In
both cases, the nonsmoothness of F needs to be accounted for.

For these purposes, we will use the partial smoothness framework, a powerful framework
for nonsmooth optimisation analysis. Introduced by Lewis in 2002 [130], it is motivated by
the premise that “nonsmoothness pervades optimization, but the way it typically arises is
highly structured". We apply this framework to show local piecewise differentiability of the
solution map, and based on this, we provide an expression for the Clarke subdifferential of the
bilevel objective function, i.e. ∂CE. Furthermore, in the setting of algorithmic differentiation,
we prove convergence of the algorithmic derivatives to the limiting implicit gradient for
various forward-backward type methods under a standard nondegeneracy assumption within
the partial smoothness framework.

The rest of the chapter is structured as follows. In Section 7.2, we review the current
literature on bilevel optimisation in signal processing. We also review works on partial
smoothness. In Section 7.3, we introduce preliminary concepts required for our results,
and outline the conditions required to ensure sufficient regularity of F , which in general
will be nonsmooth and nonconvex. In Section 7.4, we characterise and prove the piecewise
differentiability of ϑ 7→ xϑ and the Clarke subdifferential of E. In Section 7.5, we study
algorithmic differentiation of forward-backward type algorithms, including the accelerated
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version FISTA, and some Bregman proximal gradient variants. Finally, we provide numerical
results in Section 7.6.

In order to give full attention to the impact of nonsmoothness of F on the solution
mapping, we make some simplifications and do not address other practical and theoretical
considerations of bilevel optimisation. The strongest assumption we make is that of strong
convexity of F(·,ϑ), which will ensure that the solution map is well-defined and continuous
globally, i.e. for all ϑ . However, all the results could be given in a more general setting,
locally for a neighbourhood of parameters. For example, strong convexity could be replaced
with restricted injectivity [135] or restricted positive definiteness [214], which would yield
the same results locally, but not necessarily globally. In fact, much of the theory of partial
smoothness does not require convexity, e.g. “convexity is not the real driving force behind
this theory" [130]; “it is worth noting that convexity (and even Clarke regularity) is of
no consequence for us" [76]. Furthermore, we do not consider schemes for solving the
upper-level problem (7.2) once an acceptable derivative Dx(ϑ) has been computed, nor do
we consider any constraints on the parameter space. We therefore view the computation of
Dx(ϑ) as separate from the actual bilevel optimisation scheme of choice.

7.2 Literature review

In order to contextualise gradient-based approaches to nonsmooth bilevel optimisation, we
first need to discuss classical implicit differentiation. Recalling the implicit function theorem
Proposition 2.3, we observe that if F(·,ϑ) were C2-smooth and strongly convex, then the
solution map x(ϑ) would be the unique solution to the first-order condition 0 = ∇xF(x,ϑ),
where ∇xF is C1-smooth and ∇2

xF is positive-definite by strong convexity. In this case, the
implicit function theorem can be applied directly to show that x(ϑ) is C1-smooth and

Dx(ϑ) =−(∇2
xF(x(ϑ),ϑ))−1Dϑ ∇xF(x(ϑ),ϑ). (7.4)

When F is not C2-smooth, or even differentiable, there is then the question of what can still
be done.

7.2.1 Bilevel problems and smoothed lower-level problems

We review previous works on bilevel problems with nonsmooth lower-level problems, and
approaches to gradient-based optimisation.
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Kunisch & Pock in [125] consider bilevel optimisation problems of the form

min
ϑ≥0
∥x(ϑ)− x†∥2 s.t. x(ϑ) ∈ argmin

x∈Rn

1
p

q

∑
k=1

ϑk∥Akx∥p
p +

1
2
∥x− f∥2. (7.5)

Here x† is the ground truth, f is the data, and each of the q linear terms Ak are referred to
as analysis-based priors, and which we will refer to as filters. In this case, the parameters
to be trained can be seen as weights of each filter term. For the theoretical treatment, they
consider p ∈ {1,2} which yields nonsmooth and smooth bilevel problems respectively. For
their implementations, the nonsmooth terms are smoothed, after which they can apply the
classical implicit function theorem. They also trained the parameters for p = 1/2, which
yields a nonconvex optimisation problem whose gradient blows up at x = 0. While p = 1/2
leads to theoretical and computational difficulties, they report that it can lead to significant
improvements in denoising images, demonstrating the potential of nonconvex regularisation
models.

Fehrenbach et al. in [88] propose a bilevel optimisation model for denoising images in
cases where the noise is from a known distribution, e.g. Gaussian noise. The lower-level
problem is essentially that of (7.5) for p = 1. However the upper-level objective function
is given as E(x(ϑ),ϑ) = G( f − x(ϑ)), where G is a measure of Gaussianity (in the case of
Gaussian noise). The idea is to identify parameters such that the residual of the reconstruction,
i.e. f − x, fits the known noise statistics. This is therefore an unsupervised bilevel problem.
To differentiate the solution map, they propose to use smoothened ℓ1-norms and apply
implicit differentiation.

The two first examples presented above deal with learning the optimal coefficients for
a collection of regularisation terms. Another important class bilevel problem deals with
learning the regularisation terms themselves, namely learning analysis priors. Peyré & Fadili
in [177] present the following bilevel problem,

min
D∈Rn,p

1
2

q

∑
k=1
∥x†,k− x(D, f k)∥2, s.t. x(D, f k) ∈ argmin

x∈Rn

1
2
∥x− f k∥2 +Γ(D∗x), (7.6)

where x†,k, f k, k = 1, . . . ,q denote a collection of ground truth images and corresponding
noisy images, and where Γ is typically the ℓ1-norm or a smoothened version. Dictionary
learning problems [113, 145, 169] refer to various approaches of learning a dictionary D
such that the lower-level problem in (7.6) yields an optimal reconstruction.

Chen et al. in [52] relate the aforementioned dictionary models above to Markov random
field (MRF) models, such as Field of Experts [195], proposed in 2009 by Roth & Black.
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MRF models seek to learn image priors that capture the statistics of natural images, and are
therefore naturally related to dictionary learning within the realm of bilevel optimisation.
Extensions of filter learning applications include recent work by Benning et al. [19] which
proposes to learn filters that simultaneously promote desirable signal features and penalise
undesirable features. This is modelled as a quotient minimisation problem.

7.2.2 Nonsmooth analysis for bilevel optimisation

In all of the examples of bilevel optimisation discussed above, the lower-level problems
are assumed to be smooth, typically by smoothening the ℓ1-norm, and the bilevel gradients
are computed using implicit differentiation. However, there are several works on bilevel
optimisation that deal with nonsmoothness in the lower-level problem.

Hintermüller & Wu in [111] propose a bilevel optimisation method to learn the point
spread function in blind deconvolution problems. The use of TV regularisation introduces
nonsmoothness to the lower-level problem, and an analysis of the regularity properties of
the nonsmooth solution map is carried out, using Robinson’s framework of strong regularity
[186]. They derive Bouligand differentiability (local Lipschitz continuity and directional
differentiability [187]) of the solution map, and propose a proximal gradient method whose
iterates converge to a Clarke stationary point. Furthermore, under a strict complementarity
assumption, local C1-smoothness of the solution is derived. Although the analysis is not
based on partial smoothness, many of the results can be seen as instances of the results we
will present in this chapter, including directional differentiability and local C1-smoothness
under the nondegeneracy assumption (ND), which is equivalent to the strict complementarity
condition for this problem. However, the results in this chapter covers a great number of
other bilevel problems.

7.2.3 Algorithmic differentiation

The aforementioned works mainly consider implicit differentiation. An alternative approach
for evaluating derivatives we must consider is algorithmic differentiation [99], also referred
to as automatic differentiation. If we view the solution map as defined implicitly via the
first-order condition of a variational problem, then implicit differentiation will yield the
derivative. However, if we view the solution map as the output of an algorithm that takes the
parameters ϑ as an input, then we can compute the derivative by differentiating the algorithm
and applying the chain rule. This framework fits naturally for bilevel optimisation in cases
where the lower-level problem is solved via proximal splitting algorithms.
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There are several recent works that study algorithmic differentiation with connections
to bilevel optimisation. Ochs et al. [166, 167] propose a framework for smooth algorithmic
differentiation of the solution map, even when the lower-level problem is nonsmooth. This
is done by applying iterative methods using Bregman proximal maps, where the Bregman
distance generating function is chosen to ensure that each update is differentiable with respect
to the parameters, analogous to the use of barrier functions for interior point updates.

Deledalle et al. [68] consider the optimisation of regularisation parameters for inverse
problems in the presence of Gaussian noise. Here they extend a framework of unbiased
risk estimation to handle nonsmooth variational problems, making use of the fact that their
solution map of interest is often Lipschitz continuous, and therefore weakly differentiable.
Furthermore, they propose algorithmic differentiation of various iterative proximal splitting
algorithms, making use of weak differentiability of the proximal updates and the chain rule
for weakly differentiable functions. In their work, as well as in the aforementioned works of
Ochs et al., convergence guarantees for the algorithmic derivatives to the implicit differential
is left as an open problem.

Deledalle et al. [67] propose a framework for correcting for systematic errors that occur
with variational regularisation methods, wherein they employ algorithmic differentiation of
proximal methods to compute the Jacobian of the solution mapping. They obtain convergence
guarantees for the algorithmic derivatives in [67, Theorem 21] for a class of ℓ1-regularised
problems. In contrast, our convergence results assume a nondegeneracy condition, but cover
more general classes of variational problems and algorithmic methods.

Finally we mention the recent work by Bertocchi et al. [21], which considers algorithmic
differentiation of iterative proximal methods of variational problems for the optimisation of
model parameters as well as algorithmic parameters. This builds on the theory of Combettes
& Pesquet [56] which relate deep neural structures to variational problems via proximal
mappings.

7.2.4 Bilevel problems in function spaces

This chapter focuses on variational problems in finite-dimensional spaces. This is because,
with the exception of a few cases, it is unclear whether and how the partial smoothness
framework can be extended to the infinite-dimensional setting. Regardless, there are several
important works on the theoretical treatment of bilevel optimisation problems in function
spaces.

De los Reyes et al. [65] consider bilevel optimisation problems similar to (7.5) but with
the data fidelity term including a linear forward model K, i.e. ∥Kx− f∥2/2 and x defined in
a function space. They derive the existence of optimal parameters and outer semicontinuity
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of the solution mapping, as well as convergence of the smoothed (Huber regularised) bilevel
problem to the nonsmooth problem. In [66], De los Reyes et al. propose a semismooth
Newton algorithm for solving bilevel problems involving a smoothed TV regulariser.

7.2.5 Partial smoothness

Finally, we discuss some works on partial smoothness of particular relevance to us. Lewis
proposed this framework in 2002 [130], seeking to characterise and unify notions of “active"
behaviour across various types of nonsmooth optimisation problems. Central to this is the
idea of an active manifold containing the minimiser, along which the objective function
varies smoothly, and such that optimisation algorithms identify this manifold after a finite
number of iterations. Theoretical results include showing local C1-smooth behaviour of
the solution map under a nondegeneracy assumption, and calculus rules for partly smooth
functions, including a chain rule and a sum rule.

Vaiter et al. [214] consider regularised regression problems with nonsmooth regularisers,
and show that if the regulariser is partly smooth, one can apply implicit differentiation along
the active manifold to compute gradients of their solution map. Furthermore, they consider
the case where the nondegeneracy assumption fails, and show that in this case, the set of
points where the solution map is nonsmooth has zero Lebesgue measure, assuming that
the lower-level objective function is definable in the o-minimality framework. The results
in Section 7.4 have connections to the analysis in their paper. In particular, the studies
in this chapter is predicated on the implicit differentiability for partly smooth variational
problems, and we also consider the differentiability properties of the solution map when
the nondegeneracy assumption fails. Our approach differs from the one in [214], i.e. we
do not require definability, and we prove piecewise differentiability of x(ϑ) and explicitly
characterise the Clarke subdifferential of E.

Liang et al. [134, 137, 135, 136] study various iterative proximal splitting algorithms
for partly smooth variational problems, proving results such as finite activity identification
and consequently local linear convergence. The algorithms include forward–backward type
methods, primal dual splitting methods, Douglas–Rachford splitting and ADMM.

We emphasise that there are several additional works of significance on partial smooth-
ness, which this review does not cover. Furthermore, it goes without saying that there is
a vast literature on general approaches to sensitivity analysis and parameter-tuning in the
setting of nonsmooth, constrained optimisation, which we do not attempt to review for the
sake of brevity.
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7.3 Preliminary material

In this section, we introduce definitions and concepts that will be used for the study of the so-
lution mapping in the following sections. In particular, we cover concepts of differentiability
for piecewise smooth functions, subdifferentially regular functions, and functions defined on
Riemannian manifolds respectively.

7.3.1 Piecewise smoothness and semidifferentiability

An important aspect of the solution maps for nonsmooth lower-level problems is that as the
solution map transitions from one active manifold to another, it also transitions from one
regime of local differentiability to another, thus inducing nonsmoothness in the solution
mapping. As we show in Section 7.4.2, the solution map turns out to be piecewise C1-
differentiable in this case.

Definition 7.1 (Piecewise smoothness). A function f : Rn→ Rm is piecewise smooth on an
open set U ⊂ Rn if f is continuous on U and for each x ∈U there is a finite collection of
C1-smooth functions fi, i ∈ I defined on a neighbourhood of x, such that, for some ε > 0 one
has f (y) ∈ { fi(y) : i ∈ I} when |y− x|< ε .

We call the collection of functions { fi : i∈ I(x)} a local representation of f at x. We call a
local representation minimal if no proper subset of the collection forms a local representation
of f at x.

It is straightforward to see that piecewise smooth functions are locally Lipschitz continu-
ous.

We present some further results on the regularity of this class of functions. First, we
consider a generalisation of differentiability, called semidifferentiability. For this, we note
that a map is positively homogeneous if for all h ∈ Rn, t > 0, one has ϕ(th) = tϕ(h).

Definition 7.2 (Semidifferentiability). A function f :Rn→Rm is semidifferentiable at x∈Rn

if there is a continuous, positively homogeneous mapping ϕ : Rn→ Rm such that

f (x+h) = f (x)+ϕ(h)+o(h).

The mapping ϕ is unique, it is called the semiderivative of f at x, and is denoted by D f (x; ·).

Example 7.3. The function f (x) = ∥x∥ is semidifferentiable at 0 with D f (0;h) = ∥h∥.

There are many notions of differentiability for nonsmooth functions. However, for
locally Lipschitz continuous functions on finite-dimensional spaces, they often coincide. For
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example, in this case, semidifferentiability coincides with directional differentiability [74,
Proposition 2D.1], i.e.

D f (x;h) = lim
t↓0

f (x+ th)− f (x)
t

.

See [204], and in particular its Proposition 3.5, for further concepts of differentiability that
coincide in this setting.

Proposition 7.4 (Semidifferentiability of piecewise smooth mappings [74, Proposition
2D.8]). If a function f : Rn→ Rm is piecewise smooth on an open set U, then it is semid-
ifferentiable on U, and the semidifferential D f (x) is itself piecewise smooth with a local
representation given by {∇ fi : i ∈ I(x)}. We refer to these representatives as local gradient
representatives.

Remark 7.5. Going back to Example 7.3, note that while f = ∥ · ∥2 is semidifferentiable, it
is not piecewise smooth, as no finite collection of differentiable functions could form a local
representation of f at 0. In contrast, ∥ · ∥1 and ∥ · ∥∞ are both piecewise smooth.

An important feature of semidifferentiable functions is that they satisfy the chain rule.

Proposition 7.6 (Chain rule). Let f : Rn→ Rm and g : Rm→ Rl be locally Lipschitz con-
tinuous and semidifferentiable at x and y = f (x) respectively. Then their composition g◦ f :
Rn→ Rl is semidifferentiable at x with semidifferential D(g◦ f )(x) = Dg( f (x))◦D f (x).

Proof. This follows immediately from Proposition 3.5 and Proposition 3.6 in [204].
The next result can be verified simply by checking that each condition for piecewise

differentiability holds.

Proposition 7.7. Let f̃ : Rn×Rm→ Rl be piecewise C1-differentiable, and denote by f :
Rn→Rl its restriction x 7→ f̃ (x,0). Then f is piecewise C1-differentiable with semiderivative
D f (x;v) = D f̃ (x,0; [v,0]T ).

7.3.2 Generalised differentials and regularity

A requirement for partial smoothness is subdifferential regularity. While this always holds
for functions in Γ0(Rn), we consider lower-level objective functions that are nonsmooth and
nonconvex. We therefore need to verify that the class of problems we are interested in will be
sufficiently regular. In what follows, we first introduce several concept relating to regularity,
then present a general form for parametrised variational objective functions, and prove their
regularity.

First we define subgradients and regular subgradients for (nonconvex) functions.
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Definition 7.8 (Subdifferentials). Let f : Rn→ R be an extended function and x ∈ dom f .
The regular subdifferential ∂̂ f (x) consists of v ∈ Rn for which

f (y)≥ f (x)+ ⟨v,y− x⟩+o(∥y− x∥).

The (general) subdifferential ∂ f (x) consists of v ∈ Rn for which

v = lim
k→∞

vk, vk ∈ ∂̂ f (xk), xk→ x, f (xk)→ f (x).

Third, the horizon subdifferential ∂ ∞ f (x) is the set

{v : ∃xk→ x, vk ∈ ∂ f (xk), λk ↓ 0 with λkvk→ v}.

The vectors are called regular subgradients, (general) subgradients, and horizon subdifferen-
tials respectively.

For convex functions, both the regular and general subdifferentials coincide with the
convex subdifferential [192, Proposition 8.12]. These subdifferentials generally do not
coincide with the Clarke subdifferential, as the following example shows.

Example 7.9. Let f (x)=−|x| at x= 0. Then the Clarke, regular, and general subdifferentials
are given by

∂
C f (0) = [−1,1], ∂̂ f (0) = /0, ∂ f (0) = {−1,1}.

For a further comparison of subdifferentials, see [24], and [192, Theorem 8.49] and its
subsequent discussion.

To define regularity of sets and functions, we also need to define normal spaces of sets
and epigraphs of functions.

Definition 7.10 (Normal spaces). Let C ⊂ Rn and x ∈ Rn. The regular normal space of C at
x, written N̂C(x), is the set of vectors v ∈ Rn such that

⟨v,y− x⟩ ≤ o(∥y− x∥) ∀y ∈C.

The (general) normal space of C at x, written NC(x), is the set of vectors v ∈ Rn such that
there are sequences xk→ x and vk→ v such that xk ∈C and vk ∈ N̂C(xk). These vectors are
called regular normal vectors and normal vectors respectively.
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Definition 7.11 (Horizon cone). For a set C ⊂ Rn, the horizon cone is the closed cone C∞

given by

C∞ =

{x : ∃xk ∈C, λk ↓ 0, s.t. λkxk→ x}, if C ̸= /0,

{0}, if C = /0.

Proposition 7.12 (Indicator functions). Let C ⊂ Rn be regular at x ∈C. Then it holds that

∂δC(x) = NC(x) = N̂C(x) = ∂̂ δC(x). (7.7)

Proof. The first and final equalities are straightforward to verify from definition, while
the second equality follows from regularity of C at x.

Definition 7.13 (Epigraph). The epigraph of a function f : Rn→ R is the set

epi f := {(x,α) : α ≥ f (x)}.

Definition 7.14 (Subdifferential regularity). A function f : Rn→ R is called (subdifferen-
tially) regular at x ∈ dom f if epi f is Clarke regular at (x, f (x)) as a subset of Rn×R.

We list properties for the lower-level objective function F(x,ϑ) that are sufficiently
general to cover all our problems of interest, and which we will prove are regular.

Assumption 7.15.

(i) The function F can be written as F(x,ϑ) = F0(x,ϑ)+δC(x), where C⊂Rn is a closed,
convex, nonempty set, F0 is locally Lipschitz continuous for each (x,ϑ) ∈ domF, and
x 7→ F0(x,ϑ) is convex for each ϑ ∈Ω.

(ii) The effective domain of F is independent of ϑ , i.e. domF = domF(·,ϑ)×Ω for any
ϑ ∈Ω.

(iii) For each x ∈ domF(·,ϑ), ϑ 7→ F(x,ϑ) is C1-smooth.

(iv) The mapping (x,ϑ) 7→ ∂xF(x,ϑ) is outer semicontinuous on domF.

(v) The mapping (x,ϑ) 7→ Dϑ F(x,ϑ) is continuous on domF.

Theorem 7.16. Let F : Rn×Ω→ R be a function that satisfies Assumption 7.15. Then F is
regular at all (x∗,ϑ ∗) ∈ domF and

∂F(x∗,ϑ ∗) = ∂xF(x∗,ϑ ∗)×{Dϑ F(x∗,ϑ ∗)} ̸= /0. (7.8)
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Proof. We first show regularity of the second term of F . Since (x,ϑ) 7→ δC(x) is a proper,
lower semicontinuous, convex function, regularity of δC on C follows from [192, Proposition
8.12] and [192, Corollary 8.11].

Next we show regularity of F0. By [192, Corollary 8.11], this holds if and only if

∂
∞F0(x∗,ϑ ∗) = ∂̂F0(x∗,ϑ ∗)∞, ∂F0(x∗,ϑ ∗) = ∂̂F0(x∗,ϑ ∗).

Since F0 is locally Lipschitz continuous at (x∗,ϑ ∗), it follows from [192, Theorem 9.13] that
∂ ∞F0(x∗,ϑ ∗) = ∂̂F0(x∗,ϑ ∗)∞ = {0}. Since ∂F0(x∗,ϑ ∗)⊃ ∂̂F0(x∗,ϑ ∗), it remains to show
that ∂F0(x∗,ϑ ∗)⊂ ∂̂F0(x∗,ϑ ∗). Suppose v = [vx,vϑ ]

T ∈ ∂F0(x∗,ϑ ∗), so there are sequences
(xk,ϑ k)→ (x∗,ϑ ∗) and vk ∈ ∂̂F0(xk,ϑ k) such that vk = [vk

x,v
k
ϑ
]T → v.

As F0 is convex in the first argument and continuously differentiable in the second, the
equalities

∂xF0(x,ϑ) = ∂̂xF0(x,ϑ), ∂ϑ F0(x,ϑ) = ∂̂ϑ F0(x,ϑ) = {Dϑ F0(x,ϑ)}.

follow from [192, Theorem 9.18] and [192, Proposition 8.12]. Furthermore, by the previous
equalities and [192, Corollary 10.11], we have

∂̂F0(x,ϑ)⊂ ∂F0(x,ϑ)×∂ϑ F0(x,ϑ) = ∂xF0(x,ϑ)×{Dϑ F0(x,ϑ)}.

Therefore, vk = [vk
x,Dϑ F0(xk,ϑ k)]T , where vk

x ∈ ∂xF0(xk,ϑ k). By Assumption 7.15, ∂xF0 is
outer semicontinuous and Dϑ F0 is continuous, so v ∈ ∂xF0(x∗,ϑ ∗)×{Dϑ F0(x∗,ϑ ∗)}.

Finally, we show that v ∈ ∂̂F0(x∗,ϑ ∗). Suppose (hk,rk)→ (0,0). Then

F0(x∗+hk,ϑ ∗+ rk)−F0(x∗,ϑ ∗)

= F(x∗+hk,ϑ ∗+ rk)−F0(x∗+hk,ϑ ∗)+F0(x∗+hk,ϑ ∗)−F0(x∗,ϑ ∗)

≥ ⟨vx,hk⟩+ ⟨Dϑ F0(x∗+hk,ϑ ∗),rk⟩+o(∥rk∥)
= ⟨vx,hk⟩+ ⟨Dϑ F0(x∗,ϑ ∗),rk⟩+o(∥rk∥),

where the inequality follows from convexity of F in the first argument and the final equality
is due to continuity of Dϑ F0. Thus F0 is regular at (x∗,ϑ ∗).

Since δC and F0 are regular, and ∂ ∞F0(x∗,ϑ ∗) = {0}, [192, Corollary 10.9] implies that
F is regular at (x∗,ϑ ∗) and that the subdifferential is given by (7.8). This concludes the
proof.
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7.3.3 Riemannian geometry

We now introduce concepts relating to functions defined on Riemannian manifolds. We
say that M⊂ Rn is a l-dimensional C2-smooth submanifold around x ∈M if there is a
C2-smooth function G : N→ Rl such that

M∩N = {y ∈ N : G(y) = 0}∩N,

and where the matrix ∇G(y) is surjective for all y ∈ N [63]. For brevity, we will from hereon
refer to these as smooth manifolds. The tangent space TxM and normal space NxM are
given by

TxM= ker∇G(x), NxM= (ker∇G(x))⊥.

Definition 7.17 (Smooth representative). Given a setM⊂ Rn and a function f :M 7→ R,
we call f smooth along M at x ∈M if there is a neighbourhood Nx of x in Rn, and a
smooth function g : Nx→ R such that g(y) = f (y) for all y ∈M∩Nx. We call g a smooth
representative of f around x.

We can now define the Riemannian gradient and Riemannian Hessian, which will be
central to implicit differentiation of nonsmooth functions. Throughout, we denote byM⊂Rn

a smooth manifold.

Definition 7.18 (Riemannian gradient). Let f :M→ R be smooth at x ∈M and denote by
g any smooth representative of f at x. Then the Riemannian gradient of f at x is given by

∇M f (x) := PTxM∇g(x),

where PTxM is the projection operator onto the tangent space.

The following result can be found in [63, Proposition 9 & Proposition 12].

Proposition 7.19. Let f : Rn→ R be a regular function at x ∈M such that ∂ f (x) ̸= /0, and
suppose f is smooth alongM at x. Then the Riemannian gradient of f is independent of the
choice of smooth representative of f , and furthermore,

∇M f (x) = PTxM∂ f (x).

Definition 7.20 (Riemannian Hessian). Let f :M→ R be C2-smooth at x ∈ M. The
Riemannian Hessian of f at x is the symmetric, linear mapping from TxM to itself defined as

⟨u,∇2
M f (x)u⟩ :=

d2

dt2 f (PTxM(x+ tu))|t=0, ∀u ∈ TxM,



144 Differentiation for nonsmooth bilevel optimisation

where ⟨·, ·⟩ denotes the Euclidean inner product.

The Riemannian Hessian has an alternative expression, for which we introduce the
Weingarten map ofM at x. Given a normal vector v ∈ NxM, the Weingarten map is the
symmetric, linear operator Wx(·,v) : TxM→ TxM, given by [51, Proposition II.2.1]

Wx(u,v) =−PTxMdV [u], u ∈ TxM.

Here V is any extension of v to a vector field on the normal bundle ofM embedded in Rn, i.e.
{(x,w) : x ∈ Rn, w ∈ NxM}⊂ Rn×Rn, and dV is the derivative of V under the standard
(i.e. Euclidean) connection d on Rn [51]. For further details on the Weingarten map, also
known as the second fundamental form, we refer the reader to [3, 51].

Denote by g any smooth representative of f at x. Then the Riemannian Hessian can
alternatively be written as

∇
2
M f (x)v = PTxM∇

2g(x)PTxMv+Wx(v,−PNxM∇g(x)), ∀v ∈ TxM.

Furthermore, ifM is an affine or linear manifold near x, then Wx(v,−PNxM∇g(x)) vanishes,
so the Riemannian Hessian simplifies to ∇2

M f (x) = PTxM∇2g(x)PTxM [214].

7.4 Partial smoothness and implicit differentiation

In what follows, we will define partial smoothness, present our class of lower-level objective
functions, and derive properties of the corresponding solution map ϑ 7→ x(ϑ).

For a convex set C ⊂ Rn, its affine hull, denoted by affC, is the smallest affine set that
contains C. We denote by parC the subspace parallel to affC.

Definition 7.21 (Relative interior and boundary). For a convex set C ⊂ Rn, the relative
interior riC is the interior of C relative to its affine hull. The relative boundary rbdC is given
by rbdC := clC \ riC.

We are now ready to define partial smoothnes.

Definition 7.22 (Partial smoothness). Let M a smooth manifold in Rn. The function f :
Rn→ R is partly smooth at x ∈M relative toM if the following properties hold.

(i) (restricted smoothness) f restricted toM is C2-smooth around x.

(ii) (subgradient continuity) The subdifferential ∂ f is continuous at x relative toM.

(iii) (normal sharpness) par
(
∂ f (x)

)
= NM(x).
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(iv) (regularity) f is regular at x and ∂ f (x) ̸= /0.

We summarise the assumptions we make on F : Rn×Ω→ R as follows.

Assumption 7.23.

(A1) For each ϑ , F(·,ϑ) is in Γ0(Rn) and is µ-convex for some µ > 0 independent of ϑ .

(A2) For each x ∈ Rn, there is a neighbourhood Nx ∋ x that can be partitioned into a finite
number of smooth manifolds Mx = {Mi : i= 1, . . . ,N} such that for each y∈Mi∩Nx,
and ϑ ∈Ω, F is partly smooth at (y,ϑ) relative toMi×Rm.

The two next assumptions ensure sufficient regularity at the boundary of the manifolds
M∈Mx.

(A3) For each x ∈ Rn and M∈Mx, if clM\M ≠ /0, then there is a smooth manifold
M̃ ⊂ Rn such that

clM⊂M̃ and TyM= TyM̃ ∀y ∈M.

(A4) For each x ∈ Rn andM∈Mx, the limit

lim
M∋yk→y∈clM,ϑ k→ϑ∈Ω

∂xF(yk,ϑ k)

is well-defined.

Remark 7.24. By the transversality embedding assumption and chain rule for partly smooth
functions [130, Assumption 5.1 & Theorem 4.2], Assumption 7.23 (A2) implies that Fϑ is
partly smooth at x relative toM for all ϑ .

The concept of partitioning a neighbourhood of x into manifolds as in (A3) is not new
in the context of partial smoothness, consider e.g. the framework of mirror-stratifiability in
[86]. However, mirror-stratifiable functions are more restrictive than our assumptions, as
they also require a duality pairing with the convex conjugate F∗.

Since F is strongly convex in the first argument, there is a well-defined solution mapping,

x(ϑ) := argmin
x∈Rn

F(x,ϑ). (7.9)

It is straightforward to show that the mapping is continuous.

Proposition 7.25. Let the function F satisfy Assumption 7.23. Then the functions ϑ 7→ x(ϑ)

and ϑ 7→ F(x(ϑ),ϑ) are continuous.
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Proof. Let ε > 0, ϑ ∗ ∈ Ω and write x∗ = x(ϑ ∗). By the subgradient continuity of F
with respect to ϑ , there is δ > 0 such that for all ϑ ∈ Ω with ∥ϑ −ϑ ∗∥ < δ , we have
dist
(
∂xF(x∗,ϑ ∗),∂xF(x∗,ϑ)

)
< µε . Since 0 ∈ ∂xF(x∗,ϑ ∗), this means that there is p ∈

∂xF(x∗,ϑ) such that ∥p∥< µε . Finally, by strong convexity of F(·,ϑ ∗), we have

∥x∗− x(ϑ)∥ ≤ 1
µ
∥p∥< ε.

This concludes the proof for x(·).
We prove continuity of ϑ 7→ F(x(ϑ),ϑ) by contradiction. Suppose there is ε > 0 and

ϑk→ ϑ ∗ such that |F(x(ϑk),ϑk)−F(x∗,ϑ ∗)| ≥ ε for all k. By continuity of x(·) and lower
semicontinuity of F ,

F(x∗,ϑ ∗)≤ liminf
k→∞

F(x(ϑk),ϑk) =⇒ F(x(ϑk),ϑk)≥ F(x∗,ϑ ∗)+ ε for k ≥ K.

However, Assumption 7.23 implies that ϑ 7→F(x,ϑ) is continuous. Hence there is k such that
F(x∗,ϑk)< F(x(ϑk),ϑk), which contradicts x(ϑk) being a minimiser. Thus ϑ 7→ F(x(ϑ),ϑ)

is continuous.

7.4.1 Implicit differentiation on the manifold

One of the primary motivations for the framework of partial smoothness by Lewis in [130]
was to give conditions under which the minimiser behaves stably with respect to perturbations.
For this to be the case, a nondegeneracy condition needs to hold. This condition holds for a
function f : Rn→ R at x ∈ Rn if

0 ∈ ri
(
∂ f (x)

)
. (ND)

A point x ∈ Rn is said to be a strong critical point of a function f : Rn→ R relative to a set
M⊂ Rn if (ND) holds for f at x, and f restricted toM grows quadratically near x. Since
our function F is strongly convex with respect to x, we take quadratic growth for granted
while discussing minimisation conditions.

Lemma 7.26. Let F : Rn×Ω→R be a function that satisfies Assumption 7.23, and which is
partly smooth at (x∗,ϑ ∗) relative toM×Rm for some smooth manifoldM. If (ND) holds
for F at (x∗,ϑ ∗), then there is a neighbourhood Nϑ∗ of ϑ ∗ such that x(Nϑ∗)⊂M and x(·)
is C1-smooth on Nϑ∗ , with differential

Dx(ϑ) =−(∇2
MF(x(ϑ),ϑ))†Dϑ ∇MF(x(ϑ),ϑ). (7.10)
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Remark 7.27. Note that the expression for the solution map’s differential (7.10) derives
from implicit differentiation on the active manifoldM, and reduces to the classical implicit
derivative (7.4) whenM= Rn.

Proof. We first show that x(ϑ) ∈M for all ϑ sufficiently close to ϑ ∗. Write f (x) :=
F(x,ϑ ∗) for shorthand. By [76, Theorem 4.7], there is δ > 0 such that

(gph∂ f )∩N = (gph∂ ( f +δM))∩N, (7.11)

for N = {x ∈ Bδ (x(ϑ ∗)) : | f (x)− f (x(ϑ))|< δ}×Bδ (0).
By Proposition 7.25 and partial smoothness, the four mappings x(·), F(x(·), ·), F(x, ·),

and ∂F(x, ·) are continuous with respect to ϑ for all x. Therefore, we can choose ε > 0 such
that for all ϑ ∈ Bε(ϑ

∗), one has x(ϑ) ∈ Bδ (x(ϑ ∗)), F(x(ϑ),ϑ ∗) ∈ Bδ ( f (x(ϑ ∗))), and there
is p ∈ ∂ f (x(ϑ))∩Bδ (0). Therefore by (7.11), (x(ϑ), p) ∈ gph∂ ( f + δM). As ∥p∥ < ∞,
this can only be the case if x(ϑ) ∈M. This concludes the first part.

Local C1-differentiability of x(ϑ) is proven in [130, Theorem 5.7]. The expression for
Dx is provided in [214, Theorem 1] in the case where F(x,ϑ) = g(x,ϑ)+ J(x), where g is
smooth and J is partly smooth. However, their theorem and corresponding proof are directly
applicable to our setting, given that F is C2-smooth when restricted toM.

7.4.2 Piecewise smoothness of the solution map

Lemma 7.26 shows that in the nondegenerate case, the solution map is locally continuously
differentiable. This begs the question of how likely (ND) is to hold for any given parameter
choice.

The good news is that the nondegeneracy condition is a “generic" property. To be more
specific, Drusvyatskiy et al. [76] proved that for a lower semicontinuous, semialgebraic
function f : Rn→R and the “perturbed" functions fv(x) := f (x)−⟨x,v⟩, there is a set of full
measure in Rn, S, such that for all v ∈ S, all the minimisers of fv are strong critical points.

However, this is not to say that (ND) holds at x(ϑ) for almost all ϑ ∈ Ω. One can
easily devise a lower-level objective function F such that (ND) fails for all parameter
choices. Furthermore, even when the condition holds locally, while searching for optimal
parameters for the bilevel problem, one can expect the updated solution to move across
different manifolds. For these reasons, it is important to characterise the first-order behaviour
of x(·) at points of nonsmoothness.

As mentioned in the literature review, in [214] Vaiter et al. addressed this issue, proving
that for a class of definable functions in an o-minimal structure, the set of parameters
for which x(ϑ) is nonsmooth has Lebesgue measure zero. We approach the issue from
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a different perspective, seeking to explicitly characterise the subdifferential of the bilevel
objective function.

For these purposes, we define the functions

F̃(x,ϑ , p) := F(x,ϑ)−⟨p,x⟩
x̃(ϑ , p) := argmin

x∈Rn
F̃(x,ϑ , p). (7.12)

Since F̃ is strongly convex in the first argument, the solution mapping x̃ is also well-defined.
Furthermore, it is uniquely defined via the optimality condiftion

p ∈ ∂xF(x̃(ϑ),ϑ).

In fact, one can verify that if Assumption 7.23 holds for F , then it also holds for F̃ treating
(ϑ , p) as the parameters.

For ϑ ∗ ∈Ω and ε > 0, consider the set

Sε(ϑ
∗) := x̃(ϑ ∗,Bε(0)).

By Proposition 7.25 and Assumption 7.23 (iii) and by making ε sufficiently small, Sε(ϑ
∗) is

contained in the union of a finite number of manifolds, indexed by Iε(ϑ
∗),

Mi, i ∈ Iε(ϑ
∗), (7.13)

such that F is partly smooth relative to each Mi. Since ε 7→ Sε(ϑ
∗) is decreasing, i.e.

Sε(ϑ
∗)⊂ Sε ′(ϑ

∗) if ε < ε ′, the index set ε 7→ Iε(ϑ
∗) is also decreasing, and we can define

I(ϑ ∗) := liminf
ε↓0

Iε(ϑ
∗).

As the following proposition shows, the set I(ϑ ∗) indexes all the manifolds that the solution
map x(·) can move to near ϑ ∗, and thereby gauges the degeneracy of a minimiser.

Lemma 7.28. For any ϑ ∗ ∈Ω, I(ϑ ∗) is finite and nonempty. Furthermore, it is single-valued
if and only if (ND) holds for F at (x∗,ϑ ∗), where x∗ := x(ϑ ∗).

Proof. We showed above that Iε(ϑ
∗) is finite for some ε > 0, which implies that I(ϑ ∗) is

finite as well. Suppose F̃ is partly smooth at (x∗,ϑ ∗) alongM×Rm. As x(ϑ ∗) ∈ Sε(ϑ
∗)

for all ε > 0, I(ϑ ∗) is nonempty.
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If (ND) holds for F at ϑ ∗, then by Lemma 7.26, I(ϑ ∗) is single-valued. It therefore
remains to show that if (ND) does not hold, then there is xk→ x∗ and pk ∈ ∂F(xk,ϑ ∗) such
that pk→ 0 and xk /∈M for sufficiently large k.

Choose q ∈ ri∂F(x∗,ϑ ∗). Since 0 ∈ ∂F(x∗,ϑ ∗), by normal sharpness −q ∈ Nx∗M.
Define the sequences

pk :=−q
k
, xk := x̃(ϑ ∗, pk), dk :=

xk− x∗

∥xk− x∗∥
.

The last sequence is well-defined since pk /∈ ∂F(x∗,ϑ ∗) which implies that xk ̸= x∗ for all k.
We will prove by contradiction that eventually xk /∈M. Suppose there is a subsequence

(without relabelling) such that xk ∈M for all k. We denote by P∥,P⊥ :Rn→Rn the orthogonal
projections onto Tx∗M and Nx∗M respectively. Write dk

∥ := P∥dk and dk
⊥ := P⊥dk. Since

pk ∈ Nx∗M, one has

0 = ⟨pk,dk⟩+ ⟨pk,dk
∥−dk⟩ ≥ µ∥xk− x∗∥−∥pk∥∥dk

⊥∥

where the inequality follows from strong convexity. Since ∥pk∥→ 0, showing that ∥dk
⊥∥=

O(∥xk− x∥) will give us a contradiction.
Let G : Rn→ Rl be a C2-smooth function such thatM is locally represented by {x :

G(x) = 0} around x∗. Then Tx∗M= ker∇G(x∗). We consider the second-order expansion
of G around x∗ [22, Proposition A.23],

G(y) = G(x∗)+∇G(x∗)(y− x∗)+
1
2
(y− x∗)T

∇
2G(x∗)(y− x∗)+o(∥y− x∗∥2)

Plugging in xk for y and dividing through by ∥xk− x∗∥, we get

∇G(x∗)dk =−1
2
(xk− x∗)T

∇
2G(x∗)dk +o(∥xk− x∗∥) = O(∥xk− x∗∥).

It remains to show that there exists c > 0 such that ∥dk
⊥∥ ≤ c∥∇G(x∗)dk∥. Since dk

⊥ ∈
(ker∇G(x∗))⊥, we have

dk
⊥ = (∇G(x∗))†

∇G(x∗)dk, implying that ∥dk
⊥∥ ≤ ∥(∇G(x∗))†∥∥∇G(x∗)dk∥.

This concludes the proof.
We now proceed to state and prove the main result of this section, namely the piecewise

smoothness of the solution map x(·).
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Theorem 7.29. Let F : Rn×Ω→ R satisfy Assumption 7.23. Then for all ϑ ∗ ∈ Rn, the
solution mapping x(·) is piecewise C1-differentiable at ϑ ∗, and its semidifferential Dx(ϑ ∗) is
locally represented by

{−(∇2
Mi

F(x(ϑ ∗),ϑ ∗))†Dϑ ∇MiF(x(ϑ ∗),ϑ ∗) : i ∈ I(ϑ ∗)}.

Proof. We will show that x̃ is piecewise C1-smooth, and invoke Proposition 7.7 to
conclude that x(·)≡ x̃(·,0) is as well.

Denote as usual x∗ = x(ϑ ∗). We first show that for a neighbourhood N(ϑ∗,0) of (ϑ ∗,0),
x̃(N(ϑ∗,0)) ⊂ ∪i∈I(ϑ∗)Mi. Suppose for contradiction that this is not the case, i.e. there is
M∈Mx∗ \{Mi : i ∈ I(ϑ ∗)} and (ϑ k, pk)→ (ϑ ∗,0) such that xk := x̃(ϑ k, pk) ∈M for all
k. By Assumption 7.23, 0 ∈ limk→∞ ∂xF(xk,ϑ k) = limk→∞ ∂xF(xk,ϑ ∗). Therefore, for any
ε > 0, there is p ∈ Rn with ∥p∥ < ε and k ∈ N such that xk = x̃(ϑ ∗, p) ∈ Sε(x∗). But then
M∈ {Mi : i ∈ Iε(ϑ

∗)} for all ε > 0 which is a contradiction.
We fix i ∈ I(ϑ ∗) and consider Mi. Since x∗ ∈ clMi, by Assumption 7.23 there is

an extension of Mi, M̃i such that x∗ ∈ M̃i. Let G be a smooth representative of F̃ on
Mi×Rn×Rn, and consider the function

g(x,ϑ , p) := G(x,ϑ , p)+δM̃i
(x).

We will show that for a neighbourhood of (ϑ ∗,0), the solution map

yi(ϑ , p) := argmin
y∈N

g(y,ϑ , p)

is well-defined and C1-smooth, and furthermore that yi(ϑ , p) = x̃(ϑ , p) whenever x̃(ϑ , p) ∈
Mi.

To derive well-definedness and local differentiability of yi(ϑ , p), it is sufficient to show
that the conditions of [130, Theorem 5.7] hold, namely that g is partly smooth at (x∗,ϑ ∗,0)
relative to M̃i×Rn×Rn and that x∗ is a strong critical point of g(·,ϑ ∗,0) relative to M̃i.
Partial smoothness is immediate, since G is smooth and indicator functions of smooth
manifolds are partly smooth relative to the manifold.

By the definition of I(ϑ ∗) there is pk → 0 such that xk := x̃(ϑ ∗, pk) is a strong local
minimiser of F relative to Mi for each k. Since xk is also a strong local minimiser of
G(·,ϑ ∗, pk) relative to M̃i, by C2-smoothness of G, x∗ is a strong local minimiser of G
relative to M̃i, going via [214, Lemma 4]. Furthermore,

∂xg(x∗,ϑ ∗,0) = ∇xG(x∗,ϑ ∗,0)+Nx∗M̃i = ri∂xg(x∗,ϑ ∗,0),
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so x∗ is a strong critical point of g(·,ϑ ∗,0) relative to M̃i. Hence we can apply [130,
Theorem 5.7] to ensure that yi(ϑ , p) is well-defined for a neighbourhood N(ϑ∗,0) around
(ϑ ∗,0).

Finally, suppose for (ϑ , p) ∈ N(ϑ∗,0) that x̃(ϑ , p) ∈Mi. Then x̃(ϑ , p) is a strong local
minimiser of F̃(·,ϑ , p) relative to Mi, and therefore also a strong local minimiser for g.
Hence by uniqueness of yi(ϑ , p), yi(ϑ , p) = x̃(ϑ , p). This concludes the proof.

As the proof to Theorem 7.29 shows, x̃(ϑ , p) is piecewise smooth with minimal local
representation {yi(ϑ , p) : i ∈ I(ϑ ∗)}. By contrast, {yi(ϑ ,0) : i ∈ I(ϑ ∗)} form a local
representation of x(ϑ) but not necessarily a minimal one. However, we will see in the
following corollary that whether it is a minimal representation for x(·) or not does not matter
for the Clarke subdifferential of the bilevel objective function.

We denote the bilevel functions accordingly.

Ẽ(ϑ , p) := E(x̃(ϑ , p),ϑ), Ẽ i(ϑ , p) := E(yi(ϑ , p),ϑ), E i
(ϑ) := Ẽ i(ϑ ,0),

and noting that E, as given in (7.3), can be defined via E(ϑ) = Ẽ(ϑ ,0).

Corollary 7.30. The function E is piecewise differentiable and its Clarke subdifferential
∂CE(ϑ) is given by

∂
CE(ϑ) = co

{
∇xE(x(ϑ),ϑ)dϑ yi(ϑ ,0)+Dϑ E(x(ϑ),ϑ) : i ∈ I(ϑ)

}
. (7.14)

Proof. By the chain rule for piecewise smooth functions Proposition 7.6, Ẽ is piecewise
differentiable, and therefore also locally Lipschitz continuous. By Proposition 2.32 (iii), the
Clarke subdifferential corresponds to the convex hull of the set

S =

{
(v,w) ∈ Rm,n

∣∣∣∣∣ (v,w) = limk→∞ DE(ϑ k, pk), such that (ϑ k, pk)→ (ϑ , p)
and Ẽ is differentiable at (ϑ k, pk)

}

Since Ẽ is piecewise differentiable with minimal local representation of Ẽ i, i ∈ I(ϑ), we
derive

S = {DE i
(ϑ k, pk) : i ∈ I(ϑ)}.

Finally, by [54, Theorem 2.3.10]

∂
CE(ϑ) = ∂

CẼ(ϑ ,0)◦ [Im,0n]
T = co{DE i

(ϑ) : i ∈ I(ϑ)}.

The expression in (7.14) is obtained by applying the chain rule to E i.
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7.4.3 Examples of bilevel problems

We discuss examples of lower-level objective functions F that satisfy the criteria in Assump-
tion 7.23. First we give examples.

Partly smooth functions

As the issue of strong convexity is separate from the other assumptions, we assume for
simplicity that F is strongly convex, and focus on examples that satisfy the remaining
criteria.

We primarly consider variational regularisation problems of the form

F(x,ϑ) :=V (x,ϑ)+R(x,ϑ),

where V : Rn×Ω→ R represents the data fidelity term and R : Rn×Rm→ R the regularisa-
tion term, as described in Section 1.1.2.

Furthermore, note that if F satisfies Assumption 7.23 and G : Rn×Ω→ R is C2-smooth
such that G(·,ϑ) is convex for each ϑ , then F +G also satisfies Assumption 7.23.

We first consider the important class of polyhedral functions, which include the ℓ1 norm,
the ℓ∞ norm, and any linear precomposition of these norms, e.g. ∥K · ∥1 for K ∈ Rl,n (thus
including anistropic total variation). A polyhedral function R : Rn→R is any function which
can be written in the form

R(x) = max
i=1,...,N

{⟨ai,x⟩−bi}+δ∩M
i=N+1{x : ⟨ai,x⟩−bi}(x).

As is laid out in [130, Example 3.4], such functions are partly smooth relative to linear
manifolds, and the partition of manifolds clearly satisfy Assumption 7.23 (A3-A4). Thus,
if R : Rn×Rm→ R is such that R(·,ϑ) is polyhedral, so that the linear manifoldsM∈Mx

are invariant with respect to the parameters ϑ , then R satisfies the regularity assumptions in
Assumption 7.23. Since polyhedral functions are piecewise linear, their Riemannian Hessian
vanishes, i.e. ∇2

MR = 0.
Another important class of functions are general group Lasso functions, which are of the

form

R(x) :=
N

∑
i=1
∥Bix∥,

where {Bi ∈ Rl,n}N
i=1 is a collection of matrices. To show that these functions are partly

smooth relative to a collection of linear manifolds, we proceed accordingly. The function
∥B · ∥ is smooth on Rn \ kerB and partly smooth at x ∈ kerB relative to kerB. By [215,
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Proposition 9], sums of partly smooth functions with respect to linear manifolds are also
partly smooth, and this includes the group Lasso function. Provided that kerBi is invariant
with respect to the parameters ϑ , the group Lasso satisfies the regularity properties in
Assumption 7.23. Note that group Lasso functions include the isotropic total variation
seminorm.

For the Riemannian Hessian of general group Lasso functions, we consider a simpler
group Lasso function where Bi represents an orthogonal projection onto the subspace Xi⊂Rn.
In this case, R is partly smooth at x relative toM= Rn \ (∪x∈X⊥i

Xi), and for v ∈M,

∇
2
MR(x)v = ∑

i : Xi⊂M

1
∥Bix∥

Biv−
⟨Bix,Biv⟩
∥Bix∥2 Bix.

Next, we give an example of a function which is partly smooth relative to a nonlinear
manifold, namely the nuclear norm,

∥ · ∥∗ : x ∈ Rn1,n2 7→ ∥σ(x)∥1,

where σ(x) is the vector of singular values of the matrix x. The nuclear norm can be viewed
as the convex relaxation of the rank of a matrix [86], and it is partly smooth [62, 135] relative
to the constant r-rank manifold [132]

{x ∈ Rn1,n2 : rank(x) = r}.

Thus one might consider
R(x,ϑ) = ϑ∥x∥∗,

for ϑ ≥ 0. For its Riemannian Hessian, gradient, and Weingarten map, see [214, Example
21].

Finally, indicator functions δC for C ⊂ Rn are partly smooth if C is a polytope, i.e. if δC

is polyhedral, or if C has a smooth boundary.

Applications to bilevel problems

We proceed to discuss some bilevel problems which fit within this framework.
A natural example is that of weighting of regularisation terms,

F : Rn× (0,∞)m→ R, F(x,ϑ) =V (x,ϑ)+
m

∑
i=1

ϑiRi(x),



154 Differentiation for nonsmooth bilevel optimisation

where V is C2-smooth and ∑
m
i=1 Ri satisfies (A2).

Another example is that of learning sampling patterns for compressed sensing in MRI
[205], for which we can consider the model

F(x,ϑ) :=
1
2
∥S(ϑ)(Kx− f δ )∥2 +α(ϑ)R(x)+δ≥0(x)+

ε

2
∥x∥2, (7.15)

where α(ϑ) = ϑm and ϑ 7→ S(ϑ) is a matrix-valued function given by

S(ϑ) = diag((ϑ)m−1
i=1 ),

and Ω = [0,1]m−1× [0,∞). Here diag(ϑ) denotes the diagonal matrix with diagonal values
given by the vector ϑ . Furthermore ε > 0 and the corresponding term is included to enforce
strong convexity. The objective function F clearly satisfies Assumption 7.23 if R is given by
any of the examples mentioned above. In [205] they primarily consider the total variation
seminorm.

Next we consider two forms for dictionary learning problems, as discussed in [177]. The
lower-level objective function for synthesis-based priors is given by

xϑ ∈ argmin
x∈Rn

1
2
∥K(ϑ)x− f δ∥2 +R(x,ϑ),

where ϑ 7→K(ϑ)∈Rl,n is a C1-smooth matrix-valued function, and R is a regularisation term,
for example R(·,ϑ) = ϑm∥ · ∥1. While F varies smoothly with the parameters, in practice
K(ϑ) could have a nontrivial kernel, so F(·,ϑ) would not necessarily be strongly convex. In
these cases, one might want to consider weakening the strong convexity assumption.

On the other hand, the lower-level objective function for analysis-based priors is given by

xϑ = argmin
x∈Rn

1
2
∥x− f δ∥2 +R(K∗(ϑ)x,ϑ). (7.16)

In this case, the data fidelity term enforces strong convexity of F(·,ϑ). However, F is no
longer differentiable with respect to the parameters ϑ , for example if

R(K∗(ϑ)x,ϑ) = ∥K∗(ϑ)x∥1,

and letting ϑ freely parametrise the elements of K. Thus the partial smoothness framework
for bilevel optimisation is not directly applicable to (7.16). However, we propose to work
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around this by reformulating (7.16) as the saddle point problem

min
x∈Rn

max
y∈Rl

1
2
∥x− f δ∥2 + ⟨x,K(ϑ)y⟩−R∗(y,ϑ), (7.17)

where R∗(·,ϑ) is the convex conjugate of R(·,ϑ) with respect to the first variable. By
separating the linear operator from the regularisation term, we obtain a problem for which
the parameters ϑ vary smoothly. It remains to extend the concepts of implicit differentiation
under partial smoothness to saddle point problems, and consider algorithmic differentiation of
primal-dual optimisation methods, something which we discuss in the outlook Section 8.3.3.

7.5 Algorithmic differentiation

In this section, we consider algorithmic differentiation of forward–backward splitting algo-
rithms, in order to differentiate x(·). As mentioned in the literature, previous works including
[166, 167, 68] have studied algorithmic differentiation for nonsmooth variational problems in
image processing, however these did not look at convergence guarantees for the derivatives.
In this section, we seek to establish conditions under which the derivatives converge, and
when they might fail to do so.

We therefore suppose that the lower-level objective function F can be split as

F(x,ϑ) =V (x,ϑ)+R(x,ϑ), (7.18)

where V,R ∈ Γ0(Rn) and V is L-smooth.
We consider the following setting. For a parameter choice ϑ and starting point x0 ∈ Rn,

the iterates of the algorithm are given by

xk+1(ϑ) :=A(xk(ϑ),ϑ), k ∈ N. (7.19)

Hence we view each iterate xk as a function of ϑ , where x0(ϑ)≡ x0 is constant.
We assume that A is piecewise C1-smooth, which we show in the next section holds

provided the lower-level objective function satisfies Assumption 7.23. In this case, one
can use the chain rule Proposition 7.6 and differentiate (7.19) to recursively compute the
derivative

Dxk+1(ϑ) = ∇xA(xk(ϑ),ϑ)Dxk(ϑ)+DϑA(xk(ϑ),ϑ). (7.20)
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7.5.1 Proximal maps

Proximal maps are key to nonsmooth optimisation methods. For the algorithms we consider,
the nonsmoothness of the iterative map A is induced via proximal maps acting on the
nonsmooth term R(·,ϑ). In what follows, we therefore consider separately the differentiation
of these maps.

For R ∈ Γ0(Rn) and τ > 0, we define the Moreau function accordingly,

Rτ(x) := min
y∈Rn

τR(y)+
1
2
∥y− x∥2. (7.21)

The corresponding proximal map is defined as

proxτR(x) := argmin
y∈Rn

τR(y)+
1
2
∥y− x∥2. (7.22)

Now suppose the lower-level objective function is given by (7.18) and satisfies Assump-
tion 7.23, and consider the parameter-dependent proximal map

proxτR(y,ϑ) := argmin
x∈Rn

τR(x,ϑ)+
1
2
∥x− y∥2. (7.23)

Since V is smooth and V +R satisfies Assumption 7.23, the function

fτR(x,ϑ ,y) :=
1
2
∥x− y∥2 + τR(x,ϑ), (7.24)

also satisfies these assumptions, treating (ϑ ,y) as the parameters. Denote by IτR(ϑ ,y) the
corresponding index set for this (7.24), as defined in (7.13).

The following result is immediate when one observes that proxτR(y,ϑ) is simply the
solution map corresponding to (7.24).

Lemma 7.31. Suppose F :Rn×Ω×Rn→R is given by (7.18) and satisfies Assumption 7.23.
Then the parameter dependent proximal map given by (7.23) is piecewise smooth in both
arguments, with differential DproxτR(y,ϑ) having a minimal local representation of

[
(PTxMi + τ∇2

Mi
R(x,ϑ))†

−τ(PTxMi + τ∇2
Mi

R(x,ϑ))†Dϑ ∇MR(x,ϑ)

] ∣∣∣∣∣ i ∈ IτR(ϑ ,y)

 , (7.25)

where x = proxτR(y,ϑ).

Proof. We apply Theorem 7.29 to (7.24) which gives us the result.
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Lemma 7.31 will be central to the framework of algorithmic differentiation of forward-
backward splitting methods. The following result relates nondegeneracy of the variational
problem (7.1) to local C1-smoothness of proxτR around (ϑ ,x(ϑ)).

Proposition 7.32. Consider the setting of Lemma 7.31 and suppose furthermore that (ND)
holds for F(·,ϑ ∗) at x∗. Then proxτR(ϑ ,y) is continuously differentiable near (ϑ ∗,x∗−
τ∇xV (x∗,ϑ ∗)).

Proof. It is sufficent to show that 0 ∈ ri∂x fτR(x∗,ϑ ,x∗− τ∇xV (x∗,ϑ ∗)) and apply [130,
Theorem 5.7]. Writing out the subdifferential of fτR gives us

∂x fτR(x∗,ϑ ∗,x∗− τ∇xV (x∗,ϑ ∗)) = τ(∇xV (x∗,ϑ ∗)+∂xR(x∗,ϑ ∗)) = τ∂xF(x∗,ϑ ∗),

and the result follows.

7.5.2 Forward-backward-type methods

We are now ready to introduce our class of forward-backward algorithms and study the
corresponding algorithmic derivatives.

Let the lower-level objective function be given by (7.18), i.e. F(x,ϑ) =V (x,ϑ)+R(x,ϑ)

where V is L-smooth with respect to x.

Algorithm 5 Forward-backward splitting method
Input: starting point x0 = x−1 ∈ Rn, parameter ϑ ∈Ω, time steps (τk)k∈N ⊂ [ε,2/L− ε] for
some ε > 0, inertial parameters (ak)k∈N ⊂ [0,1],

for k = 0,1,2, . . . do

yk = xk +ak(xk− xk−1)

xk+1 = proxτkR(y
k− τk∇xV (yk,ϑ),ϑ)

(7.26)

end for

As pointed out in [135], this class of algorithms covers the original forward-backward
method [138] when ak = 0, and variants of accelerated FISTA (fast iterative shrinkage-
thresholding algorithm) [8, 14, 49] when τk ∈ [ε,1/L] and ak→ 1. Note that Algorithm 5 is
slightly more restrictive than the class of forward-backward algorithms considered in [135],
i.e. we fix ak = bk in their Algorithm 1.

Recall from (7.19) that we represent the update in Algorithm 5 by a mapping A : Rn×
Ω→ Rn. However, since our class of algorithms includes multistep mappings, as well as
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time steps and inertial parameters that depend on the iteration index k, we adapt the notation
in (7.19) accordingly. We denote by Ak : Rn×Ω→ Rn and require that τk → τ , ak → a,
so that Ak→A. Additionally, we rewrite the multistep iterative procedure as a single step
accordingly. The algorithm update (7.26) is equivalent to

zk+1(ϑ) =Ak(zk(ϑ),ϑ),

zk :=

[
xk

xk−1

]
, Ak(z,ϑ) :=

 fk

(
gk(hk(zk),ϑ),ϑ

)
zk

1

 , (7.27)

where fk(x,ϑ) = proxτkR(x,ϑ), gk(x,ϑ) = x−τk∇xV (x,ϑ), and hk([z1,z2]
T ) = z1+ak(z1−

z2). Clearly gk and hk are differentiable, so by Lemma 7.31 and the chain rule, the algorithmic
mapping A in (7.27) is piecewise differentiable.

We now proceed to the main result of this section.

Theorem 7.33. Let the function F ≡V +R : Rn×Ω→ R be given by (7.18) and suppose it
satisfies Assumption 7.23. Furthermore, suppose for ϑ ∈Ω that the iterates xk(ϑ) given by
(7.26) converge to a minimiser x∗ of F(·,ϑ), and that (ND) holds for F(·,ϑ) at x∗. Then the
sequence of (semi)derivatives Dxk(ϑ) converges linearly to the single-valued limit Dx(ϑ).

Remark 7.34. Of course, one can also differentiate with respect to algorithmic parameters
such as τk and ak. We have not considered this, as our motivation is to study the convergence
of the algorithmic derivatives to the implicit derivative (7.4), the latter of which does not
involve algorithmic parameters.

We also point out that convergence of the iterates xk remains an open problem for some
variants of FISTA, we refer to the discussion in [135]. Of course, as we assume strong
convexity, we can also deduce that F(xk)→ F(x(ϑ)) =⇒ xk→ x(ϑ).

Proof. There is a smooth manifoldM such that F is partly smooth at x∗ relative toM.
Since xk(ϑ)→ x∗, we have the limit

gk(hk(zk),ϑ)→ x∗− τ∇xV (x∗,ϑ).

Since x∗ is a strong critical point of F(·,ϑ), Proposition 7.32 implies that there exists K ∈ N
such that for all k ≥ K, fk is locally continuously differentiable around gk(hk(zk),ϑ).
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Applying (7.20) to (7.27), we have

Dzk+1(ϑ) = MkDzk(ϑ)+bk, where

Mk :=

[
(1+ak)Ak −akAk

I 0

]
, Ak := ∇x fk

(
gk(hk(zk),ϑ),ϑ

)
∇xgk(hk(zk),ϑ),

bk :=

Dϑ fk

(
gk(hk(zk),ϑ)

)
+∇x fk

(
gk(hk(zk),ϑ),ϑ

)
Dϑ gk(hk(zk),ϑ)

0

 .
(7.28)

Denote by f , g, and h the limits of the function sequences fk, gk, and hk. By eventual local
differentiability, we have

Ak→ ∇x f
(
g(h(z∗),ϑ),ϑ

)
∇xg(h(z∗))∇hk(z∗) =: A ∈ Rn,n,

bk→

[
Dϑ f

(
g(h(z∗),ϑ)

)
+∇x f

(
g(h(z∗),ϑ),ϑ

)
Dϑ g(h(z∗),ϑ)

0

]
=: b ∈ Rn,m,

Mk→

[
(1+a)A −aA

I 0

]
,

where z∗ = [x∗,x∗]T . By Lemma 7.31, A is given by

A = (PTx∗M+ τ∇
2
MR(x∗,ϑ))†(I− τ∇

2V (x∗,ϑ)).

In order to apply Proposition 2.7, we want to show that the spectral radius of M, ρ(M), is
less than 1. For this, we first need to show that ∥A∥< 1. We have

∥A∥ ≤ ∥(PTx∗M+ τ∇
2
MR(x∗,ϑ))†∥∥I− τ∇

2(x∗,ϑ)∥.

By Assumption 7.23, V is µ-convex and R is ν-convex, where either µ > 0 or ν > 0. Since
the second matrix above is self-adjoint, by [124, Theorem 9.2.2],

∥I− τ∇
2(x∗,ϑ)∥= sup

∥x∥=1
|∥x∥2− τ⟨x,∇2(x∗,ϑ)x⟩| ≤max{|1− τµ|, |1− εL|}.

For the first matrix,

sup
∥x∥=1

∥(PTx∗M+ τ∇
2
MR(x∗,ϑ))†x∥= sup

∥x∥=1, x∈Tx∗M
∥(PTx∗M+ τ∇

2
MR(x∗,ϑ))†x∥
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Let x ∈ Tx∗M and y = (PTx∗M+ τ∇2
MR(x∗,ϑ))†x. Then

∥x∥= ∥y+ τ∇
2
MR(x∗,ϑ)y∥ ≥ (1+ τν)∥y∥,

from which it follows that ∥(PTx∗M+ τ∇2
MR(x∗,ϑ))†∥< 1/(1+ τν). Since either µ or ν is

strictly positive, it follows that ∥A∥< 1.
Now suppose Mz = λ z for some z = [z1,z2]

T and λ ∈ C\{0}. We then get[
(1+a)A −aA

I 0

]
z =

[
(1+a)z1−aAz2

z1

]
= λ

[
z1

z2

]
.

Thus λ z2 = z1, which implies that λ z1 = (1+a−a/η)Az1, so η/(1+a−a/η) is a nonzero
eigenvalue of A. One can verify that nonzero eigenvalues of A on Cn coincide with nonzero
eigenvalues of A on Tx∗M. Furthermore, restricted to this subspace, A satisfies the assump-
tions of Proposition 2.8, so σ(A)⊂ R.

If we write ρ = ∥A∥< 1, then we have
∣∣λ/(1+a−a/λ )

∣∣≤ ρ . We will show that |λ |< 1
by case-by-case analysis.

If λ < 0, then we have −λ < (1+a−a/λ )ρ . One can check that all negative solutions
for λ to this lie in (−1,0). Otherwise, we assume λ > 0. If 1+ a− a/λ < 0, then λ <

a/(1+a)< 1. Otherwise, if 1+a−a/λ > 0, then we have λ 2− (1+a)ρλ +aρ < 0, for
which we can show that λ ≤ ρ < 1. Thus ρ(M)< 1.

Therefore, by Proposition 2.7, the sequence of derivatives Dzk(ϑ) converges linearly to

lim
k→∞

Dzk(ϑ) = (I−M)−1b.

It remains to show that Dx(ϑ) solves

(I−M)

[
Dx(ϑ)

Dx(ϑ)

]
= b.

We have

(I−M)

[
Dx(ϑ)

Dx(ϑ)

]
=

[
I− (1+a)A aA
−I I

][
Dx(ϑ)

Dx(ϑ)

]
=

[
(I−A)Dx(ϑ)

0

]
.
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For brevity, write

MV = ∇
2
MV (x(ϑ),ϑ), MR = ∇

2
MR(x(ϑ),ϑ), DV = Dϑ ∇MV (x(ϑ),ϑ),

DR = Dϑ ∇MR(x(ϑ),ϑ), P = PTx∗M.

Then we have by Lemma 7.26 and Lemma 7.31,

(I−A)Dx(ϑ) =−
(

I− (P+ τMR)
†(I− τMV )

)
(MV +MR)

†(DV +DR)

=−τ(P+ τMR)
†(DV +DR) =−τ(P+ τMR)

†DR− τ(P+ τMR)
†DV = b.

This concludes the proof.

7.5.3 Bregman proximal methods

The generalisation from the Euclidean distance to Bregman distances is significant to optimi-
sation and regularisation theory. In what follows, we briefly consider the Bregman proximal
method and show that the derivative convergence result Theorem 7.33 extends to this case
under certain conditions.

Denote by J : Rn→ R a function that is C1-smooth on intdomJ, and 1-convex.3 For
F =V +R given by (7.18), the iteration map for the Bregman proximal method is given by

Ak(y,ϑ) := argmin
x∈Rn

f J
k (x,ϑ ,y),

f J
k (x,y,ϑ) :=

1
τk

DJ(x,y)+R(x,ϑ)+ ⟨∇xV (y,ϑ),x− y⟩.
(7.29)

Algorithm 6 Bregman proximal method
Input: starting point x0 ∈ Rn, parameter ϑ ∈ Ω, time steps (τk)k∈N ⊂ [ε,1/L] for some
ε > 0

for k = 0,1,2, . . . do

xk+1 =Ak(xk,ϑ), Ak given in (7.29)

end for

As before, we assume that τk→ τ . In comparison to Algorithm 5, this algorithm is more
restrictive, as there is no inertial step, i.e. ak = 0 and τk ≤ 1/L. Regarding the restriction on

3We only consider smooth functions, since otherwise the Bregman proximal map would depend on a
subgradient choice p ∈ ∂J(y), further complicating the algorithmic differentiation.
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ak, as is pointed out in [212], FISTA does not seem to be directly extendible to the Bregman
distance setting, and while other acceleration variants have been proposed [213], we do not
consider these here. Depending on the choice of J, time steps τk up to 2/L− ε are possible
depending on the Bregman distance generating function J—see [212, Definition 4.1] and
surrounding discussion.

Suppose the objective function V +R satisfies Assumption 7.23. Arguing as in Sec-
tion 7.5.1 and noting the L-smoothness of V , f J

k satisfies Assumption 7.23, treating (y,ϑ)

as the parameters. Denote by IJ
τkV,τkR(y,ϑ) the index set (7.13) corresponding to (7.29). The

following result is analogous to Lemma 7.31 and Proposition 7.32 for the Bregman proximal
method.

Lemma 7.35. Suppose F = V +R : Rn×Ω→ R is given by (7.18) and satisfies Assump-
tion 7.23. Then the Bregman proximal mapping Ak(y,ϑ) in (7.29) is piecewise smooth in
both arguments, with differential DAk(y,ϑ) = [∇xAk(y,ϑ),DϑAk(y,ϑ)]T having a minimal
local representation of
[

(∇2
Mi

J(x)+ τk∇2
Mi

R(x,ϑ))†(∇2J(y)− τk∇2
xV (y,ϑ))

−τk(∇
2
Mi

J(x)+ τk∇2
Mi

R(x,ϑ))†(Dϑ ∇MiR(x,ϑ)+Dϑ ∇xV (y,ϑ))

]
i∈IJ

k (y,ϑ)

, (7.30)

where x =Ak(y,ϑ).
Furthermore, if (ND) holds for F(·,ϑ) at x∗, then Ak is locally continuously differen-

tiable near (x∗,ϑ).

Proof. Piecewise smoothness follows from Theorem 7.29 applied to f J
k (x,y,ϑ).

For the second part, it is sufficent to show that 0 ∈ ri∂x f J
k (x
∗,ϑ ,x∗) and apply [130,

Theorem 5.7]. We have

∂x f J
k (x
∗,ϑ ,x∗) =

1
τk
(∇J(x∗)−∇J(x∗))+∂xR(x∗,ϑ)+∇xV (x∗,ϑ) = ∂xF(x∗,ϑ),

and the proof is complete.

Theorem 7.36. Let the function F ≡V +R : Rn×Ω→ R be given by (7.18) and suppose
it satisfies Assumption 7.23. Furthermore, suppose for ϑ ∈Ω that the iterates xk(ϑ) given
by Algorithm 6 converges to a minimiser x∗ ∈ intdomJ of F(·,ϑ), and that (ND) holds
for F(·,ϑ) at x∗. Then the sequence of (semi)derivatives Dxk(ϑ) converges linearly to the
single-valued limit Dx(ϑ).
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Proof. We argue along the same lines as in the proof to Theorem 7.33. LetM⊂ Rn be a
smooth manifold such that F is partly smooth at (x∗,ϑ) relative toM×Rn. By Lemma 7.35,
there is K ∈ N such that for all k ≥ K, fk is continuously differentiable near gk(xk,ϑ).

Applying (7.20) to (7.29), we have

Dxk+1(ϑ) = AkDxk(ϑ)+bk, (7.31)

where

Ak := ∇x f J
k (x

k,ϑ), bk := Dϑ f J
k (x

k,ϑ)

Write f J := limk→∞ f J
k . By Lemma 7.35, there is K ∈N such that for all k≥ K, the iterations

Ak(xk,ϑ) are locally continuously differentiable, and we have

Ak→ (∇2
MJ(x∗)+ τ∇

2
MR(x∗,ϑ))†(∇2J(x∗)− τ∇

2
xV (x∗,ϑ)) =: A ∈ Rn,n,

bk→−τ(∇2
MJ(x∗)+ τ∇

2
MR(x∗,ϑ))†(Dϑ ∇MR(x∗,ϑ)+Dϑ ∇xV (x∗,ϑ)) =: b ∈ Rn,m.

Write for shorthand

MJ := ∇
2
MJ(x∗), MR := ∇

2
MR(x∗,ϑ), MV := ∇

2
xV (x∗,ϑ),

so that A = (MJ + τMR)
†(MJ− τMV ).

We need to show that ρ(A)< 1. Suppose Ax = λx for some x ∈ Cn, λ ∈ C\0. Note that
any eigenvector x of A must lie in the subspace Tx∗M, so the spectrum of A in Rn coincides
with its spectrum restricted to Tx∗M. Furthermore, restricted to this subspace, A satisfies the
conditions for Proposition 2.8, meaning λ ∈ R.

Since x ∈ Tx∗M, we can rearrange λx = Ax to get

(1−λ )MJx = τ(λMR−MV )x

Taking the inner product on each side with respect to x, we get

(1−λ )⟨x,MJx⟩= τλ ⟨x,MRx⟩+ τ⟨x,MV x⟩. (7.32)

By strong convexity of F and J, there is µ,ν ≥ 0 with µ +ν > 0 such that ⟨x,MJx⟩ ≥ ∥x∥2,
τ⟨x,MRx⟩ ≥ τν∥x∥2, and τ⟨x,MV x⟩ ∈ [εµ∥x∥2,∥x∥2]. One can then verify that for (7.32) to
hold, λ ∈ [0,1).
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Therefore, by Lemma 7.35, Dxk(ϑ) converges linearly to (I−A)−1b. It remains to show
that (I−A)Dx(ϑ) = b. Writing

DV = Dϑ ∇MV (x(ϑ),ϑ), DR = Dϑ ∇MR(x(ϑ),ϑ),

we have

(I−A)Dx(ϑ) =−
(

I− (MJ + τMR)
†(MJ− τMV )

)
(MV +MR)

†(DV +DR)

=−τ(MJ + τMR)
†(DV +DR) = b.

This concludes the proof.
As mentioned earlier, we do not consider nonsmooth Bregman distance generating

functions J : Rn → R, as this would involve differentiation with respect to an additional
variable, namely subgradients pk ∈ ∂J(xk). We therefore leave this for future research.

Second, in Theorem 7.36, we assume that x∗ ∈ intdomJ. This ensures that Ak converges to
a unique limit. However, this assumption does not hold in general, including for some popular
Bregman distances such as the Kullback–Leibler divergence DJ(x,y) = x(logx− logy)−
(x− y) generated by the entropy function J(x) = x logx (in one dimension). Furthermore,
as was demonstrated in [166, 167], one can achieve iterative methods that solve nonsmooth
variational methods, yet whose iterative mapA(x,ϑ) is continuously differentiable, provided
the nonsmoothness can be expressed as convex constraints that coincide with cldomJ. In
these settings, one expects x∗ /∈ domJ.

While we do not prove convergence results for the case where x∗ /∈ intdomJ, we show
for a simple example with the Kullback–Leibler divergence that the algorithmic iterates Dxk

do converge to the implicit derivative Dx even when x∗ = 0 /∈ domJ.

Example 7.37. Consider a simple example

x(ϑ) = argmin
x∈Rn

V (x,ϑ)+δ≥0(x),

and J(x) = ∑
n
i=1 xi logxi. The Bregman distance is the Kullback–Leibler divergence given by

DJ(x,y) =
n

∑
i=1

x(logx− logy)− (x− y).

We assume that x0 ∈ Rn is such that {x : V (x)≤V (x0)} ⊂ [0,1]n, as J this ensures that J is
1-convex for all xk. In general, one can rescale J to ensure 1-convexity on greater domains.
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For τk ∈ [ε,1/L], the iterates of Algorithm 6 yield the updates

xk+1(ϑ) = xk exp(−τ∇V (xk(ϑ),ϑ))→ x(ϑ) =: x∗.

We differentiate this with respect to ϑ and obtain

Dxk+1(ϑ) = Dxk(ϑ)exp(−τ∇V (xk(ϑ),ϑ))− xkDϑ

(
exp(−τ∇V (xk(ϑ),ϑ))

)
,

where exp is applied element-wise to the vectors. For each i, if xk
i → 0, then

[Dxk+1(ϑ)]i = Dxk(ϑ)exp(−τ∇iV (xk(ϑ),ϑ))+O(∥xk∥).

In this case, the condition (ND) holds if and only if, for each i such that x∗i = 0, one has
[∇V (x∗,ϑ)]i > 0. In this case, we see that [Dxk]i→ 0 linearly. In conclusion, we have

Dxk(ϑ)→ Dx(ϑ).

7.5.4 Failure of convergence under the degenerate case

In the previous section, we proved under the nondegeneracy assumption that the algorithmic
derivative converges to the true derivative. Now we consider what might happen when the
nondegeneracy condition does not hold. We will show that in this case, the sequence, and
any subsequence, of algorithmic derivatives can fail to converge to a subgradient of x(·).

In such cases, the solution x(ϑ ∗) may be at the transition point between two manifolds,
across which the Dx behaves discontinuously. In Theorem 7.29, we proved that x(·) is
piecewise continuous and therefore semidifferentiable at such points. One could therefore
hope that the sequence, or a subsequence, of algorithmic derivatives converges to a Clarke
subgradient, or, equivalently by (2.1), to a convex combination of the local gradient repre-
sentatives Dxi. This would indeed be the case if the iterates identified and remained within
one of the manifolds. However, it is also possible that the iterates oscillate between different
manifolds. We first demonstrate with a numerical example, and then justify it mathematically.

We consider a problem F(x,ϑ) : R3×R→ R given by

1
2
∥Ax−b∥2 +ϑ∥x∥1,

where A ∈ R3,3 and b ∈ R3 are randomly generated, and approximate ϑ to an accuracy of
10−14 such that (ND) fails. We then run the standard forward-backward algorithm (with
ak = 0) and τ = 1.8/L, compute the algorithmic derivative at each iterate, and measure the
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Fig. 7.1 The relative distance of the algorithmic derivative to the convex hull of local
derivatives with respect to iterates, i.e. dist(Dxk,∂x)/dist(Dx1,∂x).

distance of the algorithmic derivative to the convex hull of local derivatives ∂x = co{Dx̃i :
i∈ I(ϑ)}. See Figure 7.1 for a plot of dist(Dxk,∂x)/dist(Dx1,∂x) with respect to the iterates.
The iterates quickly converge to the minimiser, after which they oscillate between the two
manifolds. Similarly, the algorithmic derivatives alternate between two vectors, neither of
which lie close to the subdifferential ∂x. The computation was done on MATLAB.

We will now provide a mathematical justification for why the automatic derivatives fail
to approximate any (sub)gradient. For this, we consider a simplified scenario, where there
are two distinct, linear manifoldsM1 andM2 such that x ∈M1 ∩ clM2, and such that
eventually x2k ∈M1 and x2k+1 ∈M2 for all k ≥ K. Furthermore, write

A1 = lim
k→∞

DxA(x2k,ϑ), b1 = lim
k→∞

DϑA(x2k,ϑ),

A2 = lim
k→∞

DxA(x2k+1,ϑ), b2 = lim
k→∞

DϑA(x2k+1,ϑ).

Then, provided ∥A1∥< 1, ∥A2∥< 1, the algorithmic derivatives behave asymptotically as

Dxk+1 =

A1Dxk +b1 +o(ρk), if k is even,

A2Dxk +b2 +o(ρk), if k is odd,

where ρ ∈ (max{∥A1∥,∥A2∥},1). In the limit, these iterates converge to

lim
k→∞

Dx2k = (I−A2A1)
−1(A2b1+b2), lim

k→∞
Dx2k+1 = (I−A1A2)

−1(A1b2+b1). (7.33)

The two local derivatives are given by

Dx̃i =−(∇2
Mi

F)†Dϑ ∇MiF = (I−Ai)
−1bi, i = 1,2. (7.34)
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It remains to note that in general, the limits in (7.33) are not a linear combination of the
limits in (7.34).

Suppose F is continuous on domF . AsM1 ⊂ clM2, a C2-smooth representative of F
alongM2, F̂ , is therefore also a representative alongM1. Therefore ∇2

M1
F = P∇2

M2
FP,

where P is the projection onto TM1(x). Using block matrix notation and changing the basis,
we have

∇
2
M2

F =

 B C 0
CT D 0
0 0 0

 ,
for some matrices B and C, and where D = π∇2

M2
F is the projection to its intrinsic subspace,

meaning D is positive-definite. By Rhode’s theorem on pseudoinverses of Hermitian block
matrices [193],

(∇2
M2

F)† =

B† +B†CQ†CT B† −B†CQ† 0
−Q†CT B† Q† 0

0 0 0

 ,
where Q = D−CT B†C. We may compare this to the pseudoinverse of ∇2

M2
F , which is given

by

(∇2
M1

F)† =

0 0 0
0 D† 0
0 0 0

 .
Plugging these expressions into (7.33) and (7.34), it becomes clear that the algorithmic
derivatives will in general not converge to a subdifferential of the true derivative.

7.6 Numerical experiments

In what follows, we test the framework for some simple examples. We emphasise that we
only consider the computation of Dx(ϑ), and leave solving the actual bilevel problem to
future work. All numerics are done on MATLAB. For all of the examples, we are able to
ensure that the minimiser satisfies (ND) and that we can identify the active manifold, get
sufficiently close to the minimiser, and compute the implicit derivative Dx(ϑ) to a high order
of accuracy. For the numerical results, we can therefore reliably compare with the ‘true
derivative’. Note that in practice, this is often not the case. See Section 8.3.3 for a further
discussion of this.
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Fig. 7.2 Left: The relative objective of (7.35) with respect to the iterates, for FISTA and FB.
Right: The relative error ∥Dxk(ϑ)−Dx(ϑ)∥/∥Dx1(ϑ)−Dx(ϑ)∥ with respect to the iterate,
for FISTA and FB, and implicit (Imp) and algorithmic (Alg) differentiation.

We first compare algorithmic and implicit differentiation of the solution mapping corre-
sponding to the lower-level objective function

F(x,ϑ) =
1
2
∥Ax− f δ∥2 +ϑ∥x∥1, (7.35)

where ϑ = 10, and A ∈ R800,800 and f δ ∈ R800 are generated by independent Gaussian
draws. We solve using FISTA, with inertial parameter ak = (k−1)/(k+30), and FB, which
corresponds to ak = 0, with the time step τk = 1/∥A∥2 in both cases. At each iterate, we
compute the algorithmic derivative and the implicit derivative at this stage, the latter computed
as if xk were the actual minimiser of (7.35).

See Figure 7.2 for the results. The derivative of x(ϑ) equals P(A∗A)−1P, where P is the
projection onto subspace spanned by the basis vectors ei for which [x(ϑ)]i ̸= 0. Therefore,
the implicit derivative remains unchanged for all x with the same support. We therefore
observe that the error in the implicit derivative vanishes when the iterate identifies the correct
support. In contrast, the algorithmic derivative converges to the true derivative at a linear rate
relating to the condition number of A∗A.

We run the same experiment as above, with regularised logistic regression of the form

F(x,ϑ) =
l

∑
i=1

log
(

1+ exp(−yi⟨wi,x⟩)
)
+ϑ∥x∥1. (7.36)

Here W ∈ Rn,l is randomly generated from independent Gaussian draws, and y ∈ {±1}l

with each element taking either value with equal probability. We set n = 200, l = 100, and
ϑ = 10.
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Fig. 7.3 Left: The relative objective of (7.36) with respect to the iterates, for FISTA and FB.
Right: The relative error ∥Dxk(ϑ)−Dx(ϑ)∥/∥Dx1(ϑ)−Dx(ϑ)∥ with respect to the iterate,
for FISTA and FB, and implicit (Imp) and algorithmic (Alg) differentiation.

See Figure 7.3 for the results. We observe that the implicit derivative from the FISTA
method converges to the true derivative the fastest, with the algorithmic derivative from
FISTA slightly behind.

7.7 Conclusion and outlook

In this chapter, we have studied the differentiability of solution mappings of parametrised
variational problems under assumptions of partial smoothness. We have obtained new
results on the piecewise differentiability of the solution mapping, and thereby characterised
the Clarke subdifferential of the solution mapping E(ϑ). Furthermore, we have studied
algorithmic differentiation, showing that the same analysis can lead to convergence guarantees
to the implicit derivative.

These results open the door for future applications of bilevel optimisation of nonsmooth
variational problems. Future work will be dedicated to studying bilevel optimisation for
saddle-point problems and algorithmic differentiation of primal-dual methods (see Sec-
tion 8.3.3), its application to dictionary learning and to learning sampling patterns for MRI,
along the lines of [205]. Furthermore, we want to investigate how the combination of algorith-
mic differentiation and stopping rules affect the stability of schemes for bilevel optimisation
(see Section 8.3.3).





Chapter 8

Summary, discussion, and outlook

8.1 Summary

In this thesis, we studied discrete gradient methods from geometric numerical integration
for solving various classes of optimisation problems. These methods preserve structures of
differential systems, including the dissipative structure of gradient flows and the inverse scale
space flow.

In the context of optimisation of continuously differentiable functions, we prove con-
vergence rates of O(1/k) for L-smooth, convex functions, and linear rates for L-smooth
functions that satisfy the Polyak–Łojasiewicz inequality. Furthermore, we prove that the
discrete gradient method is well-defined for all time steps τk > 0. Finally we propose a
scheme for solving the discrete gradient equation, which we demonstrate is superior in
stability and efficiency for different optimisation problems.

Furthermore, the Itoh–Abe discrete gradient is derivative-free, thereby providing a notion
of gradient flow-type dissipation in a derivative-free setting. With this in mind, we have
studied derivative-free discrete gradient methods applied to locally Lipschitz continuous
functions, and proven that the method is well-defined and converges to a set of stationary
points in the nonsmooth, nonconvex Clarke subdifferential framework.

A central motivation for studying derivative-free, nonsmooth optimisation is bilevel
optimisation problems, in which the parameters of a nonsmooth variational optimisation
problem are optimised with respect to some higher-level cost function. The reason for this is
that these problems are nonconvex, nonsmooth, and their differential structure is far from
trivial, and can therefore naturally be treated in a black-box optimisation setting.

Black-box problems, including bilevel problems, often include parameter constraints,
ranging from a nonnegativity criterion to complicated, implicitly defined constraints. We
have therefore extended the Itoh–Abe discrete gradient method to a nonsmooth, nonconvex,
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constrained optimisation setting, and proven that if the constraint is epi-Lipschitzian (i.e. the
level set of a locally Lipschitz continuous function), then the method converges to a set of
constrained Clarke stationary points.

Furthermore, we have extended the derivative-free optimisation framework to solving
the inverse scale space flow, which allows us to incorporate additional structure into the
iterative procedure, such as promoting sparsity in the reconstruction. This enabled us to
modify established schemes such as Gauss-Seidel and SOR and achieve significantly faster
convergence.

In the final part of the thesis, we returned to bilevel optimisation problems, and investi-
gated how one can differentiate the solution map corresponding to nonsmooth variational
problems, provided that there is a partly smooth structure to exploit. Building on this, we
show that the solution map is piecewise differentiable, and furthermore that we can differen-
tiate the iterates of optimisation algorithms with provable convergence guarantees to the true
gradient. This opens the door for future applications for example in dictionary learning.

8.2 Discussion

Numerical integration has been central to many important innovations in mathematical
optimisation in the last decade, and it will continue to play a central role in the years to come.
A recurring advantage we observed through this thesis is that by using numerical methods
that preserve some structure, one can relax other assumptions of the optimisation problem
while retaining this structure. For example, the dissipative structure of a gradient flow is
preserved for discrete gradient methods, even when the differential structure of the objective
function is lost, yielding a method with linear convergence rates for strongly convex, smooth
problems, while also having convergence guarantees in the Clarke subdifferential framework
for locally Lipschitz continuous functions.

Furthermore, as the work on discrete gradient methods for the inverse scale space flow
demonstrates, discrete gradient methods can preserve dissipative structures beyond those
based on the Euclidean metric. This suggests that we can apply such methods to more
complicated, dissipative flows.

Finally, we note that for bilevel optimisation problems, one can either treat it as a black-
box problem and apply Itoh–Abe type methods, or one can seek to exploit its partly smooth
structure to compute gradients, implicitly or algorithmically. These two differing approaches
to an optimisation problem demonstrate somehing more general about this research area,
namely that to tackle a challenging problem, one can either seek to develop new methods
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that are implementable based on the current knowledge of the problem, or one can seek to
analyse the problem further, to understand its structure better.

8.3 Outlook

For the rest of this chapter, we discuss future directions of research, building on the work
presented in this thesis.

8.3.1 Discrete gradient methods for solving Wasserstein gradient flow

Building on the idea in Chapter 6 that discrete gradient methods can preserve dissipative
structures beyond the gradient flow in the Euclidean setting, we consider the use of discrete
gradient methods for solving Wasserstein gradient flow.

The Wasserstein distance is a distance on the space of probability measures. It is
colloquially referred to as the earth mover’s distance, as if one considers two piles of dirt
as the probability measures, the Wasserstein distance represents the minimal amount of
work required to turn one pile into the other. This notion of distance is inherently different
from the Euclidean distance, and is of great importance to many scientific and mathematical
fields, including economics concerning optimal resource allocation, probability theory and
the geometric structures of measures, and computer vision.

A motivation for considering discrete gradient methods for the Wasserstein gradient flow
is that solving this flow tends to be significantly computationally intensive, and one needs to
ensure the preservation of properties such as nonnegativity and preservation of mass, so that
each iterate remains a probability distribution.

We now provide a brief overview of the Wasserstein distance and its corresponding
gradient flow, and consider the application of discrete gradient methods. However, we leave
out several details on measure theory, and simply point out that there is a rich mathematical
theory and historical background to Wasserstein distances and optimal transport—see e.g.
[5, 176, 199, 216] for further information.

For a separable metric space (X ,d : X×X→ [0,∞)), denote by B(X) the family of Borel
subsets of X and by P(X) the sets of probability measures. Furthermore, for p > 0, denote
by Pp(X) the set of probability measures with finite p-th moment, i.e. such that∫

X
d(x,y)dµ(x)< ∞ for some y ∈ X .
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Given two separable metric spaces X and Y , a measure µ ∈P(X), and a µ-measurable
function r : X → Y , the push-forward of µ through r is the measure r#µ ∈P(Y ) defined as

r#µ(B) := µ(r−1(B)), for all B ∈B(Y ).

Consider the product space X×Y , and denote by π1 and π2 the projection operators on
X ×Y onto X and Y respectively. For µ1 ∈P(X) and µ2 ∈P(Y ), the class of multiple
plans with marginals µ i, i ∈ {1,2} is given by

Γ(µ1,µ2) :=
{

µ ∈P(X×Y ) : π
i
#µ = µ

i, i = 1,2
}
.

We can now define Wasserstein distances. For our purposes, we assume that (X ,d) is a
separable Hilbert space so that d(x,y) := ∥x− y∥2, and we consider a compact, convex,
nonempty subset Ω ⊂ X . Then, given probability measures µ1, µ2 ∈P2(Ω), the 2nd
Wasserstein distance between µ1 and µ2 is defined as

W 2
2 (µ

1,µ2) := min
{∫

Ω×Ω

∥x− y∥2dµ(x,y) : µ ∈ Γ(µ1,µ2)

}
. (8.1)

See [5, Chapter 7] for properties of Wasserstein distances.
We briefly discuss the Wasserstein gradient flow in P2(Ω), and refer for the details to

[199, Chapter 8]. Recall the formulation of the implicit gradient descent step in Chapter 1,

xk+1 = argmin
y∈Rn

F(y)+
1

2τk
∥y− xk∥2.

For the metric space (P2(Ω),W2) and ρk ∈P2(Ω), the analogous scheme becomes

ρ
k+1 = argmin

ρ∈P2(Ω)

F(y)+
1

2τk
W 2

2 (ρ,ρ
k), (8.2)

for a functional F : P2(Ω)→ R. This scheme is called the minimising movement scheme,
and is a natural way of defining gradient flow-type schemes with respect to metrics that do
not admit an inner product structure1.

In the limit τk, this yields the differential equation

ṗ(t)−∇ ·
(

ρ∇(
δF
δρ

(ρ))

)
= 0, (8.3)

1Note the similar connection for Bregman iterative methods and inverse scale space flow in Chapter 6.
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with homogeneous Neumann boundary conditions on bdΩ, i.e. ρ̇∇(δF
δρ

(ρ)) · n̂ = 0, where n̂

is the outward normal vector to bdΩ. Here ∇ refers to the spatial gradient, and δF
δρ

is the first
variation of F [199, Definition 7.12], i.e. the Gateaux derivative of F . We thus propose to
apply discrete gradient methods to discretise this equation.

For a functional F : P(Ω)→ R, one would want a discrete gradient ∇F to be consistent
with the first variation δF

δρ
in the limit, and to satisfy a mean value property, say, of the form

∫
Ω

∇F(ρ1,ρ2)d(ρ1−ρ
2)(x) = F(ρ1)−F(ρ2). (8.4)

Assuming such a discrete gradient exists, we propose the following scheme. Given a
starting point ρ0 ∈P2(Ω) and time steps (τk)k∈R, we want to solve

ρ
k+1 = ρ

k + τk∇ ·
(

ρ
k
∇(∇F(ρk,ρk+1)

)
,

ρ
k+1 ∈P2(Ω), ρ

k
∇(∇F(ρk,ρk+1) · n̂ = 0.

(8.5)

The second requirement above is equivalent to ∇ ·
(

ρk∇(∇F(ρk,ρk+1)
)
∈ TρkP(Ω), where

TρP(Ω) denotes the tangent space of P(Ω) at ρk and is given by [90, 171]

TρP(Ω) =
{

η ∈ L2(Ω), : η = ∇ ·ρ∇Φ with Φ s.t. ρ∇Φ · n̂ = 0 on bdΩ

}
.

We include this requirement to allow integration by parts with respect to the divergence term
∇·.

We will show that this scheme conserves both mass and the dissipative structure of the
original minimising movement scheme (8.2). We first show mass conservation. For this, we
simply compute

ρk+1(X)−ρk(X)

τk
=

∫
X1(x)d(ρ

k+1−ρk)(x)
τk

=
∫

X
1(x)d

(
∇ ·
(

ρ
k+1

∇(∇F(ρk,ρk+1)
))

(x)

=−
∫

X
∇1(x)d

((
ρ

k
∇(∇F(ρk,ρk+1)

))
(x) = 0,

where we have applied (8.5) and integration by parts, and used the fact that 1 is a constant
function, so ∇1= 0.

Next we characterise the dissipative structure of the discrete gradient scheme. Assuming
that ρk is absolutely continuous with respect to the Lebesgue measure, the dissipative
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structure for the minimising movement scheme (8.2) can be expressed as

F(ρk)−F(ρk+1)≥ 1
2τk

W 2
2 (ρ

k+1,ρk) =
τk

2

∫
X

∥∥∥∥∇

(
δF
δρ

(ρk+1)

)∥∥∥∥2

dρ
k(x) (8.6)

due to [199, Theorem 1.17] and [199, Equation (8.4)].
Applying the measure space analogue of (2.12) for the discrete gradient method, we

derive

F(ρk)−F(ρk+1) =
∫

X
∇F(ρk,ρk+1)d(ρk−ρ

k+1)(x)

=−τk

∫
X

∇F(ρk,ρk+1)d
(

∇ ·
(

ρ
k
∇(∇F(ρk,ρk+1))

))
(x)

= τk

∫
X
∥∇(∇F(ρk,ρk+1))∥2dρ

k(x). (8.7)

Here we have again applied (8.5) and used integration by parts. From this, we observe that
(8.7) is a discrete gradient counterpart to (8.6). Thus the proposed discrete gradient method
preserves mass and the dissipative structure.

One would also want to ensure preservation of nonnegativity of ρk+1. For the time being,
it is unclear how to achieve this. Another challenge is to allow for a change in support of the
measure, i.e. so that supp(ρk+1) ̸= supp(ρk), which in the formulation (8.5) is not possible
due to the presence of ρk as a factor in the second term on the right-hand side.

Furthermore, the requirement that ∇ ·
(

ρk∇(∇F(ρk,ρk+1)
)
∈ TρkP(Ω) might be pro-

hibitive, and one could instead seek to employ a discrete gradient formulation for the
divergence with a corresponding notion of integrating by parts. We leave these issues for
future work.

8.3.2 The mean value discrete gradient for nonsmooth optimisation

A central part of this thesis has been the application of the Itoh–Abe discrete gradient method
for nondifferentiable functions. In what follows, we consider the possibility of using the
mean value discrete gradient

∇F(x,y) =
∫ 1

0
∇F(sx+(1− s)y)ds

when F is nondifferentiable.
There are reasons why this is of interest, beyond merely extending geometric numerical

integration concepts to the nonsmooth setting. Unlike the Itoh–Abe discrete gradient, the
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mean value discrete gradient preserves additional first-order characteristics of the function,
such as Lipschitz continuity and strong monotonicity cf. Proposition 3.7. This in turn can
allow us to prove further properties for discrete gradient methods applied to gradient flows
and inverse scale space flow. Consider for example the regularisation properties that can be
proven for Bregman and linearised Bregman iterations, e.g. Fejér monotonicity [18, Lemmas
6.4, 6.11] and convergence to J-minimising solutions [18, Lemmas 6.7, 6.13]. Such results
seem to not hold for the Itoh–Abe discrete gradient method because in this case ∇F does not
inherit crucial properties of ∇F .

We propose to define a mean value discrete gradient for a nonsmooth function F :Rn→R
accordingly. For x,y ∈ Rn, we choose

∇F(x,y) =
∫ 1

0
p(s)ds, p(s) ∈ ∂F(sx+(1− s)y),

provided such a subgradient selection p(s) is integrable. Of course the discrete gradient is no
longer unique, as subgradients are not unique. However, one could still seek to prove that the
mean value and consistency properties of discrete gradients (2.12)-(2.6) hold for any such
discrete gradient representation.

To show the mean value property, we could proceed as follows. If F satisfies the
assumptions of partial smoothness in Chapter 7, namely Assumption 7.23, then we know
that par(∂F(x)) = NxM whenever F is partly smooth at x relative to M. Therefore, if
any segment {sx+(1− s)y : s ∈ [a,b]} is contained inM, then x− y ∈ Tsx+(1−s)yM for
s ∈ [a,b], and therefore, for any selection p(s) ∈ ∂F(xs+(1− s)y), s ∈ [a,b], we have

∫ b

a
⟨p(s),xs+(1− s)y⟩=

∫ b

a
⟨∇FM(sx+(1− s)y),sx+(1− s)y⟩,

by Proposition 7.19. Therefore, for any subsegment of [x,y] belonging to a manifoldM
relative to which F is partly smooth, the mean value property holds. Since we assume that
we can partition a bounded set into a finite number of smooth manifolds, relative to each of
which F is partly smooth, one could expect that the entire segment [x,y] can be partitioned
into such subsegments on which the mean value property holds.

To show the consistency property, i.e. that if xk,yk→ x ∈ Rn and ∇F(xk,yk)→ d, then
d = ∂F(x), we can use the facts that x 7→ ∂F(x) is outer semicontinuous, and that ∂F(x) is
convex.

If we then wanted to show that the discrete gradient equation is well-defined

y = x− τ∇F(x,y),
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we would want to generalise the existence proof Theorem 3.4 which is based on Brouwer’s
fixed point theorem Proposition 3.3. For this we could perhaps invoke Himmelberg’s fixed
point theorem which generalises that of Brouwer’s to set-valued maps..

Proposition 8.1 (Himmelberg’s fixed point theorem). Let C be a nonempty convex subset of
a separated locally convex space X . Let F : X →X be an outer semicontinuous set-valued
map such that F(x) is closed and convex for all x ∈C and such that F(C)⊆C. Then F has a
fixed point.

Provided we can show that the set of mean value discrete gradients is closed, convex
and bounded, which could follow from convexity and outer semicontinuity of ∂F(x), then
existence would follow.

Remark 8.2. While the Gonzalez discrete gradient would satisfy the mean value property for
nonsmooth functions, it does not seem to guarantee the consistency property, i.e. outer semi-
continuity. This would pose problems in terms of ensuring that xk→ x∗ and ∇V (xk,xk+1)→ 0
implies 0 ∈ ∂V (x∗).

From here, we can prove under mild conditions on F that the limit set of iterates converge
to stationary points, i.e. points x∗ such that 0 ∈ ∂F(x∗).

Example

We consider the basis pursuit denoising problem

F(x) =
1
2
∥Ax−b∥2 +λ∥x∥1. (8.8)

The set of mean value discrete gradients of ∥x∥1 is given by

[
∇∥ · ∥1(x,y)

]
i
=

SGN
(

x+y
2

)
, if SGN(xi)∩SGN(yi) ̸= /0,

{ xi+yi
|xi−yi|}, else.

Here SGN(x) denotes the set-valued sign function

SGN(x) :=


{1}, if x > 0,

{−1}, if x < 0,

[0,1], if x = 0,

or equivalently the subdifferential of the scalar absolute value function |x|.
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Fig. 8.1 Discrete gradient methods applied to the optimisation problem (8.10). Left: A
comparison of the mean value discrete gradient method and the Itoh–Abe method. Right: A
comparison of the two previous methods with the Bregman Itoh–Abe method.

In this case, the discrete gradient method becomes

y ∈ x− τ

(
A∗
(

A
x+ y

2
−b
)
+λ∇∥ · ∥1(x,y).

)
(8.9)

By the previous subsection, we know that there exists a unique update y. It can be rewritten
as

x+ y
2

=

(
A∗A+

1
τ

I
)−1(2

τ
x+A∗b−λ∇∥ · ∥1(x,y)

)
or (

A∗A+
1
τ

I
)

x+ y
2

=
2
τ

x+A∗b−λ∇∥ · ∥1(x,y).

We came up with an ad-hoc fixed point method for solving (8.9), which converged (albeit
quite slowly) most of the time. We then implemented it on the optimisation problem

min
x

1
2
∥Ax−b∥2 +λ∥x∥1, (8.10)

where λ = 1, the dimension n = 50, and A is a random Gaussian matrix. We compare the
nonsmooth mean value discrete gradient method with the (nonsmooth) Itoh–Abe discrete
gradient method. Then, we include a comparison with the Bregman Itoh–Abe method to
demonstrate the superior efficiency of these methods for nonsmooth objective functions. See
Figure 8.1 for the results.



180 Summary, discussion, and outlook

Going forward

The next thing one would need, in order to make this method interesting / feasible, is an
efficient and stable method for solving the discrete gradient equation (2.8). This amounts to
solving a nonsmooth fixed point problem. If the objective function is nonconvex, coming
up with a general and efficient method seems tricky / unreasonable. However, it could
be interesting to see whether a method can be formulated for convex objective functions.
However, investigating this could involve some time and effort, so we should first determine
whether this is a problem worth pursuing. One might imagine that nonsmooth fixed point
problems involving monotone operators has other applications too.

8.3.3 Differentiation for nonsmooth bilevel optimisation

Convergence of algorithmic derivatives for primal-dual methods

Future work will be dedicated to studying algorithmic differentiation of other iterative
methods, including primal-dual methods. These methods solve, for a given parameter choice
ϑ ,

min
x∈Rn

R(x,ϑ)+V (x,ϑ)+(J∨+ G)(K(ϑ)x,ϑ), (8.11)

where R(·,ϑ),V (·,ϑ) ∈ Γ0(Rn), J(·,ϑ), G(·,ϑ) ∈ Γ0(Rl), V (·,ϑ) is LV -smooth, G(·,ϑ) is
1/LG-convex for some LV ,LG > 0, and K : Rm→ Rl×n is a matrix mapping. Here J∨+ G is
the parameter-dependent infimal convolution of J and G,

(J∨+ G)(x,ϑ) := inf
y∈Rl

J(x− y,ϑ)+G(y,ϑ).

As is shown in [136, Section 3.1], the primal-dual method can be expressed as a forward-
backward method for solving a monotone inclusion problem. Specifically,

zk+1 = (V+A)−1(V −B)zk, (8.12)

where zk = [xk,yk]T and

V =

 In
γR

−K∗(ϑ)

−K(ϑ) Im
γJ

 , A =

[
∂xR(·,ϑ) K∗(ϑ)

−K(ϑ) ∂xJ∗(·,ϑ)

]
, B =

[
∇xV (·,ϑ) 0

0 ∇xG∗(·,ϑ)

]
,

and where V is ν-positive definite, for ν = (1−
√

γJγR∥K∥2)min{1/γJ,1/γR}. Here γR > 0
and γJ > 0 are the primal and dual time steps respectively.
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We require the following conditions. Both V +R and G∗+ J∗ satisfy Assumption 7.23,
ϑ 7→ K(ϑ) is C1-smooth, and we have the nondegeneracy assumptions

−K∗(ϑ)y∗−∇xV (x∗,ϑ) ∈ ri
(
∂xR(x∗,ϑ)

)
,

K(ϑ)x∗−∇xG∗(y∗,ϑ) ∈ ri
(
∂xJ∗(y∗,ϑ)

)
.

Furthermore, the time steps γR and γJ satisfy

2min{ 1
LV
, 1

LG
}min{ 1

γJ
, 1

γR
}(1−

√
γJγR∥K(ϑ)∥2)> 1. (8.13)

In [136, Theorem 3.2], finite activity identification is proven under these conditions. We
would like to establish that algorithmic differentiation of the primal-dual methods would
ensure convergence to the correct limit.

By arguing as we did for the forward-backward methods, for sufficiently large k, the
update map (8.12) is locally continuously differentiable with respect to zk and ϑ , and we
have

Dzk+1(ϑ) = MkDzk(ϑ)+bk, Mk→M, bk→ b,

where

M = (V+MA)
†(V −MB), b =−(V+MA)

†(DA +DB),

MA =

∇2
Mx∗

R(x∗,ϑ) K∗(ϑ)

−K(ϑ) ∇2
My∗

J∗(y∗,ϑ)

 , MB =

∇2
Mx∗

V (x∗,ϑ) 0
0 ∇2

My∗
G∗(y∗,ϑ)

 ,
DA =

[
Dϑ ∇Mx∗R(x

∗,ϑ)

Dϑ ∇My∗J
∗(y∗,ϑ)

]
, DB =

[
Dϑ ∇Mx∗V (x∗,ϑ)−DK∗(ϑ)y∗

Dϑ ∇My∗G
∗(y∗,ϑ)−DK(ϑ)x∗

]
.

We want to show that ρ(M)< 1. Suppose z = [x,y]T ∈ Cn+l and λ ∈ C satisfy Mz = λ z.
As usual, we can apply Proposition 2.8 to conclude that λ ∈ R. It follows that z ∈ Tx∗Mx∗×
Ty∗My∗ , in which case we rearrange to get

(1−λ )Vz = λMAz+MBz.

Taking the inner product with respect to z on each side gives us

(1−λ )⟨z,Vz⟩= λ ⟨x,MRx⟩+λ ⟨y,MJ∗y⟩+ ⟨x,MV x⟩+ ⟨y,MG∗y⟩,



182 Summary, discussion, and outlook

where

MV = ∇
2
Mx∗

V (x∗,λ ), MR = ∇
2
Mx∗

R(x∗,λ ), MJ∗ = ∇
2
My∗

J∗(y∗,λ ), MG∗ = ∇
2
My∗

G∗(y∗,λ ).

We observe that λ < 1, since otherwise the left-hand side is nonpositive, while the right-hand
side is strictly positive by the strong convexity assumptions for V +R and J∗+G∗. Suppose
λ ≤−1. Then since V is ν-positive-definite,

(1−λ )⟨z,Vz⟩ ≥ 2ν∥z∥2.

On the other hand, MR and MJ∗ are positive-definite, and MV and MG∗ are LV - and LG-smooth
respectively, we have

λ ⟨x,MRx⟩+λ ⟨y,MJ∗y⟩+ ⟨x,MV x⟩+ ⟨y,MG∗y⟩ ≤ LV∥x∥2 +LG∥y∥2 ≤ 1
min{ 1

LV
, 1

LG
}
∥z∥2.

By (8.13),
1

min{ 1
LV
, 1

LG
}
∥z∥2 < 2ν∥z∥2 ≤ (1−λ )⟨z,Vz⟩.

Therefore the equality cannot hold when λ ≤ −1. Therefore |λ | < 1 which implies that
ρ(M)< 1.

This suggests that one can also ensure convergence of the algorithmic derivatives for
primal-dual methods under the partial smoothness framework. One drawback for this is that
one requires strong convexity both in the primal and the dual component, while implicit
differentiation of the solution map x(ϑ) only requires strong convexity of the primal problem
formulation. A possible work-around for this is to replace the strong convexity requirement
with something weaker, such as restricted injectivity [135].

One would need to show that the results of [130, Theorem 5.7] generalise to implicit
differentiation with respect to optimality conditions of saddle-point problems. For this, one
could potentially build on the framework in [131].

Stability of algorithmic differentiation under stopping rule

One motivation for studying algorithmic and implicit differentiation of the nonsmooth
solution maps is to assess the advantages and disadvantages of choosing either approach for
derivative estimation. While implicit differentiation yields the ‘true’ derivative of the solution
map, this is only the case if the minimiser x(ϑ) has been located up to error tolerance. In
many cases, the lower-level optimisation problems are ill-conditioned and high-dimensional,
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and it might not be feasible to compute enough iterates xk to estimate x(ϑ) sufficiently for
implicit differentiation to be reliable. Indeed, the iterates might not have located the smooth
manifold containing the minimiser yet.

In such cases, algorithmic differentiation has the advantage that even if the final iterate
xK(ϑ) is a poor approximation of x(ϑ), the algorithmic derivative DxK(ϑ) corresponds to
the derivative of the function that is being computed, namely xK(ϑ)≈AK(x0,ϑ). That is,
assuming the number of iterations K are fixed.

However, it is often preferrable to employ a stopping rule to determine the number of
iterations. For example, one could stop once the measure of progress ∥xk−xk+1∥/∥xk∥ is less
than some tolerance ε , or, for primal-dual methods once the primal-dual gap is sufficiently
small [50]. From the perspective of algorithmic differentation, this introduces an element of
discontinuity in the relation between the parameter choice and output xK(ϑ).

Future research will deal with the stability or instability of using algorithmic differentia-
tion combined with stopping rules.
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Appendix A

Miscellaneous results

A.1 Cutoff function

We provide proof of existence of an appropriate cutoff function in Theorem 3.4 (iii). While
this is based on standard arguments using mollifiers, the authors could not find a result in
the literature for cutoff functions with noncompact support and controlled derivatives. We
therefore include one for completeness.

Lemma A.1. Let V,W ⊂ Rn be disjoint (not necessarily compact) sets such that, for some
ε > 0,

∥x− y∥ ≥ ε, for all x ∈V,y ∈W.

Then there is a cutoff function ϕ ∈C∞(Rn; [0,1]) such that

ϕ(x) =

1 if x ∈V,

0 if x ∈W,
(A.1)

and such that ∇ϕ is uniformly bounded on Rn.

Proof. We will construct a cutoff function with a uniformly bounded gradient. Consider
the distance functions

dV (x) := inf
z∈V
∥x− z∥, dW (x) := inf

z∈W
∥x− z∥.

For any x ∈ Rn, y ∈ V , z ∈W , it holds that ε ≤ ∥y− z∥ ≤ ∥x− y∥+ ∥x− z∥. Taking the
infimum over all y ∈V and z ∈W , we deduce that

dV (x)+dW (x)≥ ε. (A.2)
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Let ψ : Rn→ [0,1] be defined by ψ(x) := dW (x)/(dV (x)+dW (x)). This function satisfies
ψ(X) = 1 for x ∈V , V (x) = 0 for x ∈W and ψ(x) ∈ [0,1] otherwise. We will show that it is
Lipschitz continuous with Lipschitz constant 1/ε .

|ψ(x)−ψ(y)|=
∣∣∣∣ dW (x)
dV (x)+dW (x)

− dW (y)
dV (y)+dW (y)

∣∣∣∣
≤
∣∣dV (y)−dV (x)

∣∣dW (x)+
∣∣dW (x)−dW (y)

∣∣dV (x)(
dV (x)+dW (x)

)(
dV (y)+dW (y)

)
(A.2)
≤ 1

ε
∥x− y∥

(
dW (x)

dV (x)+dW (x)
+

dV (x)
dV (x)+dW (x)

)
=

1
ε
∥x− y∥.

The second inequality above follows from (A.2) and Lipschitz continuity of dV and dW .
We choose an appopriate mollifier J ∈C∞

c (Rn; [0,∞)) such that
∫
RnJ(x)dx = 1 and J(x)≡

0 outside Bε/2(0), and convolve it with ψ . It is easy to check that the resultant function,

ϕ(x) =
∫
Rn

J(z)ψ(x− z)dz,

is in C∞(Rn; [0,1]) and satisfies (A.1). This is a standard result, e.g. [4, Theorem 2.29]. To
conclude, we show that ∥∇ϕ(x)∥ ≤ 1/ε for all x ∈ Rn. We do so by showing that ϕ inherits
the Lipschitz continuity of ψ . We have

|ϕ(x)−ϕ(y)| ≤
∫
Rn

∣∣ψ(x− z)−ψ(y− z)
∣∣ |J(z)|dz

≤ 1
ε
∥x− y∥

∫
Rn
|J(z)|dz =

1
ε
∥x− y∥.

This concludes the proof.

A.2 Convergence rate for cyclic coordinate descent

In what follows, we obtain improved convergence rates for cyclic coordinate descent (CCD)
[15, 221] that match those obtained for the Itoh–Abe discrete gradient method in Section 3.6.
The CCD method, for a starting point x0, time steps τi > 0, i = 1, . . . ,n, and k = 0,1,2, . . . is
given by

xk,0 = xk,

xk,i+1 = xk,i− τi+1[∇F(xk,i)]i+1ei+1, for i = 0, . . . ,n−1,

xk+1 = xk,n.

(A.3)
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Recalling Section 3.6, we are interested in estimates for β > 0 that satisfy (3.18), where
smaller β implies better convergence rate. In [15] (see Lemma 3.3) and referenced in [221],
the estimate

β = 4Lmax

(
1+nL2/L2

min

)
,

is obtained, using the time step τi = 1/Li. This rate is optimised with respect to Lmin,Lmax

when setting Lmin = Lmax =
√

nL, yielding β = 8
√

nL. However, we show in Section 3.6.1
that the closely related Itoh–Abe discrete gradient method achieves the stronger bound
β = 4Lsum ≤ 4

√
nL. We therefore include a brief analysis to demonstrate that the bound for

CCD can similarly be improved.
By the coordinate-wise descent lemma (3.19), we have

F(xk,i)−F(xk,i+1)≥ ⟨∇F(xk,i),xk,i− xk,i+1⟩− Li

2
∥xk,i− xk,i+1∥2

=

(
τi−

τ2
i Li

2

)
|[∇F(xk,i)]i+1|2.

For some α ∈ (0,2), we choose the time steps τi = α/Li, and substitute into the above
inequality to get

F(xk,i)−F(xk,i+1)≥ 1
Li

(
α− α2

2

)
|[∇F(xk,i)]i|2. (A.4)
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We then compute

∥∇F(xk)∥2 =
n

∑
i=1
|[∇F(xk)]i|2

≤ 2
n

∑
i=1

(
|[∇F(xk)]i− [∇F(xk,i−1)]i|2 + |[∇F(xk,i−1)]i|2

)
(A.4)
≤ 2

n

∑
i=1

(
L2∥xk− xk,i∥2 +

Li

α− α2

2

(
F(xk,i−1)−F(xk,i)

))

≤ 2
n

∑
i=1

L2
i

∑
j=0
∥xk, j− xk, j+1∥2 +

Li

α− α2

2

(
F(xk,i−1)−F(xk,i)

)
≤ 2

nα2L2

L2
min

n

∑
j=0
|[∇F(xk, j)] j+1|2 +

Lmax

α− α2

2

(
F(xk)−F(xk+1)

)
≤

2Lmax(1+nα2L2/L2
min)

α− α2

2

(
F(xk)−F(xk+1)

)
.

This gives a new estimate for β ,

β =
2Lmax(1+nα2L2/L2

min)

α− α2

2

.

If we set α = 1/
√

n and Li = L, we get the estimate

β = 4L
√

n

(
2
√

n
2
√

n−1

)
≈ 4
√

nL.

This is approximately the same rate as that obtained for the Itoh–Abe discrete gradient
method.

It is too longwinded to compute the optimal values of τi and Li to include it here, but one
can confirm the optimal rate is close to the above estimate and satisfies

β ∗√
n
→ 4L as n→ ∞.

Coordinate descent methods are typically extended to block coordinate descent methods.
The above analysis can be extended to this setting simply by replacing n with the number of
blocks p.
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