7,032 research outputs found

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201

    An Exploratory Data Analysis Approach for Land Use-Transportation Interaction: The Design and Implementation of Transland Spatio-Temporal Data Model

    Get PDF
    Land use and transportation interaction is a complex and dynamic process. Many models have been used to study this interaction during the last several decades. Empirical studies suggest that land use and transportation patterns can be highly variable between geographic areas and at different spatial and temporal scales. Identifying these changes presents a major challenge. When we recognize that long-term changes could be affected by other factors such as population growth, economic development, and policy decisions, the challenge becomes even more overwhelming. Most existing land use and transportation interaction models are based on some prior theories and use mathematical or simulation approaches to study the problem. However, the literature also suggests that little consensus regarding the conclusions can be drawn from empirical studies that apply these models. There is a clear research need to develop alternative methods that will allow us to examine the land use and transportation patterns in more flexible ways and to help us identify potential improvements to the existing models. This dissertation presents a spatio-temporal data model that offers exploratory data analysis capabilities to interactively examine the land use and transportation interaction at use-specified spatial and temporal scales. The spatio-temporal patterns and the summary statistics derived from this interactive exploratory analysis process can be used to help us evaluate the hypotheses and modify the structures used in the existing models. The results also can suggest additional analyses for a better understanding of land use and transportation interaction. This dissertation first introduces a conceptual framework for the spatio-temporal data model. Then, based on a systematic method for explorations of various data sets relevant to land use and transportation interaction, this dissertation details procedures of designing and implementing the spatio-temporal data model. Finally, the dissertation describes procedures of creating tools for generating the proposed spatio-temporal data model from existing snapshot GIS data sets and illustrate its use by means of exploratory data analysis. Use of the spatio-temporal data model in this dissertation study makes it feasible to analyze spatio-temporal interaction patterns in a more effective and efficient way than the conventional snapshot GIS approach. Extending Sinton’s measurement framework into a spatio-temporal conceptual interaction framework, on the other hand, provides a systematic means of exploring land use and transportation interaction. Preliminary experiments of data collected for Dade County (Miami), Florida suggest that the spatio-temporal exploratory data analysis implemented for this dissertation can help transportation planners identify and visualize interaction patterns of land use and transportation by controlling the spatial, attribute, and temporal components. Although the identified interaction patterns do not necessarily lead to rules that can be applied to different areas, they do provide useful information for transportation modelers to re-evaluate the current model structure to validate the existing model parameter

    The representation and management of evolving features in geospatial databases

    Get PDF
    Geographic features change over time, this change being the result of some kind of event or occurrence. It has been a research challenge to represent this data in a manner that reflects human perception. Most database systems used in geographic information systems (GIS) are relational, and change is either captured by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent diffculty of modelling geographic objects in relational tables. This diffculty is compounded when the necessary time dimension is introduced to model how those objects evolve. There is little doubt that the object-oriented (OO) paradigm holds signi cant advantages over the relational model when it comes to modelling real-world entities and spatial data, and it is argued that this contention is particularly true when it comes to spatio-temporal data. This thesis describes an object-oriented approach to the design of a conceptual model for representing spatio-temporal geographic data, called the Feature Evolution Model (FEM), based on states and events. The model was used to implement a spatio-temporal database management system in Oracle Spatial, and an interface prototype is described that was used to evaluate the system by enabling querying and visualisation

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    Enhancing Natural Interaction with Circumstantial Knowledge

    Get PDF
    This work focuses the circumstantial knowledge management for a specific need: the achievement of Natural Interaction (NI). In first place, a cognitive approach to NI is glanced as the framework for such knowledge management. This approach reflects some certain requirements for the whole interaction system, which are met by a multi-agent system implementation. Finally, a Situation Modeling is proposed for a first approach to the interaction circumstances management.The presented work has been developed within the MAVIR project (S-505/TIC/0267) endorsed by the Regional Government of Madrid, and is being extended through the SOPAT project (CIT-410000-2007-12), supported by the Spanish Ministry of Science and Education.Publicad

    Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos

    Full text link
    Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has been limited due to complexity of video data and lack of annotations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal detection and association of proposals across frames. Also, these methods employ two-stream CNN framework to handle spatial and temporal feature separately. In this paper, we propose an end-to-end deep network called Tube Convolutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified network that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and for each clip a set of tube proposals are generated next based on 3D Convolutional Network (ConvNet) features. Finally, the tube proposals of different clips are linked together employing network flow and spatio-temporal action detection is performed using these linked video proposals. Extensive experiments on several video datasets demonstrate the superior performance of T-CNN for classifying and localizing actions in both trimmed and untrimmed videos compared to state-of-the-arts

    Efficient processing of large-scale spatio-temporal data

    Get PDF
    Millionen Geräte, wie z.B. Mobiltelefone, Autos und Umweltsensoren senden ihre Positionen zusammen mit einem Zeitstempel und weiteren Nutzdaten an einen Server zu verschiedenen Analysezwecken. Die Positionsinformationen und übertragenen Ereignisinformationen werden als Punkte oder Polygone dargestellt. Eine weitere Art räumlicher Daten sind Rasterdaten, die zum Beispiel von Kameras und Sensoren produziert werden. Diese großen räumlich-zeitlichen Datenmengen können nur auf skalierbaren Plattformen wie Hadoop und Apache Spark verarbeitet werden, die jedoch z.B. die Nachbarschaftsinformation nicht ausnutzen können - was die Ausführung bestimmter Anfragen praktisch unmöglich macht. Die wiederholten Ausführungen der Analyseprogramme während ihrer Entwicklung und durch verschiedene Nutzer resultieren in langen Ausführungszeiten und hohen Kosten für gemietete Ressourcen, die durch die Wiederverwendung von Zwischenergebnissen reduziert werden können. Diese Arbeit beschäftigt sich mit den beiden oben beschriebenen Herausforderungen. Wir präsentieren zunächst das STARK Framework für die Verarbeitung räumlich-zeitlicher Vektor- und Rasterdaten in Apache Spark. Wir identifizieren verschiedene Algorithmen für Operatoren und analysieren, wie diese von den Eigenschaften der zugrundeliegenden Plattform profitieren können. Weiterhin wird untersucht, wie Indexe in der verteilten und parallelen Umgebung realisiert werden können. Außerdem vergleichen wir Partitionierungsmethoden, die unterschiedlich gut mit ungleichmäßiger Datenverteilung und der Größe der Datenmenge umgehen können und präsentieren einen Ansatz um die auf Operatorebene zu verarbeitende Datenmenge frühzeitig zu reduzieren. Um die Ausführungszeit von Programmen zu verkürzen, stellen wir einen Ansatz zur transparenten Materialisierung von Zwischenergebnissen vor. Dieser Ansatz benutzt ein Entscheidungsmodell, welches auf den tatsächlichen Operatorkosten basiert. In der Evaluierung vergleichen wir die verschiedenen Implementierungs- sowie Konfigurationsmöglichkeiten in STARK und identifizieren Szenarien wann Partitionierung und Indexierung eingesetzt werden sollten. Außerdem vergleichen wir STARK mit verwandten Systemen. Im zweiten Teil der Evaluierung zeigen wir, dass die transparente Wiederverwendung der materialisierten Zwischenergebnisse die Ausführungszeit der Programme signifikant verringern kann.Millions of location-aware devices, such as mobile phones, cars, and environmental sensors constantly report their positions often in combination with a timestamp to a server for different kinds of analyses. While the location information of the devices and reported events is represented as points and polygons, raster data is another type of spatial data, which is for example produced by cameras and sensors. This Big spatio-temporal Data needs to be processed on scalable platforms, such as Hadoop and Apache Spark, which, however, are unaware of, e.g., spatial neighborhood, what makes them practically impossible to use for this kind of data. The repeated executions of the programs during development and by different users result in long execution times and potentially high costs in rented clusters, which can be reduced by reusing commonly computed intermediate results. Within this thesis, we tackle the two challenges described above. First, we present the STARK framework for processing spatio-temporal vector and raster data on the Apache Spark stack. For operators, we identify several possible algorithms and study how they can benefit from the underlying platform's properties. We further investigate how indexes can be realized in the distributed and parallel architecture of Big Data processing engines and compare methods for data partitioning, which perform differently well with respect to data skew and data set size. Furthermore, an approach to reduce the amount of data to process at operator level is presented. In order to reduce the execution times, we introduce an approach to transparently recycle intermediate results of dataflow programs, based on operator costs. To compute the costs, we instrument the programs with profiling code to gather the execution time and result size of the operators. In the evaluation, we first compare the various implementation and configuration possibilities in STARK and identify scenarios when and how partitioning and indexing should be applied. We further compare STARK to related systems and show that we can achieve significantly better execution times, not only when exploiting existing partitioning information. In the second part of the evaluation, we show that with the transparent cost-based materialization and recycling of intermediate results, the execution times of programs can be reduced significantly
    corecore