4,710 research outputs found

    The Cell Probe Complexity of Succinct Data Structures

    Get PDF
    In the cell probe model with word size 1 (the bit probe model), a static data structure problem is given by a map f:0,1nimes0,1mightarrow0,1f: {0,1}^n imes {0,1}^m ightarrow {0,1}, where 0,1n{0,1}^n is a set of possible data to be stored, 0,1m{0,1}^m is a set of possible queries (for natural problems, we have mllnm ll n) and f(x,y)f(x,y) is the answer to question yy about data xx. A solution is given by a representation phi:0,1nightarrow0,1sphi: {0,1}^n ightarrow {0,1}^s and a query algorithm qq so that q(phi(x),y)=f(x,y)q(phi(x), y) = f(x,y). The time tt of the query algorithm is the number of bits it reads in phi(x)phi(x). In this paper, we consider the case of {em succinct} representations where s=n+rs = n + r for some {em redundancy} rllnr ll n. For a boolean version of the problem of polynomial evaluation with preprocessing of coefficients, we show a lower bound on the redundancy-query time tradeoff of the form [ (r+1) t geq Omega(n/log n).] In particular, for very small redundancies rr, we get an almost optimal lower bound stating that the query algorithm has to inspect almost the entire data structure (up to a logarithmic factor). We show similar lower bounds for problems satisfying a certain combinatorial property of a coding theoretic flavor. Previously, no omega(m)omega(m) lower bounds were known on tt in the general model for explicit functions, even for very small redundancies. By restricting our attention to {em systematic} or {em index} structures phiphi satisfying phi(x)=xcdotphi(x)phi(x) = x cdot phi^*(x) for some map phiphi^* (where cdotcdot denotes concatenation) we show similar lower bounds on the redundancy-query time tradeoff for the natural data structuring problems of Prefix Sum and Substring Search

    Tight Cell Probe Bounds for Succinct Boolean Matrix-Vector Multiplication

    Full text link
    The conjectured hardness of Boolean matrix-vector multiplication has been used with great success to prove conditional lower bounds for numerous important data structure problems, see Henzinger et al. [STOC'15]. In recent work, Larsen and Williams [SODA'17] attacked the problem from the upper bound side and gave a surprising cell probe data structure (that is, we only charge for memory accesses, while computation is free). Their cell probe data structure answers queries in O~(n7/4)\tilde{O}(n^{7/4}) time and is succinct in the sense that it stores the input matrix in read-only memory, plus an additional O~(n7/4)\tilde{O}(n^{7/4}) bits on the side. In this paper, we essentially settle the cell probe complexity of succinct Boolean matrix-vector multiplication. We present a new cell probe data structure with query time O~(n3/2)\tilde{O}(n^{3/2}) storing just O~(n3/2)\tilde{O}(n^{3/2}) bits on the side. We then complement our data structure with a lower bound showing that any data structure storing rr bits on the side, with n<r<n2n < r < n^2 must have query time tt satisfying tr=Ω~(n3)t r = \tilde{\Omega}(n^3). For rnr \leq n, any data structure must have t=Ω~(n2)t = \tilde{\Omega}(n^2). Since lower bounds in the cell probe model also apply to classic word-RAM data structures, the lower bounds naturally carry over. We also prove similar lower bounds for matrix-vector multiplication over F2\mathbb{F}_2

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    Succinct Representations of Permutations and Functions

    Get PDF
    We investigate the problem of succinctly representing an arbitrary permutation, \pi, on {0,...,n-1} so that \pi^k(i) can be computed quickly for any i and any (positive or negative) integer power k. A representation taking (1+\epsilon) n lg n + O(1) bits suffices to compute arbitrary powers in constant time, for any positive constant \epsilon <= 1. A representation taking the optimal \ceil{\lg n!} + o(n) bits can be used to compute arbitrary powers in O(lg n / lg lg n) time. We then consider the more general problem of succinctly representing an arbitrary function, f: [n] \rightarrow [n] so that f^k(i) can be computed quickly for any i and any integer power k. We give a representation that takes (1+\epsilon) n lg n + O(1) bits, for any positive constant \epsilon <= 1, and computes arbitrary positive powers in constant time. It can also be used to compute f^k(i), for any negative integer k, in optimal O(1+|f^k(i)|) time. We place emphasis on the redundancy, or the space beyond the information-theoretic lower bound that the data structure uses in order to support operations efficiently. A number of lower bounds have recently been shown on the redundancy of data structures. These lower bounds confirm the space-time optimality of some of our solutions. Furthermore, the redundancy of one of our structures "surpasses" a recent lower bound by Golynski [Golynski, SODA 2009], thus demonstrating the limitations of this lower bound.Comment: Preliminary versions of these results have appeared in the Proceedings of ICALP 2003 and 2004. However, all results in this version are improved over the earlier conference versio

    Succinct Partial Sums and Fenwick Trees

    Get PDF
    We consider the well-studied partial sums problem in succint space where one is to maintain an array of n k-bit integers subject to updates such that partial sums queries can be efficiently answered. We present two succint versions of the Fenwick Tree - which is known for its simplicity and practicality. Our results hold in the encoding model where one is allowed to reuse the space from the input data. Our main result is the first that only requires nk + o(n) bits of space while still supporting sum/update in O(log_b n) / O(b log_b n) time where 2 <= b <= log^O(1) n. The second result shows how optimal time for sum/update can be achieved while only slightly increasing the space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are primarily based on bit-packing and sampling - making them very practical - and they also allow for simple optimal parallelization

    Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication

    Full text link
    This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on dynamic data structure problems. We introduce a new randomized nondeterministic four-party communication model that enables "accelerated", error-preserving simulations of dynamic data structures. We use this technique to prove an Ω(n(logn/loglogn)2)\Omega(n(\log n/\log\log n)^2) cell-probe lower bound for the dynamic 2D weighted orthogonal range counting problem (2D-ORC) with n/polylognn/\mathrm{poly}\log n updates and nn queries, that holds even for data structures with exp(Ω~(n))\exp(-\tilde{\Omega}(n)) success probability. This result not only proves the highest amortized lower bound to date, but is also tight in the strongest possible sense, as a matching upper bound can be obtained by a deterministic data structure with worst-case operational time. This is the first demonstration of a "sharp threshold" phenomenon for dynamic data structures. Our broader motivation is that cell-probe lower bounds for exponentially small success facilitate reductions from dynamic to static data structures. As a proof-of-concept, we show that a slightly strengthened version of our lower bound would imply an Ω((logn/loglogn)2)\Omega((\log n /\log\log n)^2) lower bound for the static 3D-ORC problem with O(nlogO(1)n)O(n\log^{O(1)}n) space. Such result would give a near quadratic improvement over the highest known static cell-probe lower bound, and break the long standing Ω(logn)\Omega(\log n) barrier for static data structures
    corecore