1,974 research outputs found

    Glasgow's Stereo Image Database of Garments

    Full text link
    To provide insight into cloth perception and manipulation with an active binocular robotic vision system, we compiled a database of 80 stereo-pair colour images with corresponding horizontal and vertical disparity maps and mask annotations, for 3D garment point cloud rendering has been created and released. The stereo-image garment database is part of research conducted under the EU-FP7 Clothes Perception and Manipulation (CloPeMa) project and belongs to a wider database collection released through CloPeMa (www.clopema.eu). This database is based on 16 different off-the-shelve garments. Each garment has been imaged in five different pose configurations on the project's binocular robot head. A full copy of the database is made available for scientific research only at https://sites.google.com/site/ugstereodatabase/.Comment: 7 pages, 6 figure, image databas

    Active Estimation of Distance in a Robotic Vision System that Replicates Human Eye Movement

    Full text link
    Many visual cues, both binocular and monocular, provide 3D information. When an agent moves with respect to a scene, an important cue is the different motion of objects located at various distances. While a motion parallax is evident for large translations of the agent, in most head/eye systems a small parallax occurs also during rotations of the cameras. A similar parallax is present also in the human eye. During a relocation of gaze, the shift in the retinal projection of an object depends not only on the amplitude of the movement, but also on the distance of the object with respect to the observer. This study proposes a method for estimating distance on the basis of the parallax that emerges from rotations of a camera. A pan/tilt system specifically designed to reproduce the oculomotor parallax present in the human eye was used to replicate the oculomotor strategy by which humans scan visual scenes. We show that the oculomotor parallax provides accurate estimation of distance during sequences of eye movements. In a system that actively scans a visual scene, challenging tasks such as image segmentation and figure/ground segregation greatly benefit from this cue.National Science Foundation (BIC-0432104, CCF-0130851

    3D laser scanner for underwater manipulation

    Get PDF
    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank

    PERFORMANCE OF PAN-TILT TRACKER BASED ON THE PIN-HOLE LENS MODEL

    Get PDF
    In the modern day, recognition and tracking of face or the iris is potentially one of the most powerful ways of differentiating between an authentic person and an imposter. Our method uses stereo vision to track the 3-Dimensional coordinates of a target equivalent to a person’s eyes and using a pan-tilt unit we target these areas for additional processing such as iris or facial imaging. One of the most important parts involved in tracking is the way the pan-tilt unit is calibrated. There have been techniques in the past where PTZ (Pan-tilt-zoom) digital camera has been used and calibrated using self calibration techniques involving a checker board calibration grid but the tracking error was found to be large in these techniques. We introduce a more accurate form of calibration of the pantilt unit using photogrammetric calibration technique and view the pan-tilt unit as an emulation of a Pinhole Lens Model to detect and track the target. The system is demonstrated on ideal targets

    Parallel stereo vision algorithm

    Get PDF
    Integrating a stereo-photogrammetric robot head into a real-time system requires software solutions that rapidly resolve the stereo correspondence problem. The stereo-matcher presented in this paper uses therefore code parallelisation and was tested on three different processors with x87 and AVX. The results show that a 5mega pixels colour image can be matched in 5,55 seconds or as monochrome in 3,3 seconds

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201
    corecore