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ABSTRACT OF THE THESIS 

 
 

 
PERFORMANCE OF PAN-TILT TRACKER BASED  

ON THE PIN-HOLE LENS MODEL 
 
 
 
In the modern day, recognition and tracking of face or the iris is potentially one of the 
most powerful ways of differentiating between an authentic person and an imposter. Our 
method uses stereo vision to track the 3-Dimensional coordinates of a target equivalent to 
a person’s eyes and using a pan-tilt unit we target these areas for additional processing 
such as iris or facial imaging. One of the most important parts involved in tracking is the 
way the pan-tilt unit is calibrated. There have been techniques in the past where PTZ 
(Pan-tilt-zoom) digital camera has been used and calibrated using self calibration 
techniques involving a checker board calibration grid but the tracking error was found to 
be large in these techniques. We introduce a more accurate form of calibration of the pan-
tilt unit using photogrammetric calibration technique and view the pan-tilt unit as an 
emulation of a Pinhole Lens Model to detect and track the target. The system is 
demonstrated on ideal targets.  
 

 
KEYWORDS: Iris Tracking, Pan-tilt Control Unit, Pinhole Lens Model, Perspective 
Correction Coefficients, Calibration 
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Chapter 1 Introduction 

 

Face and iris recognition are important in many applications to provide identification of 

people and provide secure access to a building, room, or information. Most of the 

authentication systems today use passwords or identification number but these are at risk 

of being used by imposters. The use of biometrics such as face, iris, and finger prints or 

palm prints for the authentication purposes are very useful as they are unique and are 

attached to a person. Sometimes even the authentic person may differ because of the 

illumination level on the face or different facial expressions or the amount of pressure 

applied while pressing the finger or the palm during the scanning process. Thus perfect 

matching in presence of image variations of the same person is very important. 

 

Pattern recognition and target tracking can be accomplished using correlation techniques. 

Advanced correlation filters have many advantages such as the shift invariance in the 

filtering, i.e. when the input images is translated by a certain amount, the filter output 

also shifts by the same amount and the shift can be estimated by the location of the peak 

response. The correlation filter can also be designed to achieve noise tolerance, 

discrimination, etc. The image matching is generally done by cross correlating an input 

image with a synthesized template and then analyzing the correlation output. Peaks are 

searched for in the correlation output and the heights of the peaks, the peak-to-side lobe 

ratio (PSR), etc are used to find if the input is from the authentic person or not. The 

location of the peaks indicates the positions of the objects.  
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This thesis describes the tracking of an object using two stereo cameras, a pan-tilt control 

unit, and a projector. A 2-plane calibration grid is used to calibrate both the cameras and 

the pan-tilt unit. Target detection is achieved using the correlation method. A ring filter is 

adopted to detect the target accurately. The least square approximation algorithm forms 

the basis of tracking the target. The pan-tilt unit is emulated as a pinhole lens model and 

based on that, the perspective coefficients of the pan-tilt unit are found. These 

coefficients along with the coefficients of the cameras and their coordinates helps in 

finding the pan-tilt coordinates thereby tracking the target. 

 

1.1 Background 

 

The matched spatial filters were first introduced by Vander Lugt in the 1960’s for pattern 

recognition [1]. Due to the high signal-to-noise ratio (SNR) it can be used to detect 

known targets but the limitation was the degradation in the correlation response peak 

caused by image distortions such as rotations and scale variations. Moreover one matched 

filter was required for each combination of the face with different poses and expressions 

and this was practically not possible. Composite correlation filters were later proposed.  

 

The Synthetic discriminant function filters (SDF) was introduced by Hester and Casasent 

[2]. SDF filter use a linear combination of reference images to create a composite image 

which is then correlated with the desired inputs. The weights for the linear combination 

are selected in such a way that the correlation output at the origin is the same for all 

images belonging to one class, i.e. if the correlation output values corresponding to the 
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training images of authentics are set to 1 and the output values due to the imposter 

training images are set to 0 then the correlation response will be 0 if the input image is of 

an authentic person. But the disadvantage of Equal Correlation Peak SDF filter is that it 

results in large side lobes and doesn’t consider noise in the input image. Minimum 

variance SDF filters (MVSDF) were introduced to minimize output variance due to noise, 

and minimum average correlation energy filters (MACE) can be used to improve 

correlation peak sharpness [3]. MVSDF filters emphasize low frequencies, whereas 

MACE filters emphasize high frequencies. P. Re´fre´gier developed an optimal tradeoff 

between the MVSDF and MACE filters [4]. Initial SDF filters used hard constraints i.e., 

the correlation peak values were prespecified. Better performance may be obtained with 

non training images by using unconstrained correlation filters like maximum average 

correlation height filter [5].  

 

In 1990 L. G. Hassebrook, B. V. K. Vijaya Kumar, and L. Hostetler introduced the 

Linear Phase Coefficient Composite Filter (LPCCF) [6]. It is based on the synthetic 

discriminant function filters. The LPCCF design uses a special form of training set 

matrix, i.e., a cyclic Toeplitz matrix; such that the training set selection and filter design 

are combined to yield a correlation matrix that is of cyclic Toeplitz form. It required 

certain selection criteria to yield training sets that produce the matrix that best approaches 

the cyclic Toeplitz form and also represents a range of possible distortions of the object. 

The disadvantage of the composite filter approach is that it is numerically intensive as it 

requires a 2D Fast Fourier Transform of the entire scene to perform the correlation. 
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Wei Su and L. G. Hassebrook introduced another approach called a Super Image Vector 

Inner Product (SIVIP) [7] [8]. It has distortion invariant properties of composite filters 

but doesn’t require correlation. The SIVIP tracker is a combination of three different 

filtering techniques originating with LPCCFs. The LPCCF combines a complex phase 

response with a training set selection such that the phase varies with the distortion, such 

as rotation and if the distortion represented by the training set is translation then the 

LPCCF structure can be implemented without correlation. This approach led to the 

implementation of Vector Inner Product (VIP). The VIP uses translated combinations of 

the target image which when correlated with an input scene results in a pattern of 

multiple correlation peaks which could be arranged in an arbitrary pattern specific to the 

input target class, resulting in a morphological transform of the input. The disadvantage 

of the VIP is that it is sensitive to distortions and the problem with the phase response 

estimation is that it requires correlation. The SIVIP tracker solved all these problems. 

SIVIP uses a sequence of distortion specific super images implemented as Vector Inner 

Product (VIPs) organized into a decision tree spanning several distortions. A SIVIP is 

implemented by elementwise multiplying a super-image template by a partition of 

interest in the input scene and then summing the elementwise operations. The process 

begins with the generation of a super image set. These images are generated as a 

weighted sum of distorted target images. The weights are chosen to give a complex 

response whose phase indicates some characteristic about the target orientation and 

trajectory. 
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Most of the composite filters require a 2D FFT, and it requires M2logM operation for 

MxM images, whereas SIVIP requires only M2 operations which is computationally more 

efficient than the conventional correlation methods. 

 

1.2 Thesis Outline 

 

This thesis consists of 6 chapters. The first chapter introduces different methods for 

detecting and tracking a target and describes the structure of the thesis. The second 

chapter describes the background on tracking, different calibration methods employed for 

tracking, the Pinhole Camera Model and the Least Square approximation method which 

deals with the mathematical part involved in tracking. Chapter three describes the 

calibration method used for calibrating the cameras and the pan-tilt control unit; process 

of correlation and detection of target. Chapter four introduces the tracking methodology 

employed and experiments involving the tracking of a target. Chapter five shows the 

experimental results and plots. Chapter six provides a concluding overview of the thesis 

and possible future work. 
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Chapter 2 Background on tracking 

 

Object (face or iris) tracking has many vision applications such as person authentication 

face-based biometric, expression analysis, and human computer interface. Tracking a 

human face or iris is a challenging task as they are nonrigid and have a high degree of 

inconsistency. Tracking can be feature based or an appearance based. It can be divided 

into deterministic and stochastic approach. In visual tracking which are based on 

probabilistic analysis, a Bayesian perspective is used to estimate the current state of an 

object which changes over time using a sequence of observations made on the system [9]. 

Particle filtering methods also known as Sequential Monte Carlo (SMC) methods for 

stochastic approach were also introduced by several research groups [10]. These tracking 

methods have the advantage of not being subject to any limitation on linear systems nor 

require the noise to be Gaussian and proved to be more robust to distracting clutter. The 

Condensation algorithm also falls under the Sequential Monte Carlo methods has gained 

dominance in the visual tracking [11]. Stochastic tracking is more robust when compared 

to deterministic tracking as it has the potential for evading local minimum as the search 

directions are random. But the stochastic algorithms are more time-consuming than the 

deterministic ones. 

 

Trackers which use classical 3-D vision techniques that provide tools for computing the 

pose, position and facial gestures suffer from the drifting problem since the facial features 

do not have enough stable local appearance due to many factors. Appearance-based 

technique which is a category of deterministic approaches has been widely used for 
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object tracking [12]. These techniques are easy to implement and are generally more 

robust than feature-based methods. Statistical facial textures have been adopted to 

overcome the problem of appearance changes. Gokturk, Bouguet and R.Grzeszczuk 

proposed a feature-based approach in which a two-stage method has been developed for 

3-D tracking of pose and deformations in monocular image sequences [13]. The first 

stage of the system learns the space of all by applying Principle Component Analysis on 

real stereo tracking data. The second stage simultaneously tracks the pose and 

deformation of the face in the monocular image sequence using an optical flow 

formulation associated with the tracked features. Cascia, Sclaroff and Athitsos proposed 

an appearance-based approach in which the head is modeled as a texture mapped cylinder 

and the 3-D head pose is derived by registering the current texture map with a linear 

combination of texture warping templates and orthogonal illumination templates [14]. 

Fast and stable tracking was achieved via regularized, weighted least-squares 

minimization of the registration error. Jorgen Ahlberg proposed an appearance-based 

approach framework for tracking the face and facial features using active appearance 

models [15]. The disadvantage of statistical appearance-based tracking methods is that, 

they depend on the imaging conditions under which the learning is performed and thus, 

by changing these conditions, one has to repeat the whole learning process, which can be 

very tiresome. Online appearance models (OAM) for 2-D tracking have also been 

adopted by researchers. S. Zhou, R. Chellappa, and B. Mogghaddam developed a method 

adopting deterministic and stochastic principles to track the 2-D motion of faces using an 

affine transform [16]. The deterministic part was used for guiding random samples. The 

developed approach adopts adaptive observation models since the object appearance is 
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learned during the tracking phase. Thus, OAMs offers more flexibility compared to 

tracking approaches using statistical texture modeling. 

 

2.1 Calibration Theory 

 

Camera Calibration in 3D computer vision refers to determining the metric information 

(intrinsic and extrinsic parameters) from the 2D image. The intrinsic parameter includes 

the camera geometry and the optical characteristics such as the x-coordinate of the center 

of projection, the y-coordinate of the center of projection, the focal length, the aspect 

ratio and the angle between the optical axes. The extrinsic parameter includes the 

orientation of the camera with respect to some world coordinate system and also the 3D 

position of the camera. Basically, intrinsic parameters determine how light is projected 

through the lens onto the image plane of the sensor. There are different ways of 

calibration and they are based on perspective or projective camera models. The two basic 

techniques among them are the photogrammetric calibration and self calibration. In 

photogrammetric calibration technique, a target calibration object whose 3D space 

geometry is well known is observed. The target calibration object generally consists of 2 

or 3 planes which are orthogonal to each other. Self calibration methods do not use any 

calibration frame, grid or object [17] [18]. This technique is used when no Euclidean 

information is present and the intrinsic parameters are varying. It uses only the 

information available in the images taken by the camera to find the intrinsic parameters. 

The problem with pure self calibration is the need for known units. Thus, some form of 

known distance must be introduced.  A common method for doing this is a hybrid of a 
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fixed photogrammetric grid and no grid at all. This method uses a checkerboard pattern 

of known dimension which is randomly positioned in view of the camera and images are 

captured. From these images, the extrinsic parameters are estimated, and therefore the 

perspective coefficients are estimated. 

 

Camera calibration can be divided into the following types [19] [20]:  

1) Linear versus non-linear camera calibration: 

 They are differentiated depending on the modeling of lens distortion. Linear 

 techniques are fast but cannot handle lens distortion [21]. 

2) Intrinsic versus extrinsic camera calibration: 

 Intrinsic calibration is used only to obtain the physical and optical parameters of 

 the camera [22] [23], whereas extrinsic calibration deals with the measurement of 

 the position and orientation of the camera in the scene [24] [25].  

3) Implicit versus explicit calibration: 

 Implicit calibration is the process of calibrating a camera without explicitly 

 computing its physical parameters [26] [27]. The results are generally used for 

 3D measurement and the generation of image coordinates, but they cannot be 

 used for camera modeling as the obtained parameters do not correspond to the 

 physical parameters [28].  

4) Methods using 3D rather than planar point arrays [29] [30]. 

5) Point based versus line based [31]: 

Point based methods are generally used in photogrammetry, whereas the line 

based method is used in plumbline calibration.  
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In a more specific classification, a combination of linear and non-linear techniques is also 

employed. A linear method is used to compute initial approximations for some of the 

parameters and the other parameters are computed iteratively [32] [33].  

 

2.2 Pinhole Lens Model 

 

A pinhole lens model is used for mapping the three dimensional world coordinate onto 

the two dimensional image plane. This type of mapping is called perspective projection. 

It has a small hole through which light enters before forming an inverted image on the 

image plane facing the hole. A non inverting model is commonly used where the image 

plane is placed in between the focal point of the camera and the object.  

Figure 2.1 shows the perspective projection in pinhole lens model. 

 

 

 

Figure 2.1: Perspective projection in pinhole camera model 
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In [33], Tsai describes the steps involved in the transformation of the 3D world 

coordinates into camera coordinates. If (xw, yw, zw) are the object world coordinate system 

and (x, y, z) are the camera 3D coordinate system then the transformation from the object 

world coordinate system to camera 3D coordinate system is given by,  
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where R  is the 3x3 rotation matrix 
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and T is the translation vector 
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The 3D camera coordinates ),,( zyx  are transformed into ideal image coordinates 

),( uu yx using perspective projection with pinhole camera geometry.  

 

z
xfXu = ,                  (2.4) 

z
yfYu = ,              (2.5) 

where f is the focal length 
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Distortion due to the radial lens is 

uxd XDX =+ ,               (2.6) 

uyd YDY =+ ,              (2.7) 

where ),( dd YX  is the distorted or true image coordinate on the image plane and 

......)( 4
1

2
1 ++= rkrkXD dx ,            (2.8) 

......)( 4
1

2
1 ++= rkrkYD dy ,            (2.9) 

where ik  is the distortion coefficient and 

22
dd YXr +=              (2.10) 

The transformation from the world coordinates to the camera coordinates can be 

expressed by homogenous equations such that 

 

       ,      (2.11) 

 

where s is the scale factor. 

Equation (2.11) can also be written as 

 

     ,        (2.12) 

 

Therefore, the procedure to obtain the intrinsic and extrinsic parameters is equivalent to 

calculating the parameters [m11, m12,…, m21, m22,…, m31,…, m34]T. 

The affine transformation is included in the pinhole lens model. 
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In Chapter 3, the pan-tilt unit is viewed as an emulation of a pinhole camera model and 

based on that the perspective coefficients of the pan-tilt unit are calculated during 

calibration and are used for the tracking purpose. 

 

2.3 Linear Relationship for Determining the Perspective Correction coefficients  

 

The method of least square approximations is used for reconstructing the world 

coordinates from the triangulated data. The following equations give the mathematical 

relationships between the physical world coordinates of any point and the corresponding 

coordinate of that point as viewed by the camera [26]. 

Let ),,( ,,, nwnwnw zyx  be the world coordinates of any one of the N grid points and 

),( ,, ncnc yx be the corresponding camera coordinate of that point as observed in the camera 

space. The Zw dimension is assumed to be approximately parallel to the camera. The 

world to camera coordinate transforms for a pinhole lens are given by, 

12,11,10,9

4,3,2,1
, mzmymxm

mzmymxm
x

nwnwnw

nwnwnw
nc +++

+++
= ,        (2.11)  

and 

12,11,10,9

8,7,6,5
, mzmymxm

mzmymxm
y

nwnwnw

nwnwnw
nc +++

+++
=  ,       (2.12)  

where n=1, 2,… N known points. 

The coefficient 12m is made equal to unity so that the transformation is linear at the world 

origin. A coefficient vector, not including the m12 coefficient is defined as 11x1 column 

vector such that 

[ ]Tmmmmmmmmmmmm 11109876543210 = ,                    (2.13)  
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Given a linear equation as 

000 mAp = ,            (2.14)  

where  











=

zyc

zxc

p
p

p
0

0

0 ,           (2.15) 

is a 2Nx1 vector constructed from the augmentation of two Nx1 vectors given by 

[ ]TNcnczxc
xmxmp ,12,12 ...0 = ,         (2.16) 

and 

[ ]TNcnczyc
ymymp ,12,12 ...0 = ,         (2.17)  

The factor matrix A is 2Nx11 and constructed by the augmentation of two matrices as 









=

yc

xc

A
A

A
0

0

0 ,            (2.18)  

where, 

















−−−

−−−
=

NwNcNwNcNwNcNwNwNw

wcwcwcwww

xc

zxyxxxzyx

zxyxxxzyx
A

,,,,,,,,,

1,1,1,1,1,1,1,1,1,

00001
...........

00001
0

 ,     (2.19)  

and 

















−−−

−−−
=

NwNcNwNcNwNcNwNwNw

wcwcwcwww

yc

zyyyxyzyx

zyyyxyzyx
A

,,,,,,,,,

1,1,1,1,1,1,1,1,1,

10000
...........

10000
0  ,                      (2.20) 

The Least Squares Solution for the coefficient vector is 

( ) 000
1

00 pAAAm TT −
= ,                                     (2.21)  

 

 

 



 

15 
 

Chapter 3 Calibration Process 

 

The following flowchart shows the system model and the general procedure to track an 

object. 

 

Figure 3.1: Flow Chart of the tracking system model. 

 

After calibrating (explained in the next section) the cameras and the pan-tilt unit, the 

camera coordinates ( BcBcAcAc yxyx ,,, ) of Camera A and Camera B are known. Using 
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these camera coordinates we find the world coordinates ( www zyx ,, ) of the object. These 

world coordinates are converted to pan-tilt angles and fed to the pan-tilt unit which 

calculates the pan and tilt required to track the target and pans and tilts in the direction of 

the object. The projector points a red spot on the object. This is the general procedure 

which we use for tracking an object (face and iris).  

Figure 3.3 shows the apparatus setup which is equivalent to Figure 3.1 

The following equations are used to find the world coordinates of the target.  

 

Let   























−

−

−

−

=

412

412

412

412

,

,

,

,

BB

BB

AA

AA

mmx
mmx
mmy
mmx

D

nBc

nBc

nAc

nAc

n
,               (3.1) 

         



















−−−
−−−
−−−
−−−

=

nnn

nnn

nnn

nnn

n

BcBBBcBBBcBB

BcBBBcBBBcBB

AcAAAcAAAcAA

AcAAAcAAAcAA

xmmxmmxmm
xmmxmmxmm
ymmymmymm
xmmxmmxmm

C

,,,

,,,

,,,

,,,

11710695

11310291

11710695

11310291

,              (3.2) 

where ( nBcnBcnAcnAc yxyx ,,,, ,,, ) are the camera coordinates of Camera A and B,  

),,,,( 76,5,4321 AAAAAAA mmmmmmm and ),,,,( 76,5,4321 BBBBBBB mmmmmmm are the 

 coefficients of camera A and B which are explained later in this chapter. 

We have, 

nnn PCD =                      (3.3) 

where nP  is the world coordinate 

Multiplying both sides by T
nC , 

W
nn

T
nn

T
n PCCDC )(= ,             (3.4) 

n
T
ncc

W
n DCRP 1−= ,             (3.5) 
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where, 

n
T
ncc CCR =               (3.6) 

 

Once the world coordinates of the target are found, they are used to find the pan-tilt 

coordinates. Equation 3.7 and 3.8 shows the formula for calculating the pan-tilt 

coordinates using the world coordinates and the ‘m’ coefficients of the pan-tilt unit. 

12,11,10,9

4,3,2,1
, mzmymxm

mzmymxm
x

nwnwnw

nwnwnw
np +++

+++
=            (3.7) 

and 

12,11,10,9

8,7,6,5
, mzmymxm

mzmymxm
y

nwnwnw

nwnwnw
nt +++

+++
=           (3.8) 

Equations (3.7) and (3.8) are nothing but the world to camera coordinate transforms for a 

pinhole lens. Here the pan-tilt unit is emulated as a pinhole camera model. 

 

3.1 Apparatus  

 

The technique used here is the photogrammetric calibration in which a 2-plane target 

calibration grid is used as shown in Figure 3.2. Both the planes are orthogonal to each 

other and consist of 9 rings each making to a total of 18 rings on the grid. A ring is 

equidistant to the immediate neighborhood ring. Two stereo cameras (scorpion), a 

projector, pan/tilt unit and a calibration grid are used for the calibration process. Figure 

3.3 shows the apparatus used for the calibration process. 
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Figure 3.2: Calibration Grid for calibrating the cameras and the pan-tilt unit 

 

 

 

Figure 3.3: Apparatus Setup. 
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3.2 Calibration Method 

 

The pan and tilt unit is programmed to pan left/right and tilt up/down. The projector is 

placed on the pan-tilt control unit in such a way that when the pan-tilt unit moves, the 

single projector point of projection also changes. This helps in projecting a spot at the 

required area. A Laser beam can also be used instead of a projector here but was less 

convenient. A white spot is projected with the help of the projector on the center of one 

of the rings of the calibration grid which is placed at a certain distance from the two 

stereo cameras. At this point the pan-tilt reading (the number of steps it moved from the 

zero position to the right or left and the number of steps it moved from top to bottom 

from the zero position) and the world coordinates of that particular ring are noted. Next 

the white spot is projected on to the center of the ring adjacent to the first one and the 

pan-tilt and world coordinates of that ring are noted. Similarly, the world coordinates and 

the pan-tilt reading of all the 18 rings in the calibration grid are noted. The pan and tilt 

readings of the calibration grid rings are represented as npx ,  and nty , respectively.  

 

The pan-tilt spot projection can be viewed as a pinhole lens model as explained in section 

2.2. We apply the pinhole lens model to the pan-tilt unit spot projection. The lens of the 

projector forms the center of projection. Therefore we are able to use the least square 

triangulation algorithm to calculate the m coefficients of the pan-tilt system. 
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Calculating m coefficients of the pan-tilt system: 

mp is a 11x1 column vector as shown below, 

[ ]Tp mmmmmmmmmmmm 1110987654321= ,                (3.9) 

The formula for calculating m is given by,  

( ) p
T

pp
T

pp pAAAm 1−
=  ,           (3.10) 

where 







=

yp

xp
p

A
A

A ,                      (3.11) 

and   

















−−−

−−−
=

NwNpNwNpNwNpNwNwNw

wpwpwpwww

xp

zxyxxxzyx

zxyxxxzyx
A

,,,,,,,,,

1,1,1,1,1,1,1,1,1,

00001
...........

00001
,           (3.12) 

















−−−

−−−
=

NwNtNwNtNwNtNwNwNw

wtwtwtwww

yp

zyyyxyzyx

zyyyxyzyx
A

,,,,,,,,,

1,1,1,1,1,1,1,1,1,

10000
...........

10000
,           (3.13) 

and 

ppp mAp = ,               (3.14) 

where,  







=

zyt

zxp
p

p
p

p ,                 (3.15) 

and  

[ ]TNpnpzxp xmxmp ,12,12 ...= ,                                (3.16) 

[ ]TNtntzyt ymymp ,12,12 ...= ,                      (3.17) 

Table 3.1 shows the world coordinates ),,( ,,, nwnwnw zyx  and the pan-tilt unit 

coordinates ),( ,, ntnp yx . 
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Table 3.1: World Coordinates and pan-tilt unit Coordinates. 

 

Points nwx ,  nwy ,  nwz ,  npx ,  nty ,  

0 -31.82 0 31.82 1627 -1081 

1 -76.368 0 76.368 1705 -1062 

2 -120.92 0 120.92 1774 -1044 

3 -31.82 90 31.82 1626 -831 

4 -76.368 90 76.368 1701 -817 

5 -120.92 90 120.92 1774 -812 

6 -31.82 180 31.82 1624 -572 

7 -76.368 180 76.368 1702 -574 

8 -120.92 180 120.92 1770 -574 

9 31.82 0 31.82 1445 -1089 

10 76.368 0 76.368 1285 -1079 

11 120.92 0 120.92 1127 -1068 

12 31.82 90 31.82 1445 -833 

13 76.368 90 76.368 1282 -828 

14 120.92 90 120.92 1125 -823 

15 31.82 180 31.82 1445 -573 

16 76.368 180 76.368 1280 -573 

17 120.92 180 120.92 1126 -573 
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Using the Table 3.1 and replacing ),( ,, ncnc yx  with ),( ,, ntnp yx the m coefficients of pan-tilt 

unit are found to be,  

m0= [-3.255552 -0.043276 0.185681 1567.852407 0.139881 2.927261 -0.440951 

         -1097.618751 -0.000238 -0.000018 0.000742] 

Similarly, using the equations 3.9 to 3.17, the m coefficients of the stereo cameras A and 

B are found. 

The Table 3.2 and Table 3.3 show the world coordinates and the camera coordinates of 

camera A and camera B. 

 

Table 3.2 World Coordinates and Camera Coordinates of Camera A. 

 

Points nwx ,  nwy ,  nwz ,  nAcx ,  nAcy ,  

0 -31.82 0 31.82 546.27 651.18 

1 -76.368 0 76.368 468.06 636.74 

2 -120.92 0 120.92 396.91 623.4 

3 -31.82 90 31.82 543.92 492.24 

4 -76.368 90 76.368 466.77 483.15 

5 -120.92 90 120.92 393.88 474.41 

6 -31.82 180 31.82 541.71 330.6 

7 -76.368 180 76.368 463.51 327.31 

8 -120.92 180 120.92 392.55 323.92 

9 31.82 0 31.82 664.23 649.05 
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Table 3.2, continued 

 

Points nwx ,  nwy ,  nwz ,  nAcx ,  nAcy ,  

10 76.368 0 76.368 741.12 633.57 

11 120.92 0 120.92 811.94 618.84 

12 31.82 90 31.82 663.12 490.62 

13 76.368 90 76.368 739.98 479.6 

14 120.92 90 120.92 813.04 469.48 

15 31.82 180 31.82 661.21 329.94 

16 76.368 180 76.368 740.22 323.81 

17 120.92 180 120.92 812.17 317.6 

 

 

Table 3.3 World Coordinates and Camera Coordinates of Camera B. 

 

Points nwx ,  nwy ,  nwz ,  nBcx ,  nBcy ,  

0 -31.82 0 31.82 490.3 769.17 

1 -76.368 0 76.368 412.18 771.36 

2 -120.92 0 120.92 341 773.88 

3 -31.82 90 31.82 485.87 608.44 

4 -76.368 90 76.368 410 616.26 

5 -120.92 90 120.92 338.18 623.43 
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Table 3.3, continued 

 

Points nwx ,  nwy ,  nwz ,  nBcx ,  nBcy ,  

6 -31.82 180 31.82 482.02 449.37 

7 -76.368 180 76.368 406.07 462.55 

8 -120.92 180 120.92 337.16 475.03 

9 120.92 0 120.92 608.73 764.61 

10 31.82 0 31.82 686.45 762.82 

11 76.368 0 76.368 758.02 761.58 

12 120.92 90 120.92 604.1 604.43 

13 31.82 90 31.82 680.9 607.67 

14 76.368 90 76.368 753.81 610.85 

15 120.92 180 120.92 598.76 446.64 

16 120.92 180 120.92 676.65 454.3 

17 31.82 180 31.82 747.91 461.54 

 

 

Using the Table 3.2 and Table 3.3, the m coefficients of the cameras are found to be. 

mA = [1.882042 -0.061885 0.492436 604.987292 -0.031149 -1.853129 0.166115   

662.390418  -0.000016  -0.000075  0.000823]. 

mB = [1.896437 -0.002000 0.462156 548.819154 -0.064282 -1.785649 0.635329 

767.328187  -0.000009  0.000084  0.000828]. 
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3.3 Ring Filter and Target detection 

 

A ring filter is designed to detect the target. The basic methodology is to correlate the 

images of both the cameras A and B with the ring filter in real time and find the peak in 

the correlated image. Before the correlation in performed, the images of both the cameras 

are down sampled by 2 to speed up the process. The bmp image of the ring filter is shown 

in Figure 3.4. 

 

 

 

Figure 3.4: Bmp image of the Ring Filter. 

 

The white portion on the image in Figure 3.4 is the positive target ring. When the ring 

filter is correlated with the camera image, the white portion forms the target to be 
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detected. The black portion is the negative suppression ring and forms the regions that are 

suppressed during correlation. The gray portion are don’t care regions. The radius of the 

positive target ring and the negative suppression ring are chosen in such a way that the 

target is detected and the other regions are suppressed. The next step is to find the peak to 

side lobe ratio and the peak of the correlated image. The radius of the peak and the side 

lobe is set in such in a way that the radius of the side lobe is twice the radius of the peak 

in order to have a perfect detection of the target. After finding the peak in the correlated 

image, the coordinates of the peak are found. These coordinates are multiplied by 2 as the 

images were down sampled previously. Crosshairs are used to mark the peak which is 

nothing but the target.  

An experiment is done in which a white circle in a dark background is used as the target 

and is to be detected.  

Figure 3.5 shows the input images of the target taken from both the cameras A and B.  

 

  

 

Figure 3.5: Input images of Camera A and Camera B. 
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The input images shown in Figure 3.5 are correlated with the ring filter shown in Figure 

3.4. Figure 3.6 shows the correlated images of camera A and B respectively. 

 

    

 

Figure 3.6: Result of the correlation of the input images in Figure 3.5 with the ring filter 

shown in Figure 3.4  

 

After the correlation is done, the psr (peak to side lobe ratio) and peaks are found in the 

correlated image. Crosshairs are placed at the peak coordinates in order to indicate the 

target. Figure 3.7 shows the crosshair at the detected target. 
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Figure 3.7: Target detection shown by the cross hair at the target. 

 

Once the target is detected and the camera coordinates of the target have been found, the 

next step is to track the target using the pan-tilt unit and the projector. This is explained in 

Chapter 4. 
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Chapter 4 Tracking Methodology 

 

4.1 Our Approach 

 

After the target has been detected, the next step is to track the target within the range of 

the cameras. The coordinates of the center of the target i.e., the peak values of the target 

as found in Chapter 3, the ‘m’ coefficients of both the cameras A and B and the ‘m’ 

coefficients of the pan-tilt unit are used for tracking the target. The coordinates of the 

target are nothing but the camera coordinates of the target ),( ,, nAcnAc yx  and ),( ,, nBcnBc yx .  

 

Three basic steps are involved in tracking the target: 

1) The camera coordinates ),( ,, nAcnAc yx  and ),( ,, nBcnBc yx  and the ‘m’ coefficients of 

camera A and B are used to find the world coordinates of the target. As described in 

Chapter 3, the ‘m’ coefficients of the cameras A and B were found to be  

mA = [1.882042 -0.061885 0.492436 604.987292 -0.031149 -1.853129 0.166115                        

662.390418 -0.000016 -0.000075 0.000823] 

mB = [1.896437 -0.002000 0.462156 548.819154 -0.064282 -1.785649 0.635329         

767.328187 -0.000009 0.000084 0.000828] 

Using the equations (3.1) to (3.7), 
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where  ( nBcnBcnAcnAc yxyx ,,,, ,,, )  are the camera coordinates of Camera A and B,  

    nnn PCD =               (4.3) 

where nP  is the world coordinate 

    n
T
ncc

W
n DCRP 1−= ,             (4.4) 

where, n
T
ncc CCR =              (4.5) 

Substituting the ‘m’ coefficients of the cameras A and B and the camera coordinates of 

both the cameras A and B in equations (4.1) to (4.4) gives the world coordinates of the 

target  [ ]Tnwnwnw
W

n zyxP ,,,=                  (4.6) 

The world coordinates are determined from the calibrated camera pair. 

2)  The world coordinates of the target [ ]nwnwnw zyx ,,,  and the ‘m’ coefficients of the 

pan-tilt unit are used to find the pan-tilt coordinates using the equations  

12,11,10,9

4,3,2,1
, mzmymxm

mzmymxm
x

nwnwnw

nwnwnw
np +++

+++
=            (4.7) 

and 

12,11,10,9

8,7,6,5
, mzmymxm

mzmymxm
y

nwnwnw

nwnwnw
nt +++

+++
=            (4.8) 

3)  The pan-tilt unit is moved to the spot position ),( ,, ntnp yx  and if the projector projects 

the spot on the target then the target tracking is accurate. 
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4.2 Experiment 1 

 

In Chapter 3, Table 3.1, Table 3.2 and Table 3.3 shows the world coordinates, camera 

coordinates and the pan-tilt values. One way to test whether the system would eventually 

track the target is to use the camera coordinates of the calibration grid rings in Table 3.1 

and Table 3.2 as the camera coordinates of the target. These coordinates along with the 

‘m’ coefficients of the cameras are substituted in the equation (4.1) and (4.2) to find Dn 

and Cn. The Dn and Cn are then used in equation (4.4) to get Pn which is nothing but the 

world coordinates. The world coordinate values in Pn should be same as the world 

coordinates in Table 3.1, Table 3.2 and Table 3.3. These world coordinates along with the 

‘m’ coefficients of the pan-tilt unit is then used in equation (4.7) and (4.8) to get the pan-

tilt values. These pan-tilt values should be same as the pan-tilt values with respect to the 

world coordinates in Table 3.3.  

 

The Table 4.1 shows the original world coordinates and the new world coordinates and 

the Table 4.2 shows the original pan-tilt values and the new pan-tilt values for the 

calibration grid rings. 
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Table 4.1: Original World Coordinates and New World Coordinates of the Calibration 

grid rings. 

 Original World Coordinates New World Coordinates 

Points nwx ,  nwy ,  nwz ,  nwx ,  nwy ,  nwz ,  

0 -31.82 0 31.82 -31.765 -0.035898 32.3 

1 -76.368 0 76.368 -76.761 0.061406 75.922 

2 -120.92 0 120.92 -120.81 -0.15025 120.64 

3 -31.82 90 31.82 -32.092 89.857 32.214 

4 -76.368 90 76.368 -76.278 89.888 76.583 

5 -120.92 90 120.92 -121.08 90.036 121.34 

6 -31.82 180 31.82 -32.215 180.08 31.968 

7 -76.368 180 76.368 -76.742 180.06 75.659 

8 -120.92 180 120.92 -120.26 180.14 121.06 

9 31.82 0 31.82 32.222 0.50422 31.937 

10 76.368 0 76.368 76.576 0.19487 75.564 

11 120.92 0 120.92 120.47 -0.34533 121.22 

12 31.82 90 31.82 32.189 90.007 31.683 

13 76.368 90 76.368 76.301 89.984 76.437 

14 120.92 90 120.92 121.13 89.852 121.19 

15 31.82 180 31.82 31.745 179.53 31.994 

16 76.368 180 76.368 76.665 179.88 75.746 

17 120.92 180 120.92 120.71 180.45 121.15 
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Table 4.2: Original Pan-Tilt values and New Pan-Tilt Values. 

 

 Original Pan-Tilt Values New Pan-Tilt Values 

Points npx ,  nty ,  npx ,  nty ,  

0 1627 -1081 1626 -1082.3 

1 1705 -1062 1704.7 -1062.4 

2 1774 -1044 1773.9 -1044.6 

3 1626 -831 1625.9 -828.53 

4 1701 -817 1701.8 -818.91 

5 1774 -812 1773 -809.65 

6 1624 -572 1625.3 -573.01 

7 1702 -574 1702.9 -573.84 

8 1770 -574 1770.3 -574.39 

9 1445 -1089 1445.7 -1088.3 

10 1285 -1079 1283.9 -1078.8 

11 1127 -1068 1128.9 -1069.6 

12 1445 -833 1444.5 -831.8 

13 1282 -828 1282.4 -826.71 

14 1125 -823 1125.2 -822.17 

15 1445 -573 1444.1 -574.36 

16 1280 -573 1280.1 -573.83 

17 1126 -573 1124.4 -572.77 
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The plot of the original world coordinates and the new world coordinates as shown in 

Table 4.1 are plotted. Figure to Figure 4.10 shows the plot between the original world 

coordinates and the new world coordinates:  

 

 

 

Figure 4.1: Plot of Original ‘x’ World Coordinate Curve and New ‘x’ World Coordinate 

Curve. 
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Figure 4.2: Plot of difference between Original and New ‘x’ World Coordinates. 
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Figure 4.3: Plot of Original ‘y’ World Coordinate Curve and New ‘y’ World Coordinate 

Curve. 
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Figure 4.4: Plot of difference between Original and New ‘y’ World Coordinates. 
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Figure 4.5: Plot of Original ‘z’ World Coordinate Curve and New ‘z’ World Coordinate 

Curve. 
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Figure 4.6: Plot of difference between Original and New ‘z’ World Coordinates. 
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Figure 4.7: Plot of Original Pan Coordinate Curve and New Pan Coordinate Curve. 
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Figure 4.8: Plot of difference between Original and New Pan Coordinates. 
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Figure 4.9: Plot of Original Tilt Coordinate Curve and New Tilt Coordinate Curve. 
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Figure 4.10: Plot of difference between Original and New Tilt Coordinates. 

 

As seen in the Table 4.1 and Table 4.2 and Figure 4.1 to Figure 4.8, the difference 

between the original and new world coordinates, and original and new pan-tilt 

coordinates is very small. This shows that the system tracks the center of the calibration 

grid circles with minimum error.  
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4.3 Experiment 2 

 

The same target as shown in Figure 3.5 is used for the tracking. The tracking 

functionality of the system is tested in two ways: 

1) Moving the target from right to left in the ‘x’ direction 

2) Moving the target backwards in the ‘z’ direction 

 

4.3.1 Moving the target from right to left in the ‘x’ direction 

 

The target to be tracked is placed at a certain distance from the cameras (say initial 

position) and the projector and at a fixed height from the ground. Then the program to 

detect the target is run and we get the camera coordinates of the center of the target. 

These camera coordinates ),( ,, nAcnAc yx and ),( ,, nBcnBc yx are fed into the MATLAB 

program to get the world coordinates ),,( ,,, nwnwnw zyx and the pan-tilt coordinate 

),( ,, ntnp yx of the center of the target. Finally the pan-tilt coordinates are fed back to pan-

tilt control unit which moves the projector in the direction of the target and the white spot 

from the projector falls on the target. If the white spot is not exactly at the center of the 

target, then the error in ‘x’ and ‘y’ is measured using a ruler. Also the distance from the 

center of the projector lens and the target is measured and noted. Next, the target is 

moved to the left by about 40cm so that the ‘y’ and ‘z’ world coordinates of the target are 

fixed and only the ‘x’ world coordinates changes. Again the program is run to detect the 

target. The new camera coordinates are found and are used to get the new world 
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coordinates and the new pan-tilt coordinates. The pan-tilt unit is then moved to a new 

location and the projector projects the spot on the target. If the spot is within the circular 

target then system is able to track the target. Again, the error in ‘x’ and ‘y’ and the 

distance from the center of projector lens to the target is measured and noted. The target 

is again moved to the left by 40 cm and the whole process is continued for about 20 

readings.  

After the above process, the target is place at the initial position and moved backwards to 

about 20 cm and the whole process explained above is repeated. The tracking process is 

continued until the target is moved backwards to a distance of about 100cm from its 

initial position.  

The result of this experiment is discussed in Chapter 5. 

 

4.3.2 Moving the target backwards in the ‘z’ direction 

 

In this experiment, the target to be tracked is initially placed at a fixed position from the 

cameras and the projector and at a fixed height from the ground. The program to detect 

the target is run. We get the camera coordinates of the target. These camera coordinates 

along with the ‘m’ coefficients of the cameras are fed into the MATLAB code to get the 

world coordinates and the pan-tilt coordinates of the target. The pan-tilt coordinates are 

fed to the pan-tilt control unit and the projector is moved toward the target. The error in 

‘x’ and ‘y’ world coordinates and the distance from the projector lens to the target are 

measured. Next, the target is moved backwards in the ‘z’ direction to a distance of about 

10cm and the same process is repeated. The process is continued until the target is moved 
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to a distance of about 100 cm from its initial position. The result of this experiment is 

discussed in Chapter 5. 
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Chapter 5 Results 

 

5.1 Introduction 

 

This chapter provides an overview of the results of the experiments done in the research. 

The section 5.2 and 5.3 shows the results and plots of the experiment 2 explained in 

Chapter 4  

 

5.2 Experiment 2.1 results 

 

The Table 5.1 to Table 5.6 shows the error in ‘x’ and ‘y’ for the target at different 

positions. The distance ‘d’ of the target from the projector lens, ‘xw’, ’yw’, ‘zw’ are the 

world coordinates of the target, ‘xp’,’yp’ are the pan and tilt coordinates of the target 

respectively, ‘xerror’, ‘yerror’ are the error in ‘x’ and ‘y’ world coordinates of the target and 

‘xwn’ and ‘ywn’ are the new ‘x’ and ‘y’ world coordinates . 

 

 

 

 

 

 

 



 

48 
 

Table 5.1: Error in ‘x’ and ‘y’ world coordinates when the target is at a distance of about 

152 cm from the projector lens. 

 

 d xw yw zw xp yt xerror yerror xwn ywn 

0 
 

152.4 -273.492 37.8041 12.1417 2291 -960 4 1 -269.492 36.80 

40 
 

149.1 -236.174 36.71 15.8665 2191 -965 4 1 -232.174 35.71 

80 
 

147.8 -197.221 37.6513 14.2262 2092 -966 3.5 0.5 -193.721 37.1513 

120 
 

146.8 -158.415 37.4876 12.5104 1992 -970 3 0.5 -155.415 36.99 

160 
 

145.3 -118.672 37.4601 16.0957 1881 -973 5 0.5 -113.672 36.9601 

200 
 

143.5 -81.5835 38.4301 14.5417 1782 -974 3 0.5 -78.5835 37.9301 

240 
 

142.2 -44.0998 38.2959 12.7322 1680 -978 2 0.5 -42.0998 37.7959 

280 
 

141 -4.6568 38.2697 16.504 1564 -981 2.5 0.5 -2.1568 37.77 

320 
 

139.7 35.9321 39.1462 15.07 1450 -982 2 0.5 37.9321 38.65 

360 
 

138.4 73.7055 38.97 13.558 1339 -987 2 0 75.7055 38.97 

400 
 

137.7 111.7889 39.0147 16.9501 1223 -989 3 0 114.7889 39.0147 

440 
 

136.70 149.9932 39.9478 15.3282 1108 -991 2.5 0 152.4932 39.9478 

480 
 

135.90 190.2161 40.8161 13.9163 984 -993 3 0 193.2161 40.8161 

520 
 

135.60 227.0429 40.6736 12.145 868 -997 2.5 0 229.5429 40.6736 

560 
 

135.10 263.1601 41.6777 10.1052 753 -998 2 0 265.1601 41.68 

600 
 

135.00 302.7113 41.6322 14.1318 621 -1001 4 0 306.7113 41.6322 

640 
 

134.50 339.047 41.754 17.273 499 -1004 5 -1 344.047 42.75 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 3.26 mm and 0.52 

mm respectively. 
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Figure 5.1: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 152 cm from the projector. 

 

 

 

 

Figure 5.2: Plot of original and new ‘x’ and ‘y’ world coordinates. 
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Table 5.2: Experiment 1 results- Error in ‘x’ and ‘y’ world coordinates when the target is 

at a distance of about 170 cm from the projector lens. 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 5.85 mm and 1.23 

mm respectively. 

 
 

d xw yw zw xp yt xerror yerror xwn ywn 

0 
 

168.9 -276.978 32.5118 216.6926 2046 -928 5 1 -271.978 31.5118 

40 
 

167.6 -237.703 32.5104 213.5762 1960 -930 3 2 -234.703 30.5104 

80 
 

166.4 -199.653 32.677 217.7696 1867 -931 4 1.5 -195.653 31.177 

120 
 

165.6 -160.171 32.8087 222.1152 1771 -933 4 2 -156.171 30.8087 

160 
 

164.1 -120.499 32.7717 219.3215 1679 -936 3 1.5 -117.499 31.2717 

200 
 

162.8 -79.5567 32.8652 223.8232 1576 -938 5 1.5 -74.5567 31.3652 

240 
 

161.8 -40.0499 32.867 220.4528 1482 -941 3.5 1 -36.5499 31.867 

280 
 

160.5 -2.0119 33.0279 224.9347 1384 -943 3 1 0.9881 32.0279 

320 
 

159.5 37.9166 32.9875 221.9422 1285 -946 3 0 40.9166 32.9875 

360 
 

158.8 78.4417 33.2899 233.7511 1173 -946 6 1 84.4417 32.2899 

400 
 

158 116.5511 34.3992 223.2934 1080 -948 4 0.5 120.5511 33.8992 

440 
 

157 155.4219 34.4073 219.8971 978 -952 3 0 158.4219 34.4073 

480 
 

156.7 194.2166 35.6253 217.3298 847 -953 2.5 0 196.7166 35.6253 

520 
 

155.7 232.0359 35.8313 221.4199 768 -954 6 0 238.0359 35.8313 

560 
 

155.4 271.8728 36.0244 225.3591 656 -956 8 -0.5 279.8728 36.5244 

600 
 

155.4 311.0689 37.2575 222.4906 545 -956 8 -0.5 319.0689 37.7575 

640 
 

152.1 347.496 37.2746 219.285 440 -960 10 -2 357.496 39.2746 

680 
 

149.4 388.2403 37.411 223.6606 320 -962 12.5 -2 400.7403 39.411 
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Figure 5.3: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 170 cm from the projector. 

 

 

 

Figure 5.4: Plot of original and new ‘x’ and ‘y’ world coordinates. 
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Table 5.3: Error in ‘x’ and ‘y’ world coordinates when the target is at a distance of about 

188 cm from the projector lens. 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 8.6 mm and 1.3 

mm respectively. 

 

 
d xw yw zw xp yt xerror yerror xwn ywn 

0 186.7 -284.915 25.9979 430.25 1856 -902 9 1 -275.915 24.9979 

40 185.4 -242.586 26.098 425.6839 1773 -905 7 0.5 -235.586 25.598 

80 183.4 -203.865 26.3995 430.8357 1690 -905 6.5 0.5 -197.365 25.8995 

120 182.4 -162.483 26.5367 425.8595 1606 -908 5 0 -157.483 26.5367 

160 181.6 -121.411 26.7938 430.9363 1514 -909 6 0 -115.411 26.7938 

200 181.1 -79.6408 26.8926 426.374 1427 -912 4 0 -75.6408 26.8926 

240 180.3 -39.7876 27.1928 431.2795 1336 -913 5 0 -34.7876 27.1928 

280 179.8 23.1443 28.1344 429.4081 1196 -915 4 0 27.1443 28.1344 

320 179.1 44.1714 27.6579 442.0541 1142 -915 7 0 51.1714 27.6579 

360 178.3 83.4505 27.8516 436.7384 1055 -918 7 0 90.4505 27.8516 

400 177.8 125.3787 28.1131 441.8766 956 -919 8 0 133.3787 28.1131 

440 177.8 162.7453 29.591 427.4133 873 -920 5 -0.5 167.7453 30.091 

480 177.3 204.6232 29.8545 432.5021 771 -921 7 -0.5 211.6232 30.3545 

520 176.3 244.6263 30.1359 437.8572 672 -922 10 -0.5 254.6263 30.6359 

560 176.3 283.0211 30.3287 432.5606 578 -925 9.5 -2 292.5211 32.3287 

600 176 322.0187 31.9194 427.9983 481 -925 9.5 -2 331.5187 33.9194 

640 176.5 361.3715 32.2686 432.7578 381 -926 13 -2 374.3715 34.2686 

680 176.8 402.3388 31.1038 437.6031 275 -930 16.5 -3 418.8388 34.1038 

720 177.3 439.3446 32.4261 424.0344 177 -932 13 -3 452.3446 35.4261 
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Figure 5.5: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 188 cm from the projector lens. 

 

 

 

Figure 5.6: Plot of original and new ‘x’ and ‘y’ world coordinates. 
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Table 5.4: Error in ‘x’ and ‘y’ world coordinates when the target is at a distance of about 

208 cm from the projector lens. 

 

 
d xw yw zw xp yt xerror yerror xwn ywn 

0 207 -285.08 19.8055 629.3299 1702 -884 5 0 -280.08 19.8055 

40 205.7 -247.153 20.31 634.607 1627 -884 5 1 -242.153 19.31 

80 204.5 -204.263 19.0129 640.3793 1543 -888 6.5 0 -197.763 19.0129 

120 203.2 -164.324 19.4708 645.9218 1463 -888 7 0 -157.324 19.4708 

160 202.4 -122.567 19.7483 639.6743 1386 -890 6 0 -116.567 19.7483 

200 201.2 -81.6315 20.2106 644.8759 1303 -890 7 0.5 -74.6315 19.7106 

240 200.4 -41.0276 20.5353 638.1016 1226 -893 5 0 -36.0276 20.5353 

280 199.6 -0.7545 20.9972 643.6201 1143 -893 6 0 5.2455 20.9972 

320 198.6 41.0877 21.2706 637.0783 1060 -896 5 0 46.0877 21.2706 

360 198.1 83.1514 21.6859 642.805 971 -896 8 0 91.1514 21.6859 

400 197.6 121.3875 22.0511 635.8548 894 -898 7 0 128.3875 22.0511 

440 196.9 163.6185 22.4675 641.5761 802 -899 9 0 172.6185 22.4675 

480 196.3 204.7298 22.7333 635.0755 716 -901 9 -0.5 213.7298 23.2333 

520 196.1 243.8786 23.2454 640.3668 629 -901 11 0 254.8786 23.2454 

560 195.3 284.6309 23.5068 633.8903 540 -904 12 -2 296.6309 25.5068 

600 195.1 321.8156 23.8598 627.0455 457 -907 11 -3 332.8156 26.8598 

640 194.8 363.6343 24.2436 633.22 362 -907 15 -3 378.6343 27.2436 

680 194.8 401.1522 24.6239 625.9077 275 -910 15 -4 416.1522 28.6239 

720 194.8 442.1919 25.0869 631.3763 179 -910 18 -4 460.1919 29.0869 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 9.5 mm and 1.7 

mm respectively. 
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Figure 5.7: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 208 cm from the projector lens. 

 

 

 

Figure 5.8: Plot of original and new ‘x’ and ‘y’ world coordinates. 

 



 

56 
 

Table 5.5: Error in ‘x’ and ‘y’ world coordinates when the target is at a distance of about 

228 cm from the projector lens. 

 

 
d xw yw zw xp yt xerror yerror xwn ywn 

0 225.6 -299.972 16.0909 864.9099 1579 -860 7.5 1 -292.472 15.0909 

40 224.5 -259.013 14.8389 871.0232 1506 -863 7 0.5 -252.013 14.3389 

80 223.5 -218.788 15.4483 877.8728 1434 -863 9 1 -209.788 14.4483 

120 222.3 -175.094 15.9486 868.138 1363 -865 6 0.5 -169.094 15.4486 

160 221.7 -132.917 14.6303 875.0929 1286 -868 7 0 -125.917 14.6303 

200 220.5 -93.1524 15.2959 881.2223 1213 -868 8 0 -85.1524 15.2959 

240 219.7 -52.7739 15.8452 871.7213 1145 -869 7 0 -45.7739 15.8452 

280 219.2 -5.6142 16.2947 878.9027 1057 -870 9 0 3.3858 16.2947 

320 218.4 32.46 16.8927 869.1655 991 -871 7 0 39.46 16.8927 

360 217.9 74.3256 17.5078 875.5202 911 -871 9 0 83.3256 17.5078 

400 217.4 117.3834 17.9361 866.6258 833 -873 7 -0.5 124.3834 18.4361 

440 216.9 159.4067 18.5526 872.9649 751 -873 10 -0.5 169.4067 19.0526 

480 216.7 200.1728 19.0286 863.8406 675 -875 10 -1 210.1728 20.0286 

520 216.4 242.3432 19.6463 870.1646 591 -875 12 -1 254.3432 20.6463 

560 215.9 284.7467 20.2671 876.5257 507 -875 15 -1 299.7467 21.2671 

600 215.6 324.9627 20.7341 867.391 427 -877 15 -2 339.9627 22.7341 

640 215.4 365.6614 21.4094 873.47 345 -877 18 -2 383.6614 23.4094 

680 215.1 405.4209 21.8689 864.3785 263 -879 19 -3 424.4209 24.8689 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 10.8 mm and 1.13 

mm respectively. 
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Figure 5.9: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 228 cm from the projector. 

 

 

 

Figure 5.10: Plot of original and new ‘x’ and ‘y’ world coordinates. 
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Table 5.6: Error in ‘x’ and ‘y’ world coordinates when the target is at a distance of about 

246 cm from the projector lens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 10.9 mm and 1.3 

mm respectively. 

 
d xw yw zw xp yt xerror yerror xwn ywn 

0 244.9 -297.9 10.5 1093.3 1456 -845 6 0 -291.9 10.5 

40 243.8 -256.4 11.3 1100.4 1388 -844 7 1 -249.4 10.3 

80 243.1 -212.7 10 1107.6 1316 -847 7.5 0 -205.2 10 

120 242.1 -171.7 10.8 1115.3 1249 -846 8 1 -163.7 9.8 

160 240.8 -129.4 11.5 1102.2 1186 -848 7 0.5 -122.4 11 

200 239.5 -83.6 12.1 1091.4 1116 -850 6 0 -77.6 12.1 

240 239.5 -43 11 1116.6 1041 -850 10 0 -33 11 

280 237.7 -0.4 11.7 1104.4 974 -852 9 0 8.6 11.7 

320 237.7 43.1 12.4 1112.5 900 -851 10 0 53.1 12.4 

360 237.5 86.1 13.1 1099.7 830 -853 9 0 95.1 13.1 

400 236.7 128.7 13.9 1106.8 756 -852 10.5 0 139.2 13.9 

440 236.2 170.2 14.6 1094.8 686 -854 12 0 182.2 14.6 

480 236.2 214 15.3 1102.9 608 -854 12 0 226 15.3 

520 235.7 255.8 16 1090.2 536 -855 12 -0.5 267.8 16.5 

560 235.7 298.6 16.8 1097.2 458 -855 15 -1 313.6 17.8 

600 235.5 338.9 17.4 1085.3 385 -857 15 -3 353.9 20.4 

640 235.5 384 18.1 1092.6 302 -856 20 -4 404 22.1 
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Figure 5.11: Plot of error in ‘x’ and ‘y’ world coordinates when the target is at a distance 

of about 246 cm from the projector lens. 

 

 

 

Figure 5.12: Plot of original and new ‘x’ and ‘y’ world coordinates. 

 



 

60 
 

As seen from the data provided in Table 5.1 to Table 5.6 and Figure 5.1 to Figure 5.12, 

the error in the ‘x’ and ‘y’ world coordinates of the target are very small and the predicted 

world coordinates of the target follows the original world coordinates with a very small 

difference. The standard deviation of the ‘x’ world coordinate ranges between 3.2 mm to 

10.9 mm and ‘y’ world coordinate ranges from 0.52 mm to 1.7 mm. Therefore it can be 

said that the target is tracked quite accurately when it is moved from right to left. 

 

5.3 Experiment 2.2 results 

The Table 5.7 and Figure 5.13 and Figure 5.14 shows the result of the experiment when 

the target is moved backwards in ‘z’ direction. 

 

Table 5.7 Error in ‘x’ and ‘y’ world coordinates when the target in moved backwards in 

the ‘z’ direction 

 

d xw yw zw xp yt xerror yerror xwn ywn 

 
0 141 71.3233 39.2436 18.4544 1342 -984 2 0 73.3233 39.2436 
 

10 151.9 71.6939 36.5878 117.1423 1267 -965 2 0 73.6939 36.5878 
 

20 160 71.4265 34.4103 218.3991 1201 -946 3 0 74.4265 34.4103 
 

30 170.2 73.732 32.7774 320.1604 1136 -928 4 1 77.732 31.7774 
 

40 179.7 72.6755 28.1297 435.9011 1080 -917 5 0 77.6755 28.1297 
 

50 195 71.3745 23.9622 548.7093 1033 -906 6 -1 77.3745 24.9622 
 

60 200.5 71.0924 20.6868 665.8011 988 -894 8 0 79.0924 20.6868 
 

70 210.5 69.4624 18.589 785.9785 949 -881 9 0 78.4624 18.589 
 

80 220 65.213 17.7795 874.1772 929 -870 5 0 70.213 17.7795 
 

90 230 68.3 14.9 1006.7 885 -860 9 0 77.3 14.9 
 

100 240 66.5 13.8 1115.7 859 -849 10 0 76.5 13.8 
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The standard deviation in ‘x’ and ‘y’ world coordinates are found to be 3.26 mm and 0.58 

mm respectively. 

 

 

 

Figure 5.13: Plot of error in ‘x’ and ‘y’ world coordinates when the target is moved in the 

‘z’ direction. 

 

 

 

Figure 5.14: Plot of original and new ‘x’ and ‘y’ world coordinates. 
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From the data provided in Table 5.7 and the Figure 5.13 and Figure 5.14, it can be clearly 

seen the error in ‘x’ increases as the distance between the target and the projector lens 

increases. In this experiment it was found that when the distance between the target and 

the projector lens was about 240 cm, the predicted ‘x’ and ‘y’ world coordinates of the 

target was slightly outside the circular target. Therefore it can be inferred from this 

experiment that, when the target is at a distance more that 250 cm from the projector lens, 

the error percentage in ‘x’ world coordinate of the target increases. 
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Chapter 6 Conclusion and Future Work 

 

We present a technique for tracking a human iris using two cameras, a pan-tilt control 

unit and a projector. A new calibration method is used for calibrating the pan-tilt control 

unit. Experiments were performed to test the system functionality and experimental error 

measurements are performed to estimate the error introduced by the system. 

 

6.1 Conclusion 

 

The two cameras are initially calibrated using a calibration grid consisting of 18 rings. 

The calibration gives the camera coordinates and the world coordinates of the calibration 

grid rings. The pan-tilt unit is also calibrated with the same calibration grid in the same 

position. A new method of calibrating the pan-tilt unit is used. In this method, the pan-tilt 

unit is first moved in a direction such that the projector projects a white spot on one of the 

calibration grid rings. The pan and tilt values for that ring is noted and similarly all the 

pan-tilt values for all different rings are noted and saved in the calibration program. The 

calibrated cameras are then used to determine the world coordinate of the projected spot. 

The method of Least Square Approximation is used to find the ‘m’ coefficients of both 

the cameras and the pan-tilt unit.  A Ring Filter is used to correlate the camera image in 

real time. Peaks are found in the correlated image using peak to side lobe ratio. In this 

way the target is detected and the camera coordinates of the target are found. The camera 

coordinates along with the ‘m’ coefficients of the cameras are used to find the world 

coordinates of the target. The world coordinates of the target along with the ‘m’ 
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coefficients of the pan-tilt unit are used to find the pan-tilt coordinates. The pan-tilt 

coordinates are modeled as a pinhole lens. The pan-tilt unit is moved using the pan-tilt 

coordinates and the projector points the white spot on the target.  

According to the experiments conducted, the error percentage of the system is small 

when the target is not more than 240 cm from the projector lens. As the distance of the 

target from the cameras and the projector increases, the accuracy of tracking decreases. 

 

6.2 Future Work 

 

The system can be further improved by improvements in the filter used to correlate the 

camera image in order to detect the target and get the camera coordinates. In the current 

method, the radius of the positive target ring and the radius of the negative suppression 

ring of the ring filter has to be changed as the target moves backwards in order to detect 

the target perfectly and avoid any false detection. This also increases the processing time 

considerably.  

Wide angle lenses can be used to increase the range of tracking. 

The present system can be made more robust by making it an automated system so that 

experiments can be conducted on an actual human iris and a video of the whole tracking 

process can be recorded. 

A laser set up can be used in place of the projector. In the present system we use separate 

programs to run the cameras and the projector and this slows up the whole process. By 

mounting a laser on the pan-tilt unit the tracking process can be made faster. 
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A digital camera can be employed in order to view the target detection and tracking 

directly on it. This helps to zoom the target spot and capture the image of the target and 

later analyze it. 

In the present system we found that the error in the ‘x’ world coordinate was higher than 

the error in the ‘y’ world coordinate of the target. This error in the ‘x’ world coordinate 

can be decreased by employing a 3 camera setup. 
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Appendix 

 

A.  Automated Calibration of Photogrammetric Grid 

 

Initially the target image (grid) is captured by both the cameras. Down sampling of the 

image is done to speed up the process. The camera image is then binarized at some 

threshold level and segmented into a set of blobs. Minimum and maximum blob 

height/width is used to isolate the blobs from the surroundings. 

Figure A, Figure B and Figure C show the actual image, binarized image and image after 

blob detection from both the cameras.  

 

   

 

Figure A: Camera A (Top Camera) and Camera B (Bottom Camera) actual image. 
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Figure B: Camera A (Top Camera) and Camera B (Bottom Camera) Binarized image. 

 

  

 

Figure C: Camera A (Top Camera) and Camera A (Bottom Camera) Blob detected 

Image. 
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The blobs shown in the Figure C can be processed to determine if their shape is 

consistent with the target feature shape such as a circle, ring, ellipse and elliptical ring. 

Given that they are, the dimensions of the shape can be measured along with the centroid 

of the shape. It is assumed that the exact number of features N is known so the N best fit 

shapes are assumed to be the correct ones. 
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