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Abstract—Adaptive mechanisms present numerous benefits to
artificial systems interacting with the environment. For instance
learning sensory-motor mappings eliminates the necessity of
(re)calibration process for active vision systems when the aspects
of the system or the environment is changed. The amount of time
spent on the adaptation process may be reduced if an efficient
strategy is followed. We propose such a mechanism which uses
intrinsic motivation for sensory-motor learning. We tested our
framework in a series of experiments where the environment the
system learned a mapping for was systematically changed. Our
curiosity-driven framework yielded distinct exploration patterns
where distorted areas were concentrated immediately after a
change was applied.

I. INTRODUCTION

The human eye has its highest resolution in the center
of the retina, the fovea. In order to recognize objects the
eye moves rapidly fixating different points of interest. This
movement space is the gaze space of the eye. However, when
an object has been located (at some location in the gaze space)
a robot will want to move its hand to the same location
in order to grasp the object. The movement space of the
arm is called the reach space and a key question is how the
reach space can be correlated (both in human brains and in
robots) with the gaze space so that any point in space has
the same correspondence in the two very different gaze and
reach spaces. Several frameworks for learning such sensory-
motor mappings were introduced [1, 2, 3, 4, 5]. Such systems
can adapt learned mappings in response to changes in the
perceived environment such as caused by camera replacement
or changes in the physical environment. This adaptation of
learned mappings eliminates the necessity of (re)calibration.

An interesting issue with such adaptive systems is how to
guide the system to gather information from regions that have
not yet been learned in the learning space and how to avoid
getting stuck on areas that present samples with high signal
to noise ratio. Intrinsic motivation can lead artificial learning
systems towards situations in which the system maximises its
learning progress [6]. Such a motivational drive makes the
system focus on situations which are neither too predictable
nor too unpredictable, thus permitting autonomous mental
development. Such a framework may also improve the learning

process significantly. We present a method that uses intrinsic
motivation to drive the learning process and make the system
explore interesting areas in the environment.

A variant of sensory-motor mapping learning scheme ex-
plained in [1] was used as the application platform. The system
consists of a static camera and a laser device that can rotate
around pan/tilt axes. The system learns a mapping between
laser pan/tilt commands and the retinal position of the laser
pointer in the right camera image (Fig. 1). We tested our
method against two other methods: random sampling and gap
method. In experiments systematic changes were applied to the
scene that required the learning system to adapt the learned
mapping. Our method provided system with an exploration
strategy where the altered regions were focused immediately
after changes. This may result in a faster adaptation process.

II. METHODS

A. System Overview

Out robotic scenario includes a laser system and an active
vision system, their spatial organization is shown in Fig. 3.
The active vision system consists of a single camera (which
provides RGB 750x576 image data). Both camera and laser
were mounted on a motorized pan-tilt-verge unit. The position
of the motors is controlled by indicating the values of their
absolute target position, or the change from the current posi-
tion. The laser and active vision system operate independently.
Relation between two independent physical systems - laser
position on the screen and tilt-verge camera coordinates can be
represented by sensory-motor mapping and can be learned for
a given scenario. The final mapping should enable the overall
system to look where it reaches to (i.e. enable transformation
from laser coordinate space to camera coordinate space), based
on the already established reach- and gaze control.

B. Sensory-motor Mapping Learning

The domains of the laser and camera movements are both
represented as a two-dimensional coordinate system. The
purpose of the gaze control is to move the camera in such a
way that the visual stimuli, the projection of the laser pointer
on the camera image, is situated in the centre of the image.
The input RGB images are filtered with a colour filter, in our



Fig. 1. Mapping scheme.

case red. Output images are gray-scale and non-zero values
indicate the appearance of the filtered colour in the original
image.

Assuming two spaces Θ ∈ Rn (in our case laser space and
n = 2) and I ∈ Rm (in our case camera space and m = 2) a
mapping M stores the pairs of vectors ([Θp,Θt ], [x,y]), which
represent real examples how one point in space Θ is related
to one point in space I (Fig. 1). This is called a link. Because
there is a modal relation between links, there is also an
additional property of bi-directionality (i.e. Θ refers to I and
vice versa).

Whenever a new training sample is encountered, a distance
metric (here the euclidean distance) can be used to find the link
stored in the mappings that is closest to that new sample. The
existing link and the distance metric can be used a a prediction
and prediction error, respectively. When the prediction error is
above a certain threshold T = 300, a new link corresponding to
the new sample is added to the mappings. Thus, the maximum
prediction error also defines the minimum distance between
two distinct links in the mappings. Additionally, links in the
mapping have a maximum age Q = 80. The age of a link is
set to 0 when it is created and when it results in a successful
prediction, and increased by 1 at every timestep otherwise. The
oldest link with an age above Q is removed from the mapping
at every timestep.

The main difficulty with the described mapping method
arises when the explored environment changes: a robust algo-
rithm dealing with the appearance of new relations between the
two spaces is required. It should update links in the mapping,
that is delete links corresponding to the former relation and
add links reflecting the new relation. It should also do so
efficiently, spending more time in regions that have changed
than in regions that have not.

C. Curiosity-driven Exploration Framework

The proposed curiosity-driven exploration framework for
the sensory-motor mapping learning system defines a method
for selecting learning examples from the sampling space (i.e.
laser motor space) so as to concentrate on interesting regions
of space. In the context of this experiment, interesting regions
are those where the prediction accuracy can be improved. This

includes areas where no mappings have yet been learned and
areas where the previous mappings have been invalidated by
change, but excludes regions where no accurate predictions
can ever be made.

For this purpose, [6] defined a single metric reflecting the
learning progress in a particular region of the sampling space
as the difference between the past mean error in a [tpast −
n, tpast ] time window, and the current mean error for the [t−
n, t] window. Higher values of this metric were associated with
a higher probability of choosing the next learning example
from that region of space, thus driving the system to explore
preferentially the regions where the highest improvement in
prediction accuracy is being achieved at any particular time.
In their experiment, an adaptive partitioning of the sensori-
motor space into discrete regions was used as well, with the
aim of letting the curiosity-driven process partition the space
according to its underlying structure. That structure, however,
did not change over time.

Here, we chose to defined a fixed set of regions in laser
motor space instead, and let the sensori-motor relations in
each of these regions change over time. This prevented us
from using the same metric as [6] to drive the exploration
process: with the nearest-neighbour prediction scheme used,
a change in the mapping to be approximated results in a
steep increase of the online prediction error until the affected
region has been substantially explored and remapped. It is
therefore not possible to rely on an online estimation of the
instantaneous learning progress; an offline estimation would be
possible but impractical in our experimental setup as it would
require performing a systematic exploration of the entire laser
motor space, thus negating any benefits of the curiosity-driven
method in terms of learning speed.

Instead, we chose to let the curiosity-driven exploratory
behaviour emerge from the interaction of two distinct factors:
a drive towards regions where the existing mappings are not
yielding accurate predictions (reacting to change), and a drive
away from regions where no long-term improvements can be
obtained (analogous to boredom).

Fig. 2 illustrates the basic principle of this method. Accord-
ing to this training examples are sampled from a Gaussian
distribution over the laser motor space:

G(µ,σ) = exp
(−(Θp−µ)2

2σ2

)
, (1)

where µ is the mean of the Gaussian, defining the position of
the Gaussian peak in the sample space and σ is the spread
of the distribution. In this work the Gaussian distribution is
defined over the pan dimension Θp of the sample space and
tilt commands were sampled from a uniform distribution. This
simplification was possible since distortions applied in the
experiments were only in the pan dimension. Extending the
framework to a multi-dimensional space is trivial. The Θp
values were normalised to a [0,1] range.

The mean of the Gaussian (i.e. position of its peak in the
sample space) is computed using the centroid of the last N
links added to the mapping:



µ =
1
N

N

∑
i

Θ
i
p, (2)

where N = 3 is the size of the history, Θi
p position of ith link

from the last added to the mapping. This drives the exploration
to focus on areas where new links have been recently added.

The spread of the Gaussian is coupled with the performance
of the mapping in the region where the sample was taken. For
this purpose, the pan dimension of the mapping was divided
into R = 5 equal regions and the performance of the mapping
in these regions is constantly monitored with a metric called
success rate. Success rate si for region i ∈ R is computed as:

sr = sr + ts(L− sr), (3)

where ts = 0.2 is a time constant for smoothing over time
and L = 0 if the training sample at this timestep resulted in a
new link being added (eg. the prediction error was above the
threshold), L = 1 otherwise. After µ is computed the region
where µ belongs to is derived and defined as r. Consequently,
spread factor σ is computed as:

σ(t,sr) = σ0 + kbtb + k f (t f − sr)
2, (4)

where tb is the number of timesteps since the last new link
was added to the mappings and kb = 0.05 is the boredom
coefficient, sr is the success rate of region r, σ0 = 0.03 is the
base sigma, k f = 8.0 is the failure coefficient, t f = 0.4 is the
failure threshold. The term (t f −sr) is called the failure metric
and kept between 0 and 1. Also, the spread factor has a higher
bound of σMAX = 1.0. These values were experimentally
found to be satisfactory in a 1-dimensional faster-than-realtime
simulation of the system and later transposed to the much
slower hardware experiments.

Starting with blank or random mappings, the success rate
sr will initially be low in all regions and the k f (t f − sr)

2 term
will be high, resulting in a large σ value and a wide sampling
distribution. Thus, a mostly uniform exploration of space will
be performed.

As the success rate increases towards and above t f , the σ

value becomes smaller and the system concentrates on that
particular region. When the maximum link density has been
reached (eg. none of the prediction are above the error thresh-
old), tb will start to increase. This absence of improvement
causes the spread σ to get wider and eventually the focus µ

is shifted to another area.
If change occurs in a previously learned region, tb will be

reset to 0 and the high past success rate of that region will
result in a narrow gaussian distribution of samples (determined
by σ0). As the links corresponding to the new mapping are
being added, that narrow distribution will enhance the re-test
of newly-added links and prevent the success rate in that region
from being driven below the t f threshold.

Conversely, newly-added links in unlearnable areas (high
signal to noise ratio) will typically fail on re-test, which will
drive the success rate for that region below the threshold and

increase the width of the sampling distribution, driving the
system away from that region.

Fig. 2. Curiosity-driven exploration defines a Gaussian distribution on the
sample space to select learning examples. The mean of the Gaussian depends
on the last links created and the spread of the Gaussian is coupled with the
performance of the mapping in a defined region.

III. EXPERIMENTS

A. Experimental Setup

The experimental setup consists of a laser device mounted
on a motorised unit with two degrees of freedom and an RGB
camera (Fig. 3(a)). The motorised unit allow the laser to move
around pan and tilt axes in the space. The pointer of the laser
is reflected on a white board situated in front of the laser and
camera. The plane of the white board is positioned orthogonal
to the direction of the camera (i.e. parallel to the image plane)
and laser in zero position. The task was to learn a mapping
between the pan-tilt movements of the laser and the projection
of the laser pointer on images from the camera. After 200
iterations of learning, right side of the workspace is distorted
by placing a second white board in front of the laser/camera
system in a slanted position (Fig. 3(b)). The slanted surface
was positioned in the right side of the laser/camera system, left
side was left unchanged. Such an alteration in the environment
required system to relearn the areas in the mapping which
were affected by the change. After iteration 600 the scene
was returned to its original state. This introduced a change
once more in the right side of the workspace, which has to be
adapted again.

B. Results

We observed behaviour of the system using three different
methods: random sampling, gap method and the proposed
method. Random sampling chose random points in the laser
pan/tilt space for learning. The gap method samples from
regions where the number of links is less densely populated
[1]. We compared which regions of the workspace was used



(a)

(b)

Fig. 3. The hardware setup used in the experiments.

to acquire learning samples throughout the experiments done
with these three methods. For this purpose the laser pan/tilt
space was divided into three equally sized clusters in pan
direction. Since the distortion affected the mapping mostly
in pan direction, no additional clustering was done in tilt
direction. The clusters were defined as left (from -2300 to
-1117 units in pan space, the whole tilt space), centre (from
-1117 to 66 units in pan space, the whole tilt space) and right
(from 66 to 1250 units in pan space, the whole tilt space).

Fig. 4 shows which cluster chosen pan/tilt samples belong to
at every timestep in the experiments using random sampling,
gap method and the proposed method. The distribution of
samples in the experiment using random sampling does not
show any significant preference on the left, centre or right.
Samples in the experiments using the gap method were mostly
taken from the left side of the workspace after the changes
although they were applied to the right side of the scene
(iterations 200 and 600). This means that the system had
tendency to sample away from the altered regions in the map-
ping. This can be explained with the fact that the gap method
prefers regions with low number of links for sampling. As
soon as the right side of the scene was changed, the learning
mechanism started adding new links to the corresponding area
in the mapping. This could result in a relatively low number
of links in the opposite region from where the gap method

preferred sampling. For the experiments with the proposed
method the distribution of learning samples are more dense
on the right side after distortions were applied. The system
using the proposed method showed a significant preference
on altered regions to select the learning samples from.

(a)

(b)

(c)

Fig. 4. Behaviour of the system in three different experiments. Plots show the
distribution of selected learning samples in three clusters (left, right and centre
clusters are shown in blue, red and white colours respectively) in experiments
using (a) random sampling (b) the gap method and (c) the curiosity driven
exploration method. Changes in the right side of the environment were applied
after 200 and 600 timesteps.

For a quantitative analysis normalised mean of number
of samples in the clusters were computed using a sliding
window (window size was 100 timesteps) was computed for
experiments using the gap and proposed methods. The results
for left and right clusters are shown in Fig. 5. Using the
proposed method the rate of samples from the right side
reaches up to 60% after the first distortion was introduced and
80% after the second. The tendency of the gap method was
the opposite: the rate of samples from the right side dropped
below 20% after the first modification in the scene and to 10%
after the second.

IV. CONCLUSIONS AND FUTURE WORK
We presented a curiosity driven exploration method for

learning systems and tested it against two different approaches
in a sensory-motor mapping learning paradigm. The experi-
ments with other methods showed either no preference (ran-
dom sampling) or preference on the converse regions (gap
method) for exploration when a specific region in the mapping
was changed and had to be relearned. The proposed method re-
sults in significantly different exploration patterns. Our method
showed tendency to explore the areas in the mapping, which



(a)

(b)

Fig. 5. Mean values of selected learning sample proportions in two clusters
(computed with three clusters, left and right are plotted, centre is not shown)
over the last 100 timesteps from the experiments with (a) the gap method and
(b) the curiosity driven exploration method in experiments using (a) random
sampling (b) gap method.

correspond to the altered part of the scene. The exploration
behaviour observed in the gap method experiments maybe due
to the fact that the gap method samples from regions with low
number of links in order to improve parts that underfit in the
mapping. While this may be a good strategy for learning a
balanced mapping, adaptation periods may take longer using
this approach. We showed that the curiosity driven exploration
framework explained in this work can keep the spotlight
of exploration on altered areas in case of changes in the
environment. Moreover, it does not get stuck on regions,which
are practically impossible to learn. Therefore, it may fasten the
adaptation process significantly. More quantitative analysis is
required to validate this hypothesis.

ACKNOWLEDGEMENTS

This work was supported by the PC-FP7 projects IM-
CLeVeR and ROSSI, and through UK EPSRC grant
EP/C516303/1. Author C.K. is supported by Honda Research
Institute Europe GmbH.

REFERENCES

[1] M. Hülse and M. Lee, “Adaptation of coupled sensori-
motor mappings: An investigation towards developmental
learning of humanoids,” in 11th Int. Conf. on Simulation
of Adaptive Behavior (SAB), LNAI 6226, Springer, 2010,
pp. 468–477.

[2] C. Karaoguz, M. Dunn, T. Rodemann, and C. Goerick,
“Online adaptation of gaze fixation for a stereo-vergence
system with foveated vision,” in Proceedings of Int. Conf.
on Advanced Robotics 2009, Jul. 2009, pp. 1–6.

[3] M. Pagel, E. Mael, and C. Von Der Malsburg, “Self
calibration of the fixation movement of a stereo camera
head,” Autonomous Robots, vol. 5, no. 3-4, pp. 355–367,
1998.

[4] F. Chao, M. H. Lee, and J. J. Lee, “A developmental
algorithm for ocular-motor coordination,” Robotics and
Autonomous Systems, vol. 58, pp. 239–248, 2010.

[5] M. Hülse, S. McBride, and M. Lee, “Fast learning map-
ping schemes for robotic hand-eye coordination,” Cogni-
tive Computation, vol. 2, no. 1, pp. 1–16, 2010.

[6] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic
motivation systems for autonomous mental development,”
IEEE Transactions on Evolutionary Computation, vol. 11,
no. 2, pp. 265–286, Apr. 2007.


