5 research outputs found

    Clustering of scene repeats for essential rushes preview

    Get PDF
    This paper focuses on a specific type of unedited video content, called rushes, which are used for movie editing and usually present a high-level of redundancy. Our goal is to automatically extract a summarized preview, where redundant material is diminished without discarding any important event. To achieve this, rushes content has been first analysed and modeled. Then different clustering techniques on shot key-frames are presented and compared in order to choose the best representative segments to enter the preview. Experiments performed on TRECVID data are evaluated by computing the mutual information between the obtained results and a manually annotated ground-truth

    TRECVID 2008 - goals, tasks, data, evaluation mechanisms and metrics

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVID) 2008 is a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in content-based exploitation of digital video via open, metrics-based evaluation. Over the last 7 years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. In 2008, 77 teams (see Table 1) from various research organizations --- 24 from Asia, 39 from Europe, 13 from North America, and 1 from Australia --- participated in one or more of five tasks: high-level feature extraction, search (fully automatic, manually assisted, or interactive), pre-production video (rushes) summarization, copy detection, or surveillance event detection. The copy detection and surveillance event detection tasks are being run for the first time in TRECVID. This paper presents an overview of TRECVid in 2008

    TRECVID 2007 - Overview

    Get PDF

    Hierarchical Hidden Markov Model in Detecting Activities of Daily Living in Wearable Videos for Studies of Dementia

    Get PDF
    International audienceThis paper presents a method for indexing activities of daily living in videos obtained from wearable cameras. In the context of dementia diagnosis by doctors, the videos are recorded at patients' houses and later visualized by the medical practitioners. The videos may last up to two hours, therefore a tool for an efficient navigation in terms of activities of interest is crucial for the doctors. The specific recording mode provides video data which are really difficult, being a single sequence shot where strong motion and sharp lighting changes often appear. Our work introduces an automatic motion based segmentation of the video and a video structuring approach in terms of activities by a hierarchical two-level Hidden Markov Model. We define our description space over motion and visual characteristics of video and audio channels. Experiments on real data obtained from the recording at home of several patients show the difficulty of the task and the promising results of our approach

    The role of context in image annotation and recommendation

    Get PDF
    With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start)
    corecore