13 research outputs found

    Bayesian methods in glaciology

    Get PDF
    Thesis (Ph.D) University of Alaska Fairbanks, 2017The problem of inferring the value of unobservable model parameters given a set of observations is ubiquitous in glaciology, as are large measurement errors. Bayes' theorem provides a unified framework for addressing such problems in a rigorous and robust way through Monte Carlo sampling of posterior distributions, which provides not only the optimal solution for a given inverse problem, but also the uncertainty. We apply these methods to three glaciological problems. First, we use Markov Chain Monte Carlo sampling to infer the importance of different glacier hydrological processes from observations of terminus water flux and surface speed. We find that the opening of sub-glacial cavities due to sliding over asperities at the glacier bed is of a similar magnitude to the opening of channels due to turbulent melt during periods of large input flux, but also that the processes of turbulent melting is the greatest source of uncertainty in hydrological modelling. Storage of water in both englacial void spaces and exchange of water between the englacial and subglacial systems are both necessary to explain observations. We next use Markov Chain Monte Carlo sampling to determine distributed glacier thickness from dense observations of surface velocity and mass balance coupled with sparse direct observations of thickness. These three variables are related through the principle of mass conservation. We develop a new framework for modelling observational uncertainty, then apply the method to three test cases. We find a strong relationship between measurement uncertainty, measurement spacing, and the resulting uncertainty in thickness estimates. We also find that in order to minimize uncertainty, measurement spacing should be 1-2 times the characteristic length scale of variations in subglacial topography. Finally, we apply the method of particle filtering to compute robust estimates of ice surface velocity and uncertainty from oblique time-lapse photos for the rapidly retreating Columbia Glacier. The resulting velocity fields, when averaged over suitable time scales, agree well with velocity measurements derived from satellites. At higher temporal resolution, our results suggest that seasonal evolution of the subglacial drainage system is responsible for observed changes in ice velocity at seasonal scales, and that this changing configuration produces varying degrees of glacier flow sensitivity to changes in external water input

    Incorporating Particle Filtering and System Dynamic Modelling in Infection Transmission of Measles and Pertussis

    Get PDF
    Childhood viral and bacterial infections remain an important public problem, and research into their dynamics has broader scientific implications for understanding both dynamical systems and associated methodologies at the population level. Measles and pertussis are two important childhood infectious diseases. Measles is a highly transmissible disease and is one of the leading causes of death among young children under 5 globally. Pertussis (whooping cough) is another common childhood infectious disease, which is most harmful for babies and young children and can be deadly. While the use of ongoing surveillance data and - recently - dynamic models offer insight on measles (or pertussis) dynamics, both suffer notable shortcomings when applied to measles (or pertussis) outbreak prediction. In this thesis, I apply the Sequential Monte Carlo approach of particle filtering, incorporating reported measles and pertussis incidence for Saskatchewan during the pre-vaccination era, using an adaptation of a previously contributed measles and pertussis compartmental models. To secure further insight, I also perform particle filtering on age structured adaptations of the models. For some models, I further consider two different methods of configuring the contact matrix. The results indicate that, when used with a suitable dynamic model, particle filtering can offer high predictive capacity for measles and pertussis dynamics and outbreak occurrence in a low vaccination context. Based on the most competitive model as evaluated by predictive accuracy, I have performed prediction and outbreak classification analysis. The prediction results demonstrated that the most competitive models could predict the measles and pertussis outbreak patterns and classify whether there will be an outbreak or not in the next month (Area under the ROC Curve of measles is 0.89, while pertussis is 0.91). I conclude that anticipating the outbreak dynamics of measles and pertussis in low vaccination regions by applying particle filtering with simple measles and pertussis transmission models, and incorporating time series of reported case counts, is a valuable technique to assist public health authorities in estimating risk and magnitude of measles and pertussis outbreaks. Such approach offers particularly strong value proposition for other pathogens with little-known dynamics, important latent drivers, and in the context of the growing number of high-velocity electronic data sources. Strong additional benefits are also likely to be realized from extending the application of this technique to highly vaccinated populations

    A framework for context-aware driver status assessment systems

    Get PDF
    The automotive industry is actively supporting research and innovation to meet manufacturers' requirements related to safety issues, performance and environment. The Green ITS project is among the efforts in that regard. Safety is a major customer and manufacturer concern. Therefore, much effort have been directed to developing cutting-edge technologies able to assess driver status in term of alertness and suitability. In that regard, we aim to create with this thesis a framework for a context-aware driver status assessment system. Context-aware means that the machine uses background information about the driver and environmental conditions to better ascertain and understand driver status. The system also relies on multiple sensors, mainly video and audio. Using context and multi-sensor data, we need to perform multi-modal analysis and data fusion in order to infer as much knowledge as possible about the driver. Last, the project is to be continued by other students, so the system should be modular and well-documented. With this in mind, a driving simulator integrating multiple sensors was built. This simulator is a starting point for experimentation related to driver status assessment, and a prototype of software for real-time driver status assessment is integrated to the platform. To make the system context-aware, we designed a driver identification module based on audio-visual data fusion. Thus, at the beginning of driving sessions, the users are identified and background knowledge about them is loaded to better understand and analyze their behavior. A driver status assessment system was then constructed based on two different modules. The first one is for driver fatigue detection, based on an infrared camera. Fatigue is inferred via percentage of eye closure, which is the best indicator of fatigue for vision systems. The second one is a driver distraction recognition system, based on a Kinect sensor. Using body, head, and facial expressions, a fusion strategy is employed to deduce the type of distraction a driver is subject to. Of course, fatigue and distraction are only a fraction of all possible drivers' states, but these two aspects have been studied here primarily because of their dramatic impact on traffic safety. Through experimental results, we show that our system is efficient for driver identification and driver inattention detection tasks. Nevertheless, it is also very modular and could be further complemented by driver status analysis, context or additional sensor acquisition

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the person’s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay
    corecore